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ABSTRACT
This paper addresses the problem of noise estimation for
the Karhunen-Loeve transform (KLT) based speech enhance-
ment. The eigenvalues and eigenvectors of the noise covari-
ance matrix are tracked using recursive averaging algorithm.
This process is controlled by the noise power minima ob-
tained from the noisy signal even during the speech activity
periods. The proposed approach is especially recommended
for a class of signal subspace methods where a whitening
transformation is required. Experiments show that the noise
tracking algorithm offers similar performance as the method
based on idealized voice activity detector (VAD).

1. INTRODUCTION

The noise estimator is one of the most important component
of the practical speech enhancement system. An inaccurate
estimation of the noise process statistics can lead to signifi-
cant speech distortions and unwanted artifacts. Although, the
noise reduction techniques evolve rapidly, the noise estima-
tion problem is frequently neglected. The simplest solution
is to use a VAD for a classification of signal frames. The
statistics of the noise process are then gathered during the
non-speech activity periods. Conventional VADs are very
difficult to adjust and often fail in adverse noise environ-
ment, especially at low signal to noise ratio (SNR). The most
promising solutions, intended to be used in the case of non-
stationary noises, consists of minimum statistics [1] and min-
ima controlled recursive averaging (MCRA) techniques [2].
In the first case the noise is obtained as the minima values
of the smoothed periodograms. The second solution is based
on recursive averaging the spectral power estimates. This
process is controlled by power minima obtained in a similar
way as in the minimum statistics method. These approaches
are relatively simple and efficient in the adverse noise envi-
ronment. Unfortunately they have been adopted only to the
frequency domain speech enhancement scheme.

In recent years we observe a growing interest in the KLT-
based approach for speech enhancement [3]. These meth-
ods are closely related to conventional spectral weighting
techniques. The main difference is that the noisy signal is
processed in the KLT domain. In addition, covariance matri-
ces are estimated instead of power spectral densities (PSDs).
In this paper we restrict our considerations to the non-trivial
case of colored noise. The most advanced KLT-based speech
enhancement schemes [4], [5], [6] exploit a joint diagonal-
ization of the noise and clean speech covariance matrices.
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These approaches assume prewhitening that is realized using
square root of the inverse noise covariance matrix. Other so-
lutions [7], [8] diagonalize only the clean signal covariance
matrix. However the noise covariance matrix is required for
estimation of that matrix. All these methods have a great
theoretical importance, but its practical realization is still a
challenge. The existing schemes use conventional VADs and
from this reason their noise tracking capabilities are insuffi-
cient.

In fact we do neither need direct estimation of the noise
covariance matrix nor the matrix inversion, since this task
can be viewed as the noise subspace filtering. If the eigen-
vectors and eigenvalues of the noise signal are known we
can easily perform whitening transformation. Therefore we
propose an estimation of the noise KLT basis using a modi-
fied version of a projection approximation subspace tracking
(PASTd) algorithm [9]. We will show that the noise subspace
tracking can be controlled by the noise power minima com-
puted in transformed domain.

2. PROBLEM FORMULATION

Let y(t) and n(t) be k-dimensional zero-mean independent
random vectors representing clean speech and noise respec-
tively at time instant t. The corresponding noisy speech vec-
tor is x(t) = y(t)+n(t) with the covariance matrix defined
as

Rx(t) = E
{
x(t)xT (t)

}
= Ry(t)+Rn(t), (1)

where Ry(t), Rn(t) are the covariance matrices of the noise
and clean speech process, respectively. It is also assumed that
the matrix Rn(t) is positive definite. Consider the eigenvalue
decomposition (ED) of the matrix Rx(t) to be

Rx(t) = Ux(t)Λx(t)UT
x(t), (2)

where Ux(t) = [ux,1(t), ...,ux,k(t)]T is eigenvector matrix
and Λx(t) is a diagonal matrix containing the eigenvalues
{λx,i(t), i = 1, ...,k}. Assuming the same notation as above,
the covariance matrices of the clean speech and noise can be
written as follows

Ry(t) = Uy(t)Λy(t)UT
y(t), (3)

Rn(t) = Un(t)Λn(t)UT
n(t). (4)

Accurate estimates of the eigenvectors and eigenvalues of the
matrix Rx(t) are required in the KLT-based speech process-
ing algorithms. In the basic approaches the noise is assumed
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to be white i.e. Rn(t) = σ2
n(t)I, where σ2

n(t) is the variance
of noise. In this trivial case, we have Ux(t) = Uy(t), thus

Rx(t) = Ux(t)
(
Λy(t)+σ

2
n(t)I

)
UT

x(t). (5)

The eigenstructure of the matrix Rx(t) can be easily ob-
tained from the noisy data and only the noise variance should
be estimated. However, in the case of colored noise the ma-
trix Rn(t) is no longer diagonal and Ux(t) 6= Uy(t). Since
the i-th eigenvector of clean speech uy,i(t) and noise un,i(t)
are not parallel, the corresponding eigenvalues are not addi-
tive, i.e.

λx,i(t) 6= λy,i(t)+λn,i(t). (6)

Thus in this case a subspace separation is not possible. How-
ever, in the most advanced KLT-based applications the noisy
speech vectors x(t) are whitened using a square root of the
inverse noise covariance matrix. Let’s denote whitened noisy
vector by

x̂(t) = R−0.5
n (t)x(t) (7)

and the corresponding covariance matrix

Rx̂(t) = E
{
x̂(t)T x̂(t)

}
= R−0.5

n (t)Rx(t)R−0.5
n (t). (8)

Since the processing is performed in the signal-subspace of
the whitened noisy signal, the ED of the matrix Rx̂(t) is con-
sidered instead of (5), i.e.

Rx̂(t) = Ux̂(t)(Λx̂(t)+ I)UT
x̂(t). (9)

Now its clear that inexact whitening may deteriorate a perfor-
mance of whole system. Not only signal distortions may be
introduced but also the KLT matrices may be estimated incor-
rectly, which results in suboptimal signal decorrelation effi-
ciency. Typically, the noise covariance matrix is estimated in
the speech absent frames using a voice activity detector. This
solution possess one important disadvantage. Namely, there
is no possibility to track the noise statistics during a voice
activity. On the other hand, a computation of the whitening
filter for each processed frame is computationally intensive
and unpractical. In fact a whitening step can be interpreted
as the noise subspace filtering

R−0.5
n (t)x(t) = Un(t)Λ−0.5

n (t)UT
n(t)x(t). (10)

Thus we do neither require direct estimation of the noise co-
variance matrix nor finding the square root of its inverse. Our
goal is to estimate only the eigenvectors and eigenvalues of
the noise signal. As we will show, it can be done adaptively
using the subspace tracking algorithm.

3. NOISE SUBSPACE TRACKING

We can split the problem of noise estimation into two tasks,
the noise eigenvalues tracking and eigenvectors tracking. It
can be easily observed that the KLT bases of noisy speech
and noise coincide at low SNRs, i.e. Ux(t) ≈Un(t). Since
the noise is usually more stationary than the speech signal
it is reasonable to assume that the noise subspace does not
vary rapidly during the speech activity. On the other hand
if the energy fluctuations in direction of the particular eigen-
vectors are not tracked quickly enough, musical tones may
be generated. It was verified empirically that the problem of
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Figure 1: Block diagram of the noise subspace tracking
method

noise KLT basis tracking is not so crucial for the speech en-
hancement as the estimation of the noise energies. Therefore
we conclude that the noise eigenvectors can be estimated in
the non-speech activity periods using the VAD, but the cor-
responding eigenvalues should be tracked all the time, even
during the speech activity. A block diagram of the proposed
method is depicted in Fig. 1. In the following sections we
describe the details of the noise tracking scheme.

3.1 Adaptive KLT tracking
Suppose a set of orthogonal vectors {wi(t), i = 1, ...,k} as
an approximation of the noise KLT basis. Let’s denote the
noisy speech vector in the transformed domain as

v(t) = [v1(t),v2(t), . . . ,vk(t)]T , (11)

where the scalars

vi(t) = wT
i (t)[y(t)+n(t)], i = 1, ...,k, (12)

are interpreted as the KLT coefficients. An average power of
the noisy speech in the direction of the vector wi(t) can be
defined as follows

λ
w
x,i(t) = E

{
|vi(t)|2

}
= λ

w
y,i(t)+λ

w
n,i(t), (13)

where the components

λ
w
y,i(t) = wT

i (t)Ry(t)wi(t), (14)

λ
w
n,i(t) = wT

i (t)Rn(t)wi(t), (15)

denote an average power of the clean speech and noise re-
spectively. It can be easily observed that as the vector wi(t)
coincides with the i-th noise eigenvector, the corresponding
eigenvalue is approximated by the component λw

n,i(t), i.e.

wi(t)≈ un,i(t)⇒ λ
w
n,i(t)≈ λn,i(t). (16)

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



The vectors {wi(t), i = 1, ...,k} can be calculated using the
modified PASTd algorithm (see Table 1). Our proposition is
to use a time-varying smoothing parameter β̃ (t) instead of
fixed one β ∈ (0;1). This parameter can be driven by the
output of the soft-decision VAD in a similar way as in [2].
Let’s denote the conditional speech presence probability at
time instant t as p(H1|v(t)), then

β̃ (t) = β +(1−β )p(H1|v(t−1)). (17)

Note that if p(H1|v(t − 1)) = 1, a subspace tracking is
stopped, but if p(H1|v(t− 1)) = 0, fast convergence is pro-
vided. The parameters di(t) are the exponentially weighted
estimates of the noise eigenvalues, however we can not use
them, since fast adaptation of the eigenvalues during the
speech activity is considered. Therefore, we propose to track
the noise eigenvalues independently in each KLT subband.
Let’s denote the conditional speech presence probability in
the i-th subband at time instant t as pi(H1|vi(t)). Thus the
noise eigenvalues can be estimated as follows

λ̂n,i(t) = βi(t)λ̂n,i(t−1)+(1−βi(t)) |vi(t)|2 . (18)

Similarly, the time-varying parameters {βi(t), i = 1, ...,k}
are adjusted by the corresponding subband speech presence
probabilities

βi(t) = β +(1−β )pi(H1|vi(t−1)). (19)

In the above, we use the same smoothing parameter β as for
the PASTd algorithm. Therefore, in the non-speech activ-
ity periods, the estimates λ̂n,i(t) and di(t) do not differ from
each other in substance.

3.2 Noise power minima tracking
A key point of the proposed approach is a robust implemen-
tation of the soft-decision VAD. As we will show, the speech
presence probabilities can be estimated using the noise power
minima. Suppose, an exponentially weighted estimate of
noisy speech power along the vector wi(t)

λ̂
w
x,i(t) = αλ̂

w
x,i(t−1)+(1−α) |vi(t)|2 , (20)

where α ∈ (0;β ) is a smoothing parameter. It follows easily
from (13) that if the speech is absent, then λw

x,i(t) = λ̂n,i(t).
Thus, the noise power in the i-th subband can be roughly
estimated as follows

λ
min
n,i (t) ∆= min

{
λ̂

w
x,i(t− j), j = 0,1, . . . ,T

}
, (21)

where T is a size of a minimum search window. It should be
noted that using a search window is memory consuming and
one can use a simplified method [2] to track the noise min-
ima. The estimator λ min

n,i (t) is biased, thus we recommend to
perform a bias compensation

λ̂
min
n,i (t) ∆= Bminλ

min
n,i (t). (22)

The factor Bmin generally depends on the values of T and α .
In our experiments it was simply set to fixed value. Due to
energy fluctuations of the noisy speech, the estimator λ̂ min

n,i (t)
has relatively large variance. However it is sufficiently pre-
cise for computation of the speech presence probabilities.

Table 1: PASTd algorithm with a time-varying smoothing
parameter.

x1(t) = x(t)

FOR i = 1,2, ...,k DO

vi(t) = wT
i (t−1)xi(t)

di(t) = β̃ (t)di(t−1)+
(

1− β̃ (t)
)
|vi(t)|2

Ei(t) = xi(t)−wi(t−1)vi(t)

wi(t) = wi(t−1)+
(

1− β̃ (t)
)
Ei(t)vi(t)/di(t)

xi+1(t) = xi(t)−wi(t)vi(t)

END

3.3 Speech presence probabilities
The global speech presence probability p(H1|v(t)) as well
as the subband probabilities {pi(H1|vi(t)), i = 1, ...,k} are
computed at once using the same Gaussian-Laplacian mix-
ture model [10]. In each subband, we have to evaluate two
statistical hypotheses, H0(i, t) and H1(i, t), which indicate,
respectively, speech absence and presence at the time instant
t, i.e.

H0(i, t) : vi(t) = wT
i n(t),

H1(i, t) : vi(t) = wT
i [y(t)+n(t)] . (23)

We assume that the speech components wT
i y(t) in the KLT

domain have zero-mean Laplacian distribution and the noise
components wT

i n(t) are Gaussian. The probability density
functions (PDFs) of vi(t) can be derived as follows

fi(vi(t)|H0) =
1√

2πλw
n,i(t)

exp

(
− v2

i (t)
2λw

n,i(t)

)
, (24)

fi(vi(t)|H1) =
1

4ai(t)
exp
(

λw
n,i(t)

2a2
i (t)

)[
A(+) +A(−)

]
.

For convenience, the following substitution is used

A(±) = exp
(
± vi(t)

ai(t)

)
erfc

λw
n,i(t)±ai(t)vi(t)

ai(t)
√

2λw
n,i(t)

 . (25)

In the above the parameter ai(t) is a Laplacian factor [10] and
erfc(.) denotes error function. It is known that the variance
of a Laplace distributed zero-mean random variable is equal
to

2a2
i (t) = E

{∣∣wT
i (t)y(t)

∣∣2}= λ
w
x,i(t)−λ

w
n,i(t). (26)

We propose the following minima-controlled estimators

λ
w
n,i(t)≈ λ̂

min
n,i (t), (27)

ai(t)≈
√

0.5
(

λ̂w
x,i(t)− λ̂ min

n,i (t)
)
. (28)
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Thus the likelihood ratios, given by

Li (t) =
fi (vi(t)|H1)
fi (vi(t)|H0)

, i = 1, ...,k, (29)

can be easily computed using the estimates (27) and (28).
The simplest way to improve speech probability estimation
is to take into account the strong correlation of the samples
in the consecutive frames. Therefore we employ temporally
smoothed log-likelihood ratio [11]

L̂i(t) = αLL̂i(t−1)+(1−αL) logLi(t), (30)

where αL ∈ (0;1) is a smoothing parameter. The subband
speech presence probabilities are calculated using Bayes rule

pi (H1|vi(t)) =
exp
(
L̂i(t)

)
exp
(
L̂i(t)

)
+[1− pi(H1)]/pi(H1)

, (31)

where pi(H1) is a priori speech presence probability in the
i-th subband. It can be simply set to fixed value, however
better solution is to use binary Markov model for prediction
as was suggested in [10]

pi(H1) = Π01 +(Π01 +Π11) pi(H1|vi(t−1)), (32)

where Πi j denotes the probability of the transition from the
state Hi to H j. In our experiments we set Π01 = 0.05 and
Π11 = 0.9. In order to compute global speech presence prob-
ability p(H1|v(t)), we require multivariate probability den-
sity functions f (v(t)|H1) and f (v(t)|H0), however if we as-
sume that the noisy speech components {vi(t), i = 1, ...,k}
are uncorrelated, the likelihood ratio can be approximated by

L(t) =
f (v(t)|H1)
f (v(t)|H0)

≈
k

∏
i=1

fi (vi(t)|H1)
fi (vi(t)|H0)

=
k

∏
i=1

Li(t). (33)

The corresponding temporally smoothed log-likelihood ratio
is given by

L̂(t) = αLL̂(t−1)+(1−αL) log(L(t)) =
k

∑
i=1

L̂i(t). (34)

Since the computation of the global speech presence prob-
ability p(H1|v(t)) is identical to (31), we omit an explicit
summary of this derivation.

We found that the proposed estimator of global speech
presence probability is not sensitive to the KLT-basis fluc-
tuations. As can be seen in Fig. 2, even if the noise KLT
is replaced by an arbitrary (randomly generated) orthogonal
basis, the estimate of the global speech probability is pre-
cise enough to discriminate the speech activity and silence
regions. This implies that the resulting eigenvectors con-
verge to the true noise KLT basis. Therefore the subband
speech presence probabilities as well as the corresponding
eigenvalues are also correctly estimated.

4. EXPERIMENTS

The performance of the presented method was evaluated and
compared to idealized VAD-based approach. To differentiate
these methods we called our algorithm noise subspace track-
ing (NST). The both noise estimation algorithms were com-
bined with the KLT-based speech enhancement system. For

Time (s)

F
re

q
u
e
n
c
y
 (

k
H

z
)

0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Time (s)

P
ro

b
a
b
ili

ty

0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Time (s)

P
ro

b
a
b
ili

ty

(a)

(b)

(c)

Figure 2: Global speech presence probability. (a) Spectro-
gram of the noisy speech (SNR at 0 dB). (b) Output of soft-
decision VAD for arbitrary orthogonal basis. (c) Output of
soft-decision VAD for the noise KLT basis.

our experiments we selected time domain constrained (TDC)
approach [4]. For the VAD-based version of this method the
matrix Rn(t) was simply estimated using sample correlation
matrix during non-speech activity periods. In order to sim-
ulate idealized VAD, speech activity regions were marked
manually. Both methods have been implemented assuming
a frequency sampling at 16 kHz and signal space dimension
k = 32. The following smoothing parameters have been cho-
sen β = 0.99, α = 0.995 and αL = 0.95. The length of the
minima search window was about 0.5 s. In our implemen-
tation of the TDC estimator, we use a empirically fixed La-
grange multiplier µ = 5 for simplicity, however optimal pro-
cedure [6] is also known.

For our experiments a set of 8 sentences was used. As
a degradation signal we selected slowly varying vehicular
noise. It was added to the clean speech signals such that the
segmental SNR was between 0 dB and 15 dB. The amount of
noise reduction was measured using noise attenuation factor
defined as the mean ratio between the input noise power and
output noise power. Speech distortions were measured using
segmental SNR, where the noise was interpreted as a differ-
ence between original and enhanced speech. The higher the
value of this factor, the weaker the speech distortions.

The spectrograms and informal listening tests show that
both methods provide similar speech distortions and noise
attenuation. This observation has been confirmed with ob-
jective measurement (see Table 2). The performance of most
practical VADs strongly depends on SNR and it is far from
the theoretical limit that we have here. From this reason ide-
alized VAD-based solution gives slightly better results, es-
pecially at low SNRs. On the other hand, VAD-based ap-
proach suffers from unnatural sharpness at transitions be-
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Table 2: Objective measurement.

Input SegSNR Speech distortions Noise attenuation
(dB) VAD NST VAD NST

0 4.65 3.45 18.46 18.16
5 7.02 6.05 13.67 13.55
10 9.68 9.27 9.17 9.08
15 12.30 13.16 5.39 5.28

tween speech and silence regions which is uncomfortable
for a listener. If these transitions are incorrectly detected
the low-power speech components that are usually present
in these regions can be lost. The proposed method provides
the smooth transitions which improves speech intelligibility
and overall listener comfort.

Fig. 3 shows the spectrograms of an example sentence
used in the tests. In order to simulate the substantial change
in the noise statistics, a pre-filtered Gaussian noise was added
to the original noise signal with the delay of about 2 s. It
can be seen that the adaptation period of NST algorithm is
proportional to the size of assumed minimum search window.
It can be also seen that the proposed method performs as well
as the idealized VAD-based approach or even better.

5. CONCLUSIONS

A novel noise estimation algorithm for KLT-based speech en-
hancement has been presented. Instead of estimating noise
covariance matrix, a recursive averaging technique is used
to track the noise eigenvectors as well as the corresponding
eigenvalues. The major adventage of the proposed method is
that the tracking is also performed during the speech activity
periods. This process is controlled by the noise power min-
ima. The resulting estimates are especially useful if applica-
tion considers whitening transformation. The proposed noise
estimation method has been evaluated and compared with
idealized VAD-based solution in the KLT-based speech en-
hancement system. Experiments and informal ilstening tests
show that the both methods offer similar performance.
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