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ABSTRACT signal can minimize the tracking errors associated with the

It has previously been shown that a decision-feedback filt r'bé alltgor:lthlrg gnd ptro(\jnﬁe perforrtr;]ar:?ﬁ that exceS?S thkz.it of
can mitigate the effect of narrowband interference. An adap-"'>- 't Shouid be noted however, nat theé improved tracking
tive implementation of the filter was seen to converge relaP€rformance requires a significant increase in compuition
tively quickly for mild interference. It is shown here, how- complexity and knowledge that the underlying variations in

ever, that in the case of severe narrowband interferenee, tﬁhe input signal can be accurately modeled by a linear FM

decision-feedback equalizer (DFE) requires a convergent%.hirp' For cases where the input is not accurately repredent
time that makes it unsuitable for some types of communicafy the linear chirp model, performance can be expected to be

tion systems. The introduction of a linear predictor, asea pr S/dnificantly worse than simply using an LMS estimator, for

filter to this equalizer, greatly reduces the total convecge the reasons discussed in [3]. The computational complexity

time. There is a trade-off, however, between convergenc%f RLS, in particular for high order systems, favors the use

time and steady-state performance, and that is evaluated % LMS.' The latter i;_ also more robu_st in fixed-point imple-
this paper y P mentations. In addition the LMS estimator has been shown

to provide nonlinear, time-varying weight dynamics that al
low the LMS filter to perform significantly better than the
1. INTRODUCTION time-invariant Wiener filter in several cases of practiogi-

A wireless communication channel can be severely degrade$t [6-8]. Itis further shown that the improved performance
in the presence of severe narrowband interference (NBI). L§ssociated with these non-Wiener effects is difficult tdizea
and Milstein discuss the use of decision-feedback filtefs [1for RLS estimators due to the time-averaging that is inkteren
to mitigate the effects of narrowband interference in spreain the estimation process [9].
spectrum communications systems. The least mean-square !N this paper we provide an alternate two-stage structure
(LMS) adaptive algorithm is used to approach the optimafhat employs an LMS linear predictor in conjunction with the
Wiener filter and it is shown that a reasonable convergenceMS decision-feedback equalizer (DFE) to provide signifi-
time is achievable for a modest signal-to-interferencmrat cant improvements in convergence rate for the case of large
(SIR) [1]. Itis discussed below that SIR governs the convereigenvalue disparity. This behavior stems from the facdt tha
gence of the adaptive algorithm. the equalizer doe_s not have a true refgrence for the |me(fer
Although it has been shown that alternate adaptive algo®nce- For strong interference the pre_dmtor g_ene_rate@atdw
rithms, such as the recursive least squares (RLS) algorithfgference for the interference and mitigates it prior toaéqu
[2], provide improved convergence relative to the LMS algo-iZation. This is shovv_n to provide a dramatic reduction in
rithm in cases of high eigenvalue disparity, there are mangonvergence time. It is also shown, however, that there is a
reasons why LMS is chosen for practical communications$light loss in absolute BER performance after convergence
system applications. Hassibi discusses [3] some of the furflue to residual errors introduced in the prediction stagpe. T
damental differences in the performance of gradient baségade-off between convergence time and BER performance
estimators such as the LMS algorithm and time averaged rdor the two-stage system is investigated. It is shown that ex
cursive estimators such as the RLS algorithm in the cases §!lent BER performance can be achieved in reasonable con-
modeling errors and incomplete statistical information-co Vergence times with the two-stage system in the presence of
cerning the input signal, interference, and noise paramete Severe interference.
Hassibi [3] examines the conditions for which LMS can be
shown to be more robust to variations and uncertaintiessin th 2. SYSTEM MODEL

signaling environment than RLS. LMS has also been ShoWR gjg1e carrier communication system in complex base-
to track more accurately than RLS because it is able to basi?and representation is depicted in Fig. 1. While emerging

the filter updates on the instantaneous error rather than_ tr?ﬁulticarrier technologies such as orthogonal frequendiy di

time averaged error [4, and references therein]. The img; - . ;
proved tracking performance of LMS over RLS for a IinearSlon multiplexing (OFDM) have become prevalent, this work

chirp input is well established [2,4]. In [5] it is shown that is intended for implementation in pre-existing singleriar

extended RLS filter that estimates the chirp rate of the inpugﬁggg}z: 1-[-22 Ilrr:gﬂtt Ssli%?gkislspggzggdthtfogg;% pBuTsSeKshap-
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Systems Center, San Diego, and the UCSD Center for Wirelessroai-  Signal is corrupted by narrowband interference that is mod-
cations (UC IUCRP grant # Com 03-10148). eled as a pure complex exponential and additive white Gaus-
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[T 1 convergence of the mean-square error (MSE) [11], when gra-

ulse f atche i o i ~ i i . i
d, (f (f_k_,MF?ngrd >§K:, Equallzation P'“dk dient noise (on the order afuE[e?,]) is neglected

Transmitter A : D;é:\ilsil(;n i 2 N 2k iH 2
Lo L e | |t — Elehul [ = 3 (12 Vo - (®)
Receiver =
Figure 1: System model. A time constant for each rr110de [2] is defined as
T~ n (9)

sian noise. A matched filter is employed at the receiver t
maximize the signal-to-noise ratio (SNR) at the output ef th
filter. Note that the overall frequency response of the puls

QI'he maximum modal time constant will be associated with
éhe minimum eigenvalue,

shape and the matched filter is assumed to satisfy Nyquist's Trmax =~ L (10)
criterion fpr no intersymbol interferenc_e (IS_I). _ 2 Amin
The signal at the input to the equalizey, is defined as This maximal time constant can be seen to be a conser-
B QKT +6 vative estimate by examining (7) more closely. The con-
X = V/Sdk+ Vel ), ) vergence will be influenced only by those eigenvalues from

whereT is the symbol durationSis the signal power) is ~ Which the projection of the corresponding eigenvector on
the interferer powerQ is the angular frequency of the inter- the optimal weights is large. Lastly, it can be seen for the
ferer, andd is a random phase that is uniformly distributed case ofA; < 1, that it is possible for the convergence of
between 0 and 2 The additive noiseny is modeled as a the filter output (mean-square error) to be faster than the
zero-mean Gaussian random process with Varimﬁcgt is convergence of the filter weights. This is because there
assumed that the communication signal, interferer, amsenoi Will be fewer modes controlling the MSE convergence (i.e.
are uncorrelated to each other. Note that the filters opatate ); |ViHWopt| < |vin0pt|)_
the symbol rate.

3.2 Eigenvalues

3. ADAPTIVE ALGORITHM The eigenvalues for the correlation matrix given by (1) can

The LMS algorithm [2] is defined by the following three be found [10,12,13] to be equal to
equations:

dk = wiixy, ) - {S+ NJ + ari, 1 eigenvalue 1)
& = dy — dy, 3) S+ oy, N-1 eigenvalues
W1 = Wi+ HEXk, (4) 4. EQUALIZER STRUCTURE
wherexy is theN-tap input vector defined as The DFE is composed of a transversal feedforward filter with
X = [Xk Xe g - in(Nil)]T ) M + 1 taps (one main tap and side taps) and a feedback

filter that hagVl taps. The feedback taps allow the equalizer
and N is the filter order,wy is the vector of adaptive tap to cancel out postcursor ISI caused by the feedforward taps.
weights, di is the desired signakl is the estimate of the A block diagram of the DFE is shown in Fig. 2. The output
desired signalg is the error signal, angi is the step-size of the filter,yi, with inputx is

parameter. Finally(-)* indicates conjugation(-)" is the

transpose operator aig" represents conjugate (Hermitian) Vi = i WXt 4+ % td (12)
transpose. k l; 1 Rk—1 P 10k—1,
3.1 LMSConvergence wheredy is the estimate of the symbdy out of the decision

The step-size parameter is chosen in a manner to guaran[%%"ice- Note thaty, are the tap weights associated with the
e

convergence in the mean-square sense, namely thgoflfe?ert\:llvt?z;glj i]!itlfé’rand' are the tap weights associated with

O<pu< ; (6)
/\max Xk
whereAmax is the maximum eigenvalue of the input autocor- T > T T - T
relation matrix. Won W Wen W, ~
Shensa [10] showed that the convergence of the weight 0 ' :
vector can be reflected as
2 — Y

N . 2
||wopt—E[wk]H2Z_Zl(l—u)\i)Zk’V'HWopt (1) . floé fzj?)» fM§>
i=
—>dk T » T — T

where); are the eigenvalues and are the eigenvectors of
the input autocorrelation matrix. The optimal Wiener solu- ] o ) _
tion is represented bwopt. A similar equation arises for the ~ Figure 2: Decision-feedback equalizer block diagram.
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The optimal weights under the minimum mean-square
error criterion can be found using the orthogonality pAnci [~~~ """ .~ Pt
ple [2]. 2V + 1 equations are obtained, and the weights can il -
be solved for using the method described in [1,14]. The opti-
mal main tap weight, feedforward side tap weights, and feed-
back tap weights are respectively,

0.6

= Simulation (one realization)
= = = Theoretical Weight
== Predicted Weight Evolution

04r

2
(05+MJ)S
Wo = 13 o2f
0~ (St 02)(02+MJ)+02d’ @3
-JS ’
W = I=1,....,M 14
! (S+07) (02 +MJ) + 02’ oMy (14) PN alalatalialebolieloliiliellsintiondntlvuinin > sl .o sl
f - JS | B 1 M 15 lerations
1= (S+02) (02 +MI)+02)” T (15) Figure 3: Decision-feedback equalizer tap weight evofutio

for M =6, SIR= 0 dB, andu = 0.01.
The weight of the feedback taps is the negative of the

feedforward side taps. This implies that if the data fed back i

is perfect, the ISI caused by the feedforward filter will be ~  F—-------------2z==
completely canceled. The BER analysis of the DFE with o8r

error propagation utilizes Markov chains to model the term

[dk—| — dk_1] as contents of a shift register and the assumption oer

= Simulation (one realization)
= = = Theoretical Weight
= = Predicted Weight Evolution

that the decisions fed back are perfect [1,15-17].

Finally, we look at the convergence properties of the
DFE when implemented using the LMS algorithm. As seen
in [1], we can obtain a recursive equation for the evolution B
of the tap weights starting from the weight update equa- ‘
tion under the assumption of a small step-siag [@]. The
mean weight evolution of the main tap, feedforward side taps teiaialalialalliathitiansaaras s
(I=1,...,M), and the feedback tapls=£ 1,...,M) are given ° r 2 3 4 s 6 7T 8 9 10
respectively by,

04r

Figure 4: Decision-feedback equalizer tap weight evofutio
Uo(k+1) = [1— p(S+ 07 +3)] uo(k) — uMJu (k) + u(?G) fO?M — 6, SIR=—20 dB, andyq: 0.0001. P Wl

u(K+1) = [1— p(S+ 02 +MJI)] u (k) — pduo(K) — 1S (K), _ N
(17)  converge on the basis of the training data only. The feedback
taps converge slower than the feedforward taps due to the fac
Vi(k+1) = [1—pSvi (k) — psui (k). (18)  that the DFE is designed such that the interferer is canceled
As in [1], the difference equations of (16)-(18) can be sdlve by the feedforward taps, while the feedback taps attempt to
using the Z-transform and the final value theorem to yield th&¢ancel out the signal distortion caused by the feedforward

steady-state value results given in (13)-(15). taps [1].
We remark that the step-sizes for the feedforward filter
and the feedback filter can be different. 5. PREDICTION FILTER
4.1 Equalizer Convergencein Severe NBI The linear predictor (LP) was introduced as a technique

. o to remove narrowband interference in many applications
Li and Milstein demonstrate that the feedforward and feedtlg, 14,17-19]. The filter is able to predict the interferer
back taps of a decision-feedback filter converge relativelyye||, due to its narrowband properties. A block diagram of
quickly, in on the order of 800 iterations, for the case ofihe Lp is shown in Fig. 5. The LP is a transversal filter with
SIR=0dB,Ep/No=200dB,u=0.01andM =3[1]. Results | taps. The delay b ensures that the signal of interest at
for these conditions can be seen in Fig. 3 wBgfiNo =10  the current sample is decorrelated from the samples in the
dB andM = 6. _ _ filter when calculating the error term. The decorrelation de

Fig. 4 illustrates the required convergence time of thgay (a) is set to one for all the results to follow. The linear
equalizer for the case of SIR —20 dB. For this case con- compination of the weighted input samples is an estimate of
vergence could not be achieved with=0.01 and it was the interferer, while the error term retains the signal ¢iin
necessary to decreageto 10 * or less. The convergence est (albeit with some distortion). The output of the filgy,
time shown in Fig. 4 is seen to be approximately 60,000 itwith inputx is defined as
erations for this case. The time constant (10) is propaation
to the minimum eigenvaluéi.e. Tore =~ 1/2u(S+ d?)) be- BV (19)
cause the projection of all the eigenvectors on the optimal Yie =X |; 1 X—n—t
weight vector is nonzero. The delay in convergence can be B
attributed to the fact that the DFE does not have a direct-refewherec; are the tap weights of the predictor.
ence for the interferer during adaptation and is thus fotoed The optimal tap weights can be found in a way similar

L-1
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Figure 7: Decision-feedback equalizer main tap weight evo-
lution after linear prediction folL = 4, SIR= —20 dB,
up = 0.0001, anduDFE = 0.005.

0.2

to determine the optimal weights of the equalizer in order
to examine the convergence time of the two-stage structure.
The optimal weights of the DFE are found by solving the
Wiener-Hopf equations [2, 7]. The feedforward weights are
equal tow p+pre = (R— Q" Q) 1p, whereR s defined as

. . . . . . . . .

o3
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Figure 6: Linear predictor tap weight evolution for SIR R=E : : ’ (22)
—20 dB andu = 0.0001. y(k—M)J Ly(k—M)
Qis defined as
to those for the equalizers above. Using the orthogonality dk—1 Kk H
e . ; : . (k=1) y(k)
principle,L equations are obtained. The optimal tap weights
are found to be Q=E : : ; (23)
J jQ(1+8)T dik=M Ly(k=M)
a= S+0§+LJe 1=0....L-1 (20 andpis defined as
5.1 Predictor Convergencein Severe NBI y(k)
Using the LMS weight update equation, a recursive function p=E : d(k)" o (24)
of the weights can be derived. The mean tap weight evolution y(k—M)

for the LP s found to be The feedback weights are thém.prg = —Qw_p+DFE.

z(k+1) =[1— u(S+ 02+ )]z (k) +udeT v, (21) The convergence of the main tap for both the DFE after

LP and the DFE-onlyl{ = 0,M = 6) can be seen in Fig. 7.
The steady-state value of (21) can be shown to be that givdror the two-stage structure, the length of the predictoeis s
in (20). to L = 4, and the number of equalizer tapgd)(is varied.
The LP is shown to converge very rapidly in Fig. 6 for It is clearly seen that the convergence time of the LP+DFE

L = 8, 6, and 4 taps. The convergence times for the givehas been reduced more than on order of magnitude, when
cases range, respectively from approximately 65 iterationcompared to the system employing only the DFE.
to about 120 iterations. The time constant for this struc-
ture is shown [10] to be dependent only upon the maximum 7. BER PERFORMANCE RESULTS

. . ~ 2 . .
eigenvalugi.e. 1up = 1/21(S+ LI+ 0p)). This resultarises oo per of taps for the LP and the DFE governs both

because thé — 1 eigenvectors corresponding to the mini- teadv-stat f d r Th
mum eigenvalues are orthogonal to the optimal weight vecs€ady-state periormance and convergence ime. The eonver

tor, hence these eigenvalues do not affect the convergentggm.:e time was studied above and here we will examine how
properties. varying filter orders affects performance of the overall-sys

tem. To this end, the total number of filter tajast{ 2M + 1)
6. TWO-STAGE SYSTEMS in the system will be set to 13. The bit error rate (BER) is

‘ calculated after the weights have converged.
The rapid convergence of the LP filter suggests the use of a The BER results for both the LP and DFE are shown in
two-stage system to allow improved performance. We willFig. 8. The first three curves labeléd= 4,M = O;L =
now consider the performance of the LP followed by the6,M = O;L = 8;M = 0 illustrate that the performance of
DFE, which will be abbreviated as LP+DFE. It is necessarythe LP improves as the predictor order is increased. The
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Figure 8: BER performance for LP, LP+DFE, and DFE for

SIR=—-20dB.

two-stage systems are evaluated for the casés-oft, M =

4;L =6,M =3;L=8M = 2. The last case is the scenario

filter allows effective BER performance to be achieved in a
substantially reduced time interval.
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