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ABSTRACT

It has previously been shown that a decision-feedback filter
can mitigate the effect of narrowband interference. An adap-
tive implementation of the filter was seen to converge rela-
tively quickly for mild interference. It is shown here, how-
ever, that in the case of severe narrowband interference, the
decision-feedback equalizer (DFE) requires a convergence
time that makes it unsuitable for some types of communica-
tion systems. The introduction of a linear predictor, as a pre-
filter to this equalizer, greatly reduces the total convergence
time. There is a trade-off, however, between convergence
time and steady-state performance, and that is evaluated in
this paper.

1. INTRODUCTION

A wireless communication channel can be severely degraded
in the presence of severe narrowband interference (NBI). Li
and Milstein discuss the use of decision-feedback filters [1]
to mitigate the effects of narrowband interference in spread
spectrum communications systems. The least mean-square
(LMS) adaptive algorithm is used to approach the optimal
Wiener filter and it is shown that a reasonable convergence
time is achievable for a modest signal-to-interference ratio
(SIR) [1]. It is discussed below that SIR governs the conver-
gence of the adaptive algorithm.

Although it has been shown that alternate adaptive algo-
rithms, such as the recursive least squares (RLS) algorithm
[2], provide improved convergence relative to the LMS algo-
rithm in cases of high eigenvalue disparity, there are many
reasons why LMS is chosen for practical communications
system applications. Hassibi discusses [3] some of the fun-
damental differences in the performance of gradient based
estimators such as the LMS algorithm and time averaged re-
cursive estimators such as the RLS algorithm in the cases of
modeling errors and incomplete statistical information con-
cerning the input signal, interference, and noise parameters.
Hassibi [3] examines the conditions for which LMS can be
shown to be more robust to variations and uncertainties in the
signaling environment than RLS. LMS has also been shown
to track more accurately than RLS because it is able to base
the filter updates on the instantaneous error rather than the
time averaged error [4, and references therein]. The im-
proved tracking performance of LMS over RLS for a linear
chirp input is well established [2,4]. In [5] it is shown thatan
extended RLS filter that estimates the chirp rate of the input
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signal can minimize the tracking errors associated with the
RLS algorithm and provide performance that exceeds that of
LMS. It should be noted however, that the improved tracking
performance requires a significant increase in computational
complexity and knowledge that the underlying variations in
the input signal can be accurately modeled by a linear FM
chirp. For cases where the input is not accurately represented
by the linear chirp model, performance can be expected to be
significantly worse than simply using an LMS estimator, for
the reasons discussed in [3]. The computational complexity
of RLS, in particular for high order systems, favors the use
of LMS. The latter is also more robust in fixed-point imple-
mentations. In addition the LMS estimator has been shown
to provide nonlinear, time-varying weight dynamics that al-
low the LMS filter to perform significantly better than the
time-invariant Wiener filter in several cases of practical inter-
est [6–8]. It is further shown that the improved performance
associated with these non-Wiener effects is difficult to realize
for RLS estimators due to the time-averaging that is inherent
in the estimation process [9].

In this paper we provide an alternate two-stage structure
that employs an LMS linear predictor in conjunction with the
LMS decision-feedback equalizer (DFE) to provide signifi-
cant improvements in convergence rate for the case of large
eigenvalue disparity. This behavior stems from the fact that
the equalizer does not have a true reference for the interfer-
ence. For strong interference the predictor generates a direct
reference for the interference and mitigates it prior to equal-
ization. This is shown to provide a dramatic reduction in
convergence time. It is also shown, however, that there is a
slight loss in absolute BER performance after convergence
due to residual errors introduced in the prediction stage. The
trade-off between convergence time and BER performance
for the two-stage system is investigated. It is shown that ex-
cellent BER performance can be achieved in reasonable con-
vergence times with the two-stage system in the presence of
severe interference.

2. SYSTEM MODEL

A single-carrier communication system in complex base-
band representation is depicted in Fig. 1. While emerging
multicarrier technologies such as orthogonal frequency divi-
sion multiplexing (OFDM) have become prevalent, this work
is intended for implementation in pre-existing single-carrier
systems. The input signal,dk, is defined to bei.i.d. BPSK
symbols. The input signal is passed through a pulse shap-
ing filter that is necessary for bandlimited transmission. This
signal is corrupted by narrowband interference that is mod-
eled as a pure complex exponential and additive white Gaus-
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Figure 1: System model.

sian noise. A matched filter is employed at the receiver to
maximize the signal-to-noise ratio (SNR) at the output of the
filter. Note that the overall frequency response of the pulse
shape and the matched filter is assumed to satisfy Nyquist’s
criterion for no intersymbol interference (ISI).

The signal at the input to the equalizer,xk, is defined as

xk =
√

Sdk +
√

Je j(ΩkT+θ) +nk, (1)

whereT is the symbol duration,S is the signal power,J is
the interferer power,Ω is the angular frequency of the inter-
ferer, andθ is a random phase that is uniformly distributed
between 0 and 2π. The additive noise,nk is modeled as a
zero-mean Gaussian random process with varianceσ2

n . It is
assumed that the communication signal, interferer, and noise
are uncorrelated to each other. Note that the filters operateat
the symbol rate.

3. ADAPTIVE ALGORITHM

The LMS algorithm [2] is defined by the following three
equations:

d̂k = w
H
k xk, (2)

ek = dk − d̂k, (3)

wk+1 = wk + µe∗kxk, (4)

wherexk is theN-tap input vector defined as

xk =
[

xk xk−1 · · · xk−(N−1)

]T
(5)

and N is the filter order,wk is the vector of adaptive tap
weights,dk is the desired signal,̂dk is the estimate of the
desired signal,ek is the error signal, andµ is the step-size
parameter. Finally,(·)∗ indicates conjugation,(·)T is the
transpose operator and(·)H represents conjugate (Hermitian)
transpose.

3.1 LMS Convergence

The step-size parameter is chosen in a manner to guarantee
convergence in the mean-square sense, namely

0 < µ <
1

λmax
, (6)

whereλmax is the maximum eigenvalue of the input autocor-
relation matrix.

Shensa [10] showed that the convergence of the weight
vector can be reflected as

∥

∥wopt−E[wk]
∥

∥

2
=

N

∑
i=1

(1−µλi)
2k

∣

∣

∣
v

iH
wopt

∣

∣

∣

2
, (7)

whereλi are the eigenvalues andvi are the eigenvectors of
the input autocorrelation matrix. The optimal Wiener solu-
tion is represented bywopt. A similar equation arises for the

convergence of the mean-square error (MSE) [11], when gra-
dient noise (on the order ofLµE[e2

min]) is neglected

∥

∥E[e2
k ]−E[e2

min]
∥

∥
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2k λi
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∣
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2
. (8)

A time constant for each mode [2] is defined as

τi ≃
1

2µλi
. (9)

The maximum modal time constant will be associated with
the minimum eigenvalue,

τmax≃
1

2µλmin
. (10)

This maximal time constant can be seen to be a conser-
vative estimate by examining (7) more closely. The con-
vergence will be influenced only by those eigenvalues from
which the projection of the corresponding eigenvector on
the optimal weights is large. Lastly, it can be seen for the
case ofλi ≪ 1, that it is possible for the convergence of
the filter output (mean-square error) to be faster than the
convergence of the filter weights. This is because there
will be fewer modes controlling the MSE convergence (i.e.
λi|viH

wopt| < |viH
wopt|).

3.2 Eigenvalues

The eigenvalues for the correlation matrix given by (1) can
be found [10,12,13] to be equal to

λ =

{

S +NJ +σ2
n , 1 eigenvalue

S +σ2
n , N-1 eigenvalues

(11)

4. EQUALIZER STRUCTURE

The DFE is composed of a transversal feedforward filter with
M + 1 taps (one main tap andM side taps) and a feedback
filter that hasM taps. The feedback taps allow the equalizer
to cancel out postcursor ISI caused by the feedforward taps.
A block diagram of the DFE is shown in Fig. 2. The output
of the filter,yk, with inputxk is

yk =
M

∑
l=0

wlxk−l +
M

∑
l=1

fl d̂k−l , (12)

whered̂k is the estimate of the symboldk out of the decision
device. Note thatwl are the tap weights associated with the
feedforward filter, andfl are the tap weights associated with
the feedback filter.

Σ

T T T

x x x x0w 1w 2w Mw

ky

kx
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x x x
1f 2f Mf

ˆ
kd

Figure 2: Decision-feedback equalizer block diagram.
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The optimal weights under the minimum mean-square
error criterion can be found using the orthogonality princi-
ple [2]. 2M +1 equations are obtained, and the weights can
be solved for using the method described in [1,14]. The opti-
mal main tap weight, feedforward side tap weights, and feed-
back tap weights are respectively,

w0 =

(

σ2
n +MJ

)

S

(S +σ2
n )(σ2

n +MJ)+σ2
n J

, (13)

wl =
−JS

(S +σ2
n )(σ2

n +MJ)+σ2
n J

, l = 1, . . . ,M, (14)

fl =
JS

(S +σ2
n )(σ2

n +MJ)+σ2
n J

, l = 1, . . . ,M. (15)

The weight of the feedback taps is the negative of the
feedforward side taps. This implies that if the data fed back
is perfect, the ISI caused by the feedforward filter will be
completely canceled. The BER analysis of the DFE with
error propagation utilizes Markov chains to model the term
[dk−l − d̂k−l ] as contents of a shift register and the assumption
that the decisions fed back are perfect [1,15–17].

Finally, we look at the convergence properties of the
DFE when implemented using the LMS algorithm. As seen
in [1], we can obtain a recursive equation for the evolution
of the tap weights starting from the weight update equa-
tion under the assumption of a small step-size (µ) [2]. The
mean weight evolution of the main tap, feedforward side taps
(l = 1, . . . ,M), and the feedback taps (l = 1, . . . ,M) are given
respectively by,

u0(k +1) =
[

1−µ(S +σ2
n + J)

]

u0(k)−µMJul(k)+ µS,
(16)

ul(k+1)=
[

1−µ(S +σ2
n +MJ)

]

ul(k)−µJu0(k)−µSvl(k),
(17)

vl(k +1) = [1−µS]vl(k)−µSul(k). (18)

As in [1], the difference equations of (16)-(18) can be solved
using the Z-transform and the final value theorem to yield the
steady-state value results given in (13)-(15).

We remark that the step-sizes for the feedforward filter
and the feedback filter can be different.

4.1 Equalizer Convergence in Severe NBI

Li and Milstein demonstrate that the feedforward and feed-
back taps of a decision-feedback filter converge relatively
quickly, in on the order of 800 iterations, for the case of
SIR= 0 dB,Eb/N0 = 20 dB,µ = 0.01 andM = 3 [1]. Results
for these conditions can be seen in Fig. 3 whenEb/N0 = 10
dB andM = 6.

Fig. 4 illustrates the required convergence time of the
equalizer for the case of SIR= −20 dB. For this case con-
vergence could not be achieved withµ = 0.01 and it was
necessary to decreaseµ to 10−4 or less. The convergence
time shown in Fig. 4 is seen to be approximately 60,000 it-
erations for this case. The time constant (10) is proportional
to the minimum eigenvalue(i.e. τDFE ≃ 1/2µ(S + σ2

n )) be-
cause the projection of all the eigenvectors on the optimal
weight vector is nonzero. The delay in convergence can be
attributed to the fact that the DFE does not have a direct refer-
ence for the interferer during adaptation and is thus forcedto
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Figure 3: Decision-feedback equalizer tap weight evolution
for M = 6, SIR= 0 dB, andµ = 0.01.
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Figure 4: Decision-feedback equalizer tap weight evolution
for M = 6, SIR= −20 dB, andµ = 0.0001.

converge on the basis of the training data only. The feedback
taps converge slower than the feedforward taps due to the fact
that the DFE is designed such that the interferer is canceled
by the feedforward taps, while the feedback taps attempt to
cancel out the signal distortion caused by the feedforward
taps [1].

5. PREDICTION FILTER

The linear predictor (LP) was introduced as a technique
to remove narrowband interference in many applications
[13, 14, 17–19]. The filter is able to predict the interferer
well, due to its narrowband properties. A block diagram of
the LP is shown in Fig. 5. The LP is a transversal filter with
L taps. The delay by∆ ensures that the signal of interest at
the current sample is decorrelated from the samples in the
filter when calculating the error term. The decorrelation de-
lay (∆) is set to one for all the results to follow. The linear
combination of the weighted input samples is an estimate of
the interferer, while the error term retains the signal of inter-
est (albeit with some distortion). The output of the filter,yk,
with input xk is defined as

yk = xk −
L−1

∑
l=0

clxk−∆−l , (19)

wherecl are the tap weights of the predictor.
The optimal tap weights can be found in a way similar
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Figure 6: Linear predictor tap weight evolution for SIR=
−20 dB andµ = 0.0001.

to those for the equalizers above. Using the orthogonality
principle,L equations are obtained. The optimal tap weights
are found to be

cl =
J

S +σ2
n +LJ

e jΩ(l+∆)T l = 0, . . . ,L−1. (20)

5.1 Predictor Convergence in Severe NBI

Using the LMS weight update equation, a recursive function
of the weights can be derived. The mean tap weight evolution
for the LP is found to be

zl(k +1) = [1−µ(S +σ2
n + J)]zl(k)+ µJe jΩ∆T ∀l. (21)

The steady-state value of (21) can be shown to be that given
in (20).

The LP is shown to converge very rapidly in Fig. 6 for
L = 8, 6, and 4 taps. The convergence times for the given
cases range, respectively from approximately 65 iterations
to about 120 iterations. The time constant for this struc-
ture is shown [10] to be dependent only upon the maximum
eigenvalue(i.e. τLP ≃ 1/2µ(S+LJ +σ2

n )). This result arises
because theL − 1 eigenvectors corresponding to the mini-
mum eigenvalues are orthogonal to the optimal weight vec-
tor, hence these eigenvalues do not affect the convergence
properties.

6. TWO-STAGE SYSTEMS

The rapid convergence of the LP filter suggests the use of a
two-stage system to allow improved performance. We will
now consider the performance of the LP followed by the
DFE, which will be abbreviated as LP+DFE. It is necessary
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Figure 7: Decision-feedback equalizer main tap weight evo-
lution after linear prediction forL = 4, SIR = −20 dB,
µLP = 0.0001, andµDFE = 0.005.

to determine the optimal weights of the equalizer in order
to examine the convergence time of the two-stage structure.
The optimal weights of the DFE are found by solving the
Wiener-Hopf equations [2, 7]. The feedforward weights are
equal towLP+DFE = (R−QHQ)−1p, whereR is defined as

R = E















y(k)
...

y(k−M)









y(k)
...

y(k−M)





H









, (22)

Q is defined as

Q = E















d(k−1)
...

d(k−M)









y(k)
...

y(k−M)





H









, (23)

andp is defined as

p = E











y(k)
...

y(k−M)



d(k)∗







. (24)

The feedback weights are thenfLP+DFE = −QwLP+DFE.
The convergence of the main tap for both the DFE after

LP and the DFE-only (L = 0,M = 6) can be seen in Fig. 7.
For the two-stage structure, the length of the predictor is set
to L = 4, and the number of equalizer taps (M) is varied.
It is clearly seen that the convergence time of the LP+DFE
has been reduced more than on order of magnitude, when
compared to the system employing only the DFE.

7. BER PERFORMANCE RESULTS

The number of taps for the LP and the DFE governs both
steady-state performance and convergence time. The conver-
gence time was studied above and here we will examine how
varying filter orders affects performance of the overall sys-
tem. To this end, the total number of filter taps (L+2M +1)
in the system will be set to 13. The bit error rate (BER) is
calculated after the weights have converged.

The BER results for both the LP and DFE are shown in
Fig. 8. The first three curves labeledL = 4,M = 0;L =
6,M = 0;L = 8;M = 0 illustrate that the performance of
the LP improves as the predictor order is increased. The
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Figure 8: BER performance for LP, LP+DFE, and DFE for
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two-stage systems are evaluated for the cases ofL = 4,M =
4;L = 6,M = 3;L = 8,M = 2. The last case is the scenario
(L = 0,M = 6) where no taps are assigned to the predictor
and all the taps are given to the equalizer. It is apparent that
the steady-state BER performance for the two-stage system
is bounded by that of a system using the DFE only.

In order to evaluate the trade-offs in convergence time
and BER performance, we will define the total convergence
time necessary for the two-stage system as the sum of the
convergence times for each stage individually. The results
are shown in Table 1 forEb/N0 = 10 dB and indicate that
there is a trade-off between convergence time and steady-
state probability of error. The DFE-only case possesses the
longest convergence time and the best probability of error.
Using different parameters for the two-stage structure, the
convergence times can be reduced, at the expense of steady-
state probability of error. Notice that when comparing a two-
stage system to the DFE-only case, there is more than an
order of magnitude improvement in convergence time with
only a small degradation in the probability of error.

L M tL tM ttotal Pe

0 6 - 60,000 60,000 1.84×10−3

4 4 140 3,892 4,032 2.24×10−3

6 3 100 2,378 2,478 6.33×10−3

8 2 80 3,876 3,956 5.72×10−3

Table 1: DFE and LP+DFE results,µLP = 0.0001,µDFE =
0.005, SIR= −20 dB, andPe is for Eb/N0 = 10 dB.

8. CONCLUSIONS

We investigated the response of the LMS DFE in the pres-
ence of severe narrowband interference. Due to the absence
of a reference for the interference, the convergence time for
this equalizer is unacceptably slow for use in some realistic
systems. An adaptive linear predictor was introduced as a
pre-filter in an effort to provide a direct reference for the in-
terference. It is shown that this two-stage filtering approach
reduces the time necessary for convergence by more than an
order of magnitude. The achievable steady-state BER perfor-
mance of this two-stage structure is reduced slightly due to
the signal distortion introduced by the predictor. It is shown
that a suitable selection of the parameters for the two-stage

filter allows effective BER performance to be achieved in a
substantially reduced time interval.
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