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ABSTRACT
The paper concerns the optimal linear filtering of stochas-
tic signals associated with the notion of piecewise constant
memory. The filter should satisfy a specialized criterion for-
mulated in terms of a so called lower stepped matrixA. To
satisfy the special structure of the filter, we propose a new
technique based on a block-partition of the lower stepped
part of matrixA into lower triangular and rectangular blocks,
Li j andRi j with i = 1, . . . , l , j = 1, . . . ,si wherel andsi are
given. We show that the original error minimization prob-
lem in terms of the matrixA is reduced tol individual error
minimization problems in terms of blocksLi j andRi j . The
solution to each problem is provided and a representation of
the associated error is given.

1. INTRODUCTION

While the general theory of optimal filtering is well elab-
orated (see, e.g., [1]), the theory of optimalconstrained
filtering is still not so well developed, although this is an
area of intensive recent research (see, e.g., [2]). Despite in-
creasing demands from applications, this subject is hardly
tractable because of intrinsic difficulties in computing tech-
niques, when the filter should have a specific structure im-
plied by the underlying problem.

This paper concerns the theory of optimal linear filtering
subject to a specialized criterion associated with the notion
of piece-wise constant memory. The problem stems from an
observation considered in Section 1.2. A formulation of the
problem is given in Section 3. The solution is provided in
Section 5.

1.1 Preliminary notation

LetΩ be the set of outcomes in a probability space(Ω,Σ,µ)
for which Σ is aσ–field of measurable subsets ofΩ andµ :
Σ→ [0,1] is an associated probability measure withµ(Ω) =
1. The random variablesxk : Ω→R andyk : Ω→R are mea-
surable functions onΩ for eachω ∈ Ω andk = 1,2, . . . ,n.
If xk and yk are square integrable for eachk = 1,2, . . . ,n
then the square integrable random vectorsx ∈ L2(Ω,Rn)
and y ∈ L2(Ω,Rn) are denoted byx = [x1, . . . ,xn]T and
y = [y1, . . . ,yn]T . We write

xk = xk(ω), yk = yk(ω), x = x(ω), y = y(ω),(1)

x = [x1, . . . ,xn]T and y = [y1, . . . ,yn]T . (2)

Let A∈Rn×n and letA : L2(Ω,Rn)→ L2(Ω,Rn) be a linear
filter defined by the formula

[A (y)](ω) = A[y(ω)] ∀ y ∈ L2(Ω,Rn) andω ∈Ω (3)

so that

x̃ = A (y) wherex̃ = [x̃1, . . . , x̃n]T .

Next, let us partitioñx in such a way that

x̃ = [ũT
1 , ũT

2 , . . . , ũT
l ]T , (4)

whereũi = [x̃p1+...+pi−1+1, . . . , x̃p1+...+pi ]
T , i = 1, . . . , l , p0 =

0, ũi ∈ L2(Ω,Rpi ), andp1 + . . .+ pl = n.

1.2 The underlying problem

We interpret random vectorsy andx as observable data and
reference vector, respectively. It is assumed thaty containsx
and is contaminated with a random noise, and it is required to
find A so thatA (y) estimatesx in the best possible in terms
of minimizing the mean square error. Moreover, to determine
a bestũi in (4), the filterA may transform no more thanm(i)
componentsysi

, . . . ,yp1+...+pi
of y, where

mi = (p1 + . . .+ pi)−si +1, qi = 1,2, . . . ,(p1 + . . .+ pi),
si = qi ,qi +1, . . . ,(p1 + . . .+ pi) and i = 1, . . . , l .

Such an filterA is called the filter with piecewise-constant
memory{m1, . . . , ml}.

The above constraint implies that the filterA and con-
sequently the matrixA, must have a compatible structure.
Essential conditions are that the componentsx̃p1+...+pi and
yp1+...+pi

have the same subscript and thatsi in (5) is differ-
ent for eachi, i.e., for each̃ui in (4). This respectively means
that all entries above the diagonal of the matrixA are zeros
and second, that for eachi, there can be a zero-rectangular
block inA from the left hand side of the diagonal.

An example of such a matrixA is given in Fig. 1 for
l = 10where the shaded part designates non-zero entries and
non-shaded parts denote zero entries ofA (and wherep1+ p2
denotes a(p1 + p2)-th row, etc.). For lack of a better name,
we will refer toA similar to that in Fig. 1 as the lower stepped
matrix. We say that non-zero entries of the matrixA form a
lower stepped part ofA.

Such an unusual structure of the filterA makes the prob-
lem of finding the bestA quite specific. This subject has a
long history [3], but to the best of our knowledge, even for
a much simpler structure of the filterA whenA is defined
by a lower triangular matrix, the problem of determining the
bestA has only been solved under the hard assumption of
positive definiteness of an associated covariance matrix (see
[3, 4, 5]). We avoid such an assumption and solve the prob-
lem in the general case of the lower stepped matrix (Theorem
1). The proposed technique is substantially different from
those considered in [3, 4, 5].
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Figure 1: A lower stepped matrix and its partition.

2. LINEAR CAUSAL FILTER WITH
PIECEWISE-CONSTANT MEMORY

To define a linear causal filters with piece-wise constant
memory, we first need to formally define a lower stepped ma-
trix. It is done below with a special partition ofA in such a
way that its lower stepped part consists from rectangular and
lower triangular blocks as it is illustrated in Fig. 1. To real-
ize such a representation, we need to choose a non-uniform
partition ofA in a form similar to that in Fig. 1.

The block-matrix representation forA is as follows.
Let

A = {Ai j | Ai j ∈ Rpi×qi j , i = 1, . . . , l , j = 1, . . . ,4}, (5)

wherep1 + . . .+ pl = n andqi1 + . . .+qi4 = n.
Let /0, Oi j ∈ Rpi×qi j , Li j ∈ Rpi×qi j andRi j ∈ Rpi×qi j be

the empty block, zero block, lower triangular block and rect-
angular block, respectively.

We writeA=




A1
...

Al


 , whereAi = [Ai1, . . . , Ai4] for each

i = 1, . . . , l . Here,Ai is called the block-row.
Now, let

A1 = [ /0, /0,L13,O14], Ai = [Oi1,Ri2,Li3,Oi4]

and
Al1 = [Ol1,Rl2,Ll3, /0],

wherei = 2, . . . , l −1.
For i = 1, . . . , l −1, we also set

m1 = q13, qi3 = pi , mi+1 = qi+1,2 + pi+1 (6)
and qi+1,1 +qi+1,2 = qi,1 +mi , (7)

whereq11 = 0. Then the matrixA is represented as follows:

A =




L13 O14
O21 R22 L23 O24

...
. ..

. ..
...

Ol−1,1 Rl−1,2 Ll−1,3 Ol−1,4
Ol1 Rl2 Ll3




(8)

Definition 1 The matrixA given by(8) is called a lower
stepped matrix. The set of lower stepped matrices is denoted
byLn

m.

Definition 2 The linear filterA : L2(Ω,Rn) → L2(Ω,Rn)
is called a causal filter with piece-wise constant memory
{m1, . . . ,ml} where

mi =
{

q13 if i = 1,
qi2 +qi3 if i = 2, . . . , l , (9)

if A is defined by the lower stepped matrixA∈ Rn×n given
by (8). The set of such filters is denoted byAn

m.

3. STATEMENT OF THE PROBLEM

For anyx,y ∈ L2(Ω,Rn) andA ∈ An
m, let

J(A) = E
[‖x−A (y)‖2] , (10)

where

E
[‖x−A (y)‖2] =

∫

Ω
‖x(ω)− [A (y)](ω)‖2

Edµ(ω)

with ‖ · ‖E the Euclidean norm.
The problem is to find a filterA 0 ∈ An

m such that

J(A0) = min
A∈Ln

m

J(A). (11)

Here,[A 0(y)](ω) = A0[y(ω)] andA∈ Ln
m.

It is assumed thatx is unknown and no relationship be-
tweenx andy is known except covariance matrices or their
estimates formed from subvectors ofy andx. We note that
similar assumptions are conventional for the known methods
[1]-[7] concerning filtering of stochastic signals. The meth-
ods of a covariance matrix estimation can be found in [6].

4. AUXILIARY RESULTS

The solution of the problem (11) given below, consists of
the following steps. First, vectory is partitioned in subvec-
tors v13,v22,v23, . . . ,vl2,vl3 in a way which is compatible
with the partition of matrixA in (8). Then the original prob-
lem can be represented asl independent problems (26)–(27).
Second, to solve the problems (26)–(27), orthogonalization
of subvectorsv13,v22,v23, . . . ,vl2,vl3 is used. Finally, in
Theorem 1, the solution of the original problem is derived in
terms of matrices formed from orthogonalized subvectors.

We begin with partitions ofx andy.

4.1 Compatible representation ofA (y)

Partitions ofx andy which are compatible with the par-
tition of matrixA above are as follows.

We write

x = [uT
1 ,uT

2 , . . . ,uT
l ]T and x = [uT

1 ,uT
2 , . . . ,uT

l ]T (12)

whereu1 ∈ Rp1, u2 ∈ Rp2, . . ., ul ∈ Rpl are such that

u1 = [x1, . . . ,xp1]
T , u2 = [xp1+1, . . . ,xp1+p2]

T , . . . ,(13)

ul = [xp1+...+pl−1+1, . . . ,xp1+...+pl ]
T , (14)

andu1 ∈ L2(Ω,Rp1), u2 ∈ L2(Ω,Rp2), . . . , ul ∈ L2(Ω,Rpl )
are defined viau1,u2, . . . ,ul similarly to (1).

Next, let v11 = /0, v12 = /0, v13 = [y1, . . . ,yq13]
T and

v14 = /0.
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For i = 2, . . . , l −1, we set
vi1 = [y1, . . . ,yqi1]

T , vi2 = [yqi1+1, . . . ,yqi1+qi2]
T ,

vi3 = [yqi1+qi2+1, . . . ,yqi1+qi2+qi3]
T , vi4 = [yqi1+qi2+qi3+1, . . . ,yn]T .

If i = l , then

vl1 = [y1, . . . ,yql1]
T , vl2 = [yql1+1, . . . ,yql1+ql2]

T ,

vl3 = [yql1+ql2+1, . . . ,yn]T , vl4 = /0.

Therefore

Ay=




L13v13
R22v22+L23v23

...
Rl2vl2 +Ll3vl3


 . (15)

We defineL i j and Ri j via Li j and Ri j respectively, in
the manner ofA defined viaA by (3). The vectorvi j ∈
L2(Ω,Rqi j ) are defined similarly to those in (1).

Now, we can writeJ(A) given by (10), in the form

J(A) = J1(L13)+
l

∑
i=2

Ji(Ri2,Li3) (16)

where
J1(L13) = E

[‖u1−L13(v13)‖2]

and

Ji(Ri2,Li3) = E
[‖ui − [Ri2(vi2)+Li3(vi3)]‖2] . (17)

We note that matrixA can be represented so that

Ay= BPy,

where
B∈ Rn×q and P∈ Rq×n

with

q = q13+
l

∑
i=1

(qi2 +qi3)

are such that

B =




L13 O O O O O . . . O O
O R22 L23 O O O . . . O O
...

...
...

...
. ..

.. .
... O

O . . . . . . . . . O Rl−1,2 Ll−1,3 O O
O . . . . . . . . . O O O Rl2 Ll3




(18)

andPy=




v1
...
vl


 . Here,O is the zero block,v1 = v13 and

vi =
[

vi2
vi3

]
for i = 2, . . . , l −1. The size of each zero block

is such thatBPy is represented in the form (15). The matrix
B consists ofl × (2l −1) blocks. The vectorv = Py consists
of 2l −1 subvectorsv13, v22, v23, . . . , vl2, vl3.

The filterA can be written as

A (y) = BP(y)

where

[B(v)](ω) = B[(v)(ω)], v = P(y)

and
[P(y)](ω) = P[(y)(ω)].

4.2 Orthogonality of random vectors

For anyx,y ∈ L2(Ω,Rn), we denote

Exy = E[xyT ] =
{

E[xiy j ]
}n

i, j=1

whereE[xiy j ]
def=

∫
Ω xi(ω)y j(ω)dµ(ω). The pseudo-inverse

matrix for any matrixM is denoted byM†.

Definition 3 [6, 7] Letwi j ∈ L2(Ω,Rqi j ) for eachi = 1, . . . , l
and j = 1, . . . ,4. The random vectorsw11, . . . ,wl4 are called
pairwise orthogonal if

Ewir wis =Oii for r 6= s,

whereOii is pi × pi zero matrix. The pairwise orthogo-
nal random vectorsw11, . . . ,wl4 are said to be pairwise or-
thonormal if it is also true that

Ewiswis = I for s= 1, . . . ,4.

Lemma 1 [6, 7] Let vi j ∈ L2(Ω,Rqi j ) for eachi = 1, . . . , l
and j = 1, . . . ,4, and let

wi1 = vi1 and wis = vis−
s−1

∑̀
=1

Z is`(wi`) for s= 2,3,4

(19)
whereZ is` : L2(Ω,Rqi`)→ L2(Ω,Rqis) is defined in the man-
ner of (3) by the matrixZis` ∈ Rqis×qi` given by

Zis` = Ewiswi`E
†
wi`wi`

+Mis`(I −Ewi`wi`E
†
wi`wi`

) (20)

whereMk` ∈Rqis×qi` is arbitrary. Thenwi1, . . . ,wi4 are pair-
wise orthogonal random vectors.

In (16), the termsJ1(L13) andJi(Ri2,Li3) is defined by the
operatorsL13, Ri2 andLi3 and their action on the random
block-vectorsv13, vi2 andvi3 respectively. The correspond-
ing mutually orthogonal random vectors are

w13 = v13, wi2 = vi2 and wi3 = vi3−Z i(vi2) (21)

where i = 2, . . . , l and the operatorZ i : L2(Ω,Rqi2) →
L2(Ω,Rqi3) is defined by the matrix

Zi = Evi3vi2E†
vi2vi2

+Mi(I −Evi2vi2E†
vi2vi2

) (22)

with Mi ∈ Rqi3×qi2 arbitrary.
We write

w(ω) = [w13(ω)T , w22(ω)T , w23(ω)T ,

. . . ,wl2(ω)T , wl3(ω)T ]T ,
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and

Z =




I13 O O O O O . . . O
O I22 O O O O . . . O
O −Z2 I23 O O O . . . O
O O O I32 O O . . . O
O O O −Z3 I33 O . . . O
...

...
...

...
.. .

. ..
...

O . . . . . . . . . O O Il2 O
O . . . . . . . . . O O −Zl Il3




whereIi j is qi j ×qi j identity matrix for i = 1, . . . , l and j =
2,3, andZi is defined by (22) fori = 2, . . . , l .

The matrixZ consists of(2l −1)× (2l −1) blocks.
Then (21) can be written in the matrix form as

w(ω) = Zv(ω)

with v given above. MatrixZ implies the operatorZ :
L2(Ω,Rn)→ L2(Ω,R) defined in the manner of (3).

SinceZ is invertible, we can representA as follows:

A (y) = K [Z (P(y))] where K = BZ −1. (23)

A matrix representation ofK is

K =




L13 O O O O O . . . O O
O T2 L23 O O O . . . O O
O O O T3 L33 O . . . O O
...

...
...

...
. ..

.. .
...

...
O . . . . . . . . . O Tl−1 Ll−1,3 O O
O . . . . . . . . . O O O Tl Ll3




where
Ti = Ri2 +Li3Zi (24)

for i = 2, . . . , l . We note thatK consists ofl×(2l−1) blocks.
As a result, in (17),

Ri2vi2(ω)+Li3vi3(ω) = Ri2wi2(ω)+Li3[wi3(ω)+Ziwi2(ω)]
= Tiwi2(ω)+Li3wi3(ω)

and hence

J(A) = J1(L13)+
l

∑
i=2

Ji(Ti ,Li3), (25)

where

Ji(Ti ,Li3) = E[‖ui − [Tiwi2(ω)+Li3wi3]‖2]

with Ti defined by

[Tiwi2](ω) = Ti [wi2(ω)]

for all i = 2, . . . , l .

5. MAIN RESULTS

Lemma 2 For A∈ Ln
m, the following is true:

min
A∈Ln

m

J(A) = min
L13

J1(L13)+
l

∑
i=2

min
Ti ,Li3

Ji(Ti ,Li3) (26)

= min
L13

J1(L13)+
l

∑
i=2

min
Ri2,Li3

Ji(Ri2,Li3). (27)

Now, we are in the position to prove the main result given
in Theorem 1 below. To this end, we use the following nota-
tion.

For i = 1, . . . , l , let λi be the rank of the matrixEwi3wi3 ∈
Rpi×pi and let1

E1/2
wi3wi3 = QiUi

be the QR-decomposition forE1/2
wi3wi3 whereQi ∈ Rpi×λi and

QT
i Qi = I andUi ∈ Rλi×pi is upper trapezoidal with rankλi .

We writeGi = UT
i and use the notation

Gi = [gi1, . . . ,giλi
] ∈ Rpi×λi

wheregi j ∈Rpi denotes thej-th column ofGi . We also write

Gi,s = [gi1, . . . ,gis] ∈ Rpi×s

for s ≤ λi to denote the matrix consisting of the firsts
columns of the matrixGi .

Thes-th row of the unit matrixI ∈ Rpi×pi is denoted by
eT

s ∈ R1×pi .
For a square matrixM = {mi j }n

i, j=1, we also write

M = M∇ +M4

where
M∇ = {mi j |mi j = 0 if i < j}

and
M4 = {mi j |mi j = 0 if i ≥ j},

i.e. M∇ is lower triangular andM4 is strictly upper triangular.

Theorem 1 The solution to the problem(11) is given by the
operatorA 0 ∈An

m defined by the lower stepped matrixA0 ∈
Ln

m where

L0
i3 =




`0
i,1
...

`0
i,pi


 and R0

i2 = T0
i2−L0

i3Zi for i = 1, . . . , l .

(28)
In (28), for eachi = 1,2, . . . , l and s = 1,2, . . . , pi , thes-th
row `0

i,s is defined by

`0
i,s = eT

s Euiwi3E†
wi3wi3

Gi,sG
†
i,s+bT

i (I −Gi,sG
†
i,s) (29)

wherebT
i ∈ R1×pi is arbitrary; the matrixT0

i2 is such that

T0
i2 = Euiwi2E†

wi2wi2
+Fi(I −Ewi2wi2E†

wi2wi2
) (30)

with Fi ∈Rpi×qi2 arbitrary andI theqi2×qi2 identity matrix.
The error associated with the operatorA 0 is given by

E[‖x−A 0(y)‖2]=
l

∑
i=1




λi

∑
s=1

pi

∑
j=s+1

E
[
|eT

s Euiwi3E†
wi3wki3

gi, j |2
]

+ ‖E1/2
uiui‖2

F −‖Euiwi2E†1/2
wi2wi2‖2−‖Euiwi3E†1/2

wi3wi3‖2
F


 . (31)

1We recall that by (6),qi3 = pi .
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Remark 1 The matrixGi ∈ Rpi×r has rankλi and hence
has λi independent columns. It follows thatGi,s ∈ Rpi×s

also has independent columns and therefore also has rank
s. Thus GT

i,sGi,s ∈ Rλi×λi is non-singular and soG†
i,s =

(GT
i,sGi,s)−1GT

i,s. Hence

`0
i,s = eT

s Euiwi3E†
wi3wi3

Gi,s(GT
i,sGi,s)−1GT

i,s

+ bT
i [I −Gi,s(GT

i,sGi,s)−1GT
i,s]

for all i = 1,2, . . . , l .

We note that the results by Bode and Shannon [3], Fomin
and Ruzhansky [4], Ruzhansky and Fomin [5], and Wiener
[1, 2, 6] are particular cases of Theorem 1 above.

5.1 Simulations

To illustrate the proposed method, we consider the best
approximatorA 0 ∈ An

m with n = 51 and memorym =
{m1, . . . ,m5}, wherem1 = 20, m2 = 25, m3 = 15, m4 = 35
andm5 = 25.

Then the blocks of the matrixA0 are

L0
13∈ R20×20, R0

22∈ R10×15, L0
23∈ R10×10, (32)

R0
32∈R5×10, L0

33∈R5×5, R0
42∈R10×25, L0

43∈R10×10.
(33)

R0
52∈ R5×20 and L0

53∈ R5×5. (34)

We apply A 0 ∈ A51
m to the random vectory under

conditions as follows. In accordance with the assumption
made above, we suppose that a reference random vector
x ∈ L2(Ω,R51) is unknown and that noisy observed data
y ∈ L2(Ω,R51) is given byq realizations ofy in the form of
a matrixY ∈ Rn×q with q = 101. MatricesEu1v13, Ev13v13
and matricesEuivi2, Euivi3, Evi2vi2 and Evi3vi3 for i =
2, . . . ,5, or their estimates are assumed to be known.

In practice, these matrices or their estimates are given
numerically, not analytically. Similarly to our methods pre-
sented in [6, 7], the proposed method works, of course, under
this condition. In this example, we model the matrices used
in the simulations with analytical expressions in the follow-
ing way. First, we setX ∈ Rn×q andY ∈ Rn×q by

X = [cos(α)+cos(0.3α)]T [cos(0.5β )+sin(5β )]

and

Y = [cos(α)• r1 +cos(0.3α)]T [cos(0.5β )+sin(5β )• r2],

where

α = [α0,α1, . . . ,αn−1], αk+1 = αk+0.4, k= 0,1, . . . ,n−1,

α0 = 0, β0 = 0,

β = [β0,β1, . . . ,βq−1], β j+1 = β j +0.4, j = 0,1, . . . ,q−1,

cos(α) = [cos(α0), . . . ,cos(αn)],
sin(β ) = [sin(β0), . . . ,sin(βq−1)],

the symbol•means the Hadamard product,r1 is a1×n nor-
mally distributed random vector andr2 is a1×q uniformly
distributed random vector. Here,r1 andr2 simulate noise.2

2The matrixX can be interpreted as a sample ofx. By the assumptions
of the proposed method, it is not necessary to knowX. We use matrixX for
illustration purposes only.

Each column ofY is a particular realization ofy.
By the proposed procedure , we partition each column of

X andY in subvectors

u1, . . . ,u5 and v13, v22, v23, . . . , v52, v53,

respectively.
Furthermore,v13, v22, v23, v32, v33 andv34 have been or-

thogonalized tow11, w22, w23, w32, w33 andw34. Matrices
(32)–(34) have then been evaluated by the procedure pre-
sented in Theorem 1 fromu1, . . . ,u3, andw11, w22, w23, w32,
w33 andw34.

As a result, the estimatêx0 has been evaluated in the form
x̂0 such that

x̂0 =




L0
13w13

R0
22w22+L0

23w23
...

R0
52w52+L0

53w53


 .

On Fig. 1, the plots of columns51 and52 of the matrix
Y are presented. They are typical representatives of the noisy
data under consideration. On Fig. 2, the plots of columns51
and52of the matrixX (solid line) and their estimates (dashed
line with circles) by our filter are given.
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