OPTIMAL LINEAR FILTERING WITH PIECEWISE-CONSTANT MEMORY

Anatoli Torokhti and Phil Howlett
University of South Australia, School of Mathematics and Statistics
1 Mawson Lakes Blvr., SA 5095, Adelaide, Australia
phone: +61 88302 3812, fax: +61 88302 5785, email: anatoli.torokhti@ unisa.edu.au web: http://people.unisa.edu.au/Anatoli.Torokhti

Abstract

The paper concerns the optimal linear filtering of stochastic signals associated with the notion of piecewise constant memory. The filter should satisfy a specialized criterion formulated in terms of a so called lower stepped matrix A. To satisfy the special structure of the filter, we propose a new technique based on a block-partition of the lower stepped part of matrix A into lower triangular and rectangular blocks, $L_{i j}$ and $R_{i j}$ with $i=1, \ldots, l, j=1, \ldots, s_{i}$ where l and s_{i} are given. We show that the original error minimization problem in terms of the matrix A is reduced to l individual error minimization problems in terms of blocks $L_{i j}$ and $R_{i j}$. The solution to each problem is provided and a representation of the associated error is given.

1. INTRODUCTION

While the general theory of optimal filtering is well elaborated (see, e.g., [1]), the theory of optimal constrained filtering is still not so well developed, although this is an area of intensive recent research (see, e.g., [2]). Despite increasing demands from applications, this subject is hardly tractable because of intrinsic difficulties in computing techniques, when the filter should have a specific structure implied by the underlying problem.

This paper concerns the theory of optimal linear filtering subject to a specialized criterion associated with the notion of piece-wise constant memory. The problem stems from an observation considered in Section 1.2. A formulation of the problem is given in Section 3. The solution is provided in Section 5.

1.1 Preliminary notation

Let Ω be the set of outcomes in a probability space (Ω, Σ, μ) for which Σ is a σ-field of measurable subsets of Ω and μ : $\Sigma \rightarrow[0,1]$ is an associated probability measure with $\mu(\Omega)=$ 1. The random variables $\mathbf{x}_{k}: \Omega \rightarrow \mathbb{R}$ and $\mathbf{y}_{k}: \Omega \rightarrow \mathbb{R}$ are measurable functions on Ω for each $\omega \in \Omega$ and $k=1,2, \ldots, n$. If \mathbf{x}_{k} and \mathbf{y}_{k} are square integrable for each $k=1,2, \ldots, n$ then the square integrable random vectors $\mathrm{x} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ and $\mathbf{y} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ are denoted by $\mathbf{x}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]^{T}$ and $\mathbf{y}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right]^{T}$. We write

$$
\begin{align*}
& x_{k}=\mathbf{x}_{k}(\omega), \quad y_{k}=\mathbf{y}_{k}(\omega), \quad x=\mathbf{x}(\omega), \quad y=\mathbf{y}(\omega \chi 1) \\
& x=\left[x_{1}, \ldots, x_{n}\right]^{T} \quad \text { and } \quad y=\left[y_{1}, \ldots, y_{n}\right]^{T} . \tag{2}
\end{align*}
$$

Let $A \in \mathbb{R}^{n \times n}$ and let $\mathscr{A}: L^{2}\left(\Omega, \mathbb{R}^{n}\right) \rightarrow L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ be a linear filter defined by the formula

$$
\begin{equation*}
[\mathscr{A}(\mathbf{y})](\omega)=A[\mathbf{y}(\omega)] \quad \forall \quad \mathbf{y} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right) \text { and } \omega \in \Omega \tag{3}
\end{equation*}
$$

so that

$$
\tilde{\mathbf{x}}=\mathscr{A}(\mathbf{y}) \quad \text { where } \tilde{\mathbf{x}}=\left[\tilde{\mathbf{x}}_{1}, \ldots, \tilde{\mathbf{x}}_{n}\right]^{T} .
$$

Next, let us partition \tilde{x} in such a way that

$$
\begin{equation*}
\tilde{\mathbf{x}}=\left[\tilde{\mathbf{u}}_{1}^{T}, \tilde{\mathbf{u}}_{2}^{T}, \ldots, \tilde{\mathbf{u}}_{l}^{T}\right]^{T}, \tag{4}
\end{equation*}
$$

where $\tilde{\mathbf{u}}_{i}=\left[\tilde{\mathbf{x}}_{p_{1}+\ldots+p_{i-1}+1}, \ldots, \tilde{\mathbf{x}}_{p_{1}+\ldots+p_{i}}\right]^{T}, i=1, \ldots, l, p_{0}=$ $0, \tilde{\mathbf{u}}_{i} \in L^{2}\left(\Omega, \mathbb{R}^{p_{i}}\right)$, and $p_{1}+\ldots+p_{l}=n$.

1.2 The underlying problem

We interpret random vectors \mathbf{y} and \mathbf{x} as observable data and reference vector, respectively. It is assumed that \mathbf{y} contains \mathbf{x} and is contaminated with a random noise, and it is required to find A so that $\mathscr{A}(\mathbf{y})$ estimates \mathbf{x} in the best possible in terms of minimizing the mean square error. Moreover, to determine a best $\tilde{\mathbf{u}}_{i}$ in (4), the filter \mathscr{A} may transform no more than $m(i)$ components $\mathbf{y}_{s_{i}}, \ldots, \mathbf{y}_{p_{1}+\ldots+p_{i}}$ of \mathbf{y}, where

$$
\begin{gathered}
m_{i}=\left(p_{1}+\ldots+p_{i}\right)-s_{i}+1, \quad q_{i}=1,2, \ldots,\left(p_{1}+\ldots+p_{i}\right), \\
s_{i}=q_{i}, q_{i}+1, \ldots,\left(p_{1}+\ldots+p_{i}\right) \quad \text { and } \quad i=1, \ldots, l .
\end{gathered}
$$

Such an filter \mathscr{A} is called the filter with piecewise-constant memory $\left\{m_{1}, \ldots, m_{l}\right\}$.

The above constraint implies that the filter \mathscr{A} and consequently the matrix A, must have a compatible structure. Essential conditions are that the components $\tilde{\mathbf{x}}_{p_{1}+\ldots+p_{i}}$ and $\mathbf{y}_{p_{1}+\ldots+p_{i}}$ have the same subscript and that s_{i} in (5) is different for each i, i.e., for each $\tilde{\mathbf{u}}_{i}$ in (4). This respectively means that all entries above the diagonal of the matrix A are zeros and second, that for each i, there can be a zero-rectangular block in A from the left hand side of the diagonal.

An example of such a matrix A is given in Fig. 1 for $l=10$ where the shaded part designates non-zero entries and non-shaded parts denote zero entries of A (and where $p_{1}+p_{2}$ denotes a $\left(p_{1}+p_{2}\right)$-th row, etc.). For lack of a better name, we will refer to A similar to that in Fig. 1 as the lower stepped matrix. We say that non-zero entries of the matrix A form a lower stepped part of A.

Such an unusual structure of the filter \mathscr{A} makes the problem of finding the best \mathscr{A} quite specific. This subject has a long history [3], but to the best of our knowledge, even for a much simpler structure of the filter \mathscr{A} when \mathscr{A} is defined by a lower triangular matrix, the problem of determining the best \mathscr{A} has only been solved under the hard assumption of positive definiteness of an associated covariance matrix (see $[3,4,5])$. We avoid such an assumption and solve the problem in the general case of the lower stepped matrix (Theorem 1). The proposed technique is substantially different from those considered in $[3,4,5]$.

Figure 1: A lower stepped matrix and its partition.

2. LINEAR CAUSAL FILTER WITH PIECEWISE-CONSTANT MEMORY

To define a linear causal filters with piece-wise constant memory, we first need to formally define a lower stepped matrix. It is done below with a special partition of A in such a way that its lower stepped part consists from rectangular and lower triangular blocks as it is illustrated in Fig. 1. To realize such a representation, we need to choose a non-uniform partition of A in a form similar to that in Fig. 1.

The block-matrix representation for \mathscr{A} is as follows.
Let

$$
\begin{equation*}
A=\left\{A_{i j} \mid A_{i j} \in \mathbb{R}^{p_{i} \times q_{i j}}, i=1, \ldots, l, j=1, \ldots, 4\right\} \tag{5}
\end{equation*}
$$

where $p_{1}+\ldots+p_{l}=n$ and $q_{i 1}+\ldots+q_{i 4}=n$.
Let $\emptyset, \mathbb{O}_{i j} \in \mathbb{R}^{p_{i} \times q_{i j}}, L_{i j} \in \mathbb{R}^{p_{i} \times q_{i j}}$ and $R_{i j} \in \mathbb{R}^{p_{i} \times q_{i j}}$ be the empty block, zero block, lower triangular block and rectangular block, respectively.

We write $A=\left[\begin{array}{c}A_{1} \\ \vdots \\ A_{l}\end{array}\right]$, where $A_{i}=\left[A_{i 1}, \ldots, A_{i 4}\right]$ for each $i=1, \ldots, l$. Here, A_{i} is called the block-row.

Now, let

$$
A_{1}=\left[\emptyset, \emptyset, L_{13}, \mathbb{O}_{14}\right], \quad A_{i}=\left[\mathbb{O}_{i 1}, R_{i 2}, L_{i 3}, \mathbb{O}_{i 4}\right]
$$

and

$$
A_{l 1}=\left[\mathbb{O}_{l 1}, R_{l 2}, L_{l 3}, \emptyset\right],
$$

where $i=2, \ldots, l-1$.
For $i=1, \ldots, l-1$, we also set

$$
\begin{align*}
& m_{1}=q_{13}, \quad q_{i 3}=p_{i}, \quad m_{i+1}=q_{i+1,2}+p_{i+1} \tag{6}\\
& \text { and } \quad q_{i+1,1}+q_{i+1,2}=q_{i, 1}+m_{i} \tag{7}
\end{align*}
$$

where $q_{11}=0$. Then the matrix A is represented as follows:

$$
A=\left[\begin{array}{ccccc}
L_{13} & & & \mathbb{O}_{14} & \mathbb{O}_{24} \tag{8}\\
\mathbb{O}_{21} & R_{22} & L_{23} & & \vdots \\
\vdots & \ddots & \ddots & & \vdots \\
\mathbb{O}_{l-1,1} & & R_{l-1,2} & L_{l-1,3} & \mathbb{O}_{l-1,4} \\
& \mathbb{O}_{l 1} & & R_{l 2} & L_{l 3}
\end{array}\right]
$$

Definition 1 The matrix A given by (8) is called a lower stepped matrix. The set of lower stepped matrices is denoted by \mathbb{L}_{m}^{n}.

Definition 2 The linear filter $\mathscr{A}: L^{2}\left(\Omega, \mathbb{R}^{n}\right) \rightarrow L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ is called a causal filter with piece-wise constant memory $\left\{m_{1}, \ldots, m_{l}\right\}$ where

$$
m_{i}=\left\{\begin{array}{cc}
q_{13} & \text { if } \quad i=1 \tag{9}\\
q_{i 2}+q_{i 3} & \text { if } \quad i=2, \ldots, l
\end{array}\right.
$$

if \mathscr{A} is defined by the lower stepped matrix $A \in \mathbb{R}^{n \times n}$ given by (8). The set of such filters is denoted by \mathbb{A}_{m}^{n}.

3. STATEMENT OF THE PROBLEM

For any $\mathbf{x}, \mathbf{y} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right)$ and $\mathscr{A} \in \mathbb{A}_{m}^{n}$, let

$$
\begin{equation*}
J(A)=E\left[\|\mathbf{x}-\mathscr{A}(\mathbf{y})\|^{2}\right] \tag{10}
\end{equation*}
$$

where

$$
E\left[\|\mathbf{x}-\mathscr{A}(\mathbf{y})\|^{2}\right]=\int_{\Omega}\|\mathbf{x}(\omega)-[\mathscr{A}(\mathbf{y})](\omega)\|_{E}^{2} d \mu(\omega)
$$

with $\|\cdot\|_{E}$ the Euclidean norm.
The problem is to find a filter $\mathscr{A}^{0} \in \mathbb{A}_{m}^{n}$ such that

$$
\begin{equation*}
J\left(A^{0}\right)=\min _{A \in \mathbb{L}_{m}^{n}} J(A) \tag{11}
\end{equation*}
$$

Here, $\left[\mathscr{A}^{0}(\mathbf{y})\right](\omega)=A^{0}[\mathbf{y}(\omega)]$ and $A \in \mathbb{L}_{m}^{n}$.
It is assumed that x is unknown and no relationship between \mathbf{x} and y is known except covariance matrices or their estimates formed from subvectors of \mathbf{y} and \mathbf{x}. We note that similar assumptions are conventional for the known methods [1]-[7] concerning filtering of stochastic signals. The methods of a covariance matrix estimation can be found in [6].

4. AUXILIARY RESULTS

The solution of the problem (11) given below, consists of the following steps. First, vector y is partitioned in subvectors $\mathbf{v}_{13}, \mathbf{v}_{22}, \mathbf{v}_{23}, \ldots, \mathbf{v}_{l 2}, \mathbf{v}_{l 3}$ in a way which is compatible with the partition of matrix A in (8). Then the original problem can be represented as l independent problems (26)-(27). Second, to solve the problems (26)-(27), orthogonalization of subvectors $\mathbf{v}_{13}, \mathbf{v}_{22}, \mathbf{v}_{23}, \ldots, \mathbf{v}_{l 2}, \mathbf{v}_{l 3}$ is used. Finally, in Theorem 1, the solution of the original problem is derived in terms of matrices formed from orthogonalized subvectors.

We begin with partitions of \mathbf{x} and \mathbf{y}.

4.1 Compatible representation of $\mathscr{A}(\mathrm{y})$

Partitions of \mathbf{x} and \mathbf{y} which are compatible with the partition of matrix A above are as follows.

We write

$$
\begin{equation*}
x=\left[u_{1}^{T}, u_{2}^{T}, \ldots, u_{l}^{T}\right]^{T} \quad \text { and } \quad \mathbf{x}=\left[\mathbf{u}_{1}^{T}, \mathbf{u}_{2}^{T}, \ldots, \mathbf{u}_{l}^{T}\right]^{T} \tag{12}
\end{equation*}
$$

where $u_{1} \in \mathbb{R}^{p_{1}}, u_{2} \in \mathbb{R}^{p_{2}}, \ldots, u_{l} \in \mathbb{R}^{p_{l}}$ are such that

$$
\begin{align*}
& u_{1}=\left[x_{1}, \ldots, x_{p_{1}}\right]^{T}, \quad u_{2}=\left[x_{p_{1}+1}, \ldots, x_{p_{1}+p_{2}}\right]^{T} \tag{.1.3}\\
& u_{l}=\left[x_{p_{1}+\ldots+p_{l-1}+1}, \ldots, x_{p_{1}+\ldots+p_{l}}\right]^{T} \tag{14}
\end{align*}
$$

and $\mathbf{u}_{1} \in L^{2}\left(\Omega, \mathbb{R}^{p_{1}}\right), \mathbf{u}_{2} \in L^{2}\left(\Omega, \mathbb{R}^{p_{2}}\right), \ldots, \mathbf{u}_{l} \in L^{2}\left(\Omega, \mathbb{R}^{p_{l}}\right)$ are defined via $u_{1}, u_{2}, \ldots, u_{l}$ similarly to (1).

Next, let $v_{11}=\emptyset, \quad v_{12}=\emptyset, v_{13}=\left[y_{1}, \ldots, y_{q_{13}}\right]^{T}$ and $v_{14}=\emptyset$.

For $i=2, \ldots, l-1$, we set
$v_{i 1}=\left[y_{1}, \ldots, y_{q_{i 1}}\right]^{T}, \quad v_{i 2}=\left[y_{q_{i 1}+1}, \ldots, y_{q_{i 1}+q_{i 2}}\right]^{T}$,
$v_{i 3}=\left[y_{q_{i 1}+q_{i 2}+1}, \ldots, y_{q_{i 1}+q_{i 2}+q_{i 3}}\right]^{T}, v_{i 4}=\left[y_{q_{i 1}+q_{i 2}+q_{i 3}+1}, \ldots, y_{n}\right]^{T}$.
If $i=l$, then

$$
\begin{aligned}
& v_{l 1}=\left[y_{1}, \ldots, y_{q_{l 1}}\right]^{T}, \quad v_{l 2}=\left[y_{q_{l 1}+1}, \ldots, y_{q_{l 1}+q_{l 2}}\right]^{T}, \\
& v_{l 3}=\left[y_{q_{l 1}+q_{l 2}+1}, \ldots, y_{n}\right]^{T}, \quad v_{l 4}=\emptyset .
\end{aligned}
$$

Therefore

$$
A y=\left[\begin{array}{c}
L_{13} v_{13} \tag{15}\\
R_{22} v_{22}+L_{23} v_{23} \\
\vdots \\
R_{l 2} v_{l 2}+L_{l 3} v_{l 3}
\end{array}\right]
$$

We define $\mathscr{L}_{i j}$ and $\mathscr{R}_{i j}$ via $L_{i j}$ and $R_{i j}$ respectively, in the manner of \mathscr{A} defined via A by (3). The vector $\mathbf{v}_{i j} \in$ $L^{2}\left(\Omega, \mathbb{R}^{q_{i j}}\right)$ are defined similarly to those in (1).

Now, we can write $J(A)$ given by (10), in the form

$$
\begin{equation*}
J(A)=J_{1}\left(L_{13}\right)+\sum_{i=2}^{l} J_{i}\left(R_{i 2}, L_{i 3}\right) \tag{16}
\end{equation*}
$$

where

$$
J_{1}\left(L_{13}\right)=E\left[\left\|\mathbf{u}_{1}-\mathscr{L}_{13}\left(\mathbf{v}_{13}\right)\right\|^{2}\right]
$$

and

$$
\begin{equation*}
J_{i}\left(R_{i 2}, L_{i 3}\right)=E\left[\left\|\mathbf{u}_{i}-\left[\mathscr{R}_{i 2}\left(\mathbf{v}_{i 2}\right)+\mathscr{L}_{i 3}\left(\mathbf{v}_{i 3}\right)\right]\right\|^{2}\right] . \tag{17}
\end{equation*}
$$

We note that matrix A can be represented so that

$$
A y=B P y,
$$

where

$$
B \in \mathbb{R}^{n \times q} \quad \text { and } \quad P \in \mathbb{R}^{q \times n}
$$

with

$$
q=q_{13}+\sum_{i=1}^{l}\left(q_{i 2}+q_{i 3}\right)
$$

are such that
$B=\left[\begin{array}{ccccccccc}L_{13} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \cdots & \mathbb{O} & \mathbb{O} \\ \mathbb{O} & R_{22} & L_{23} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \cdots & \mathbb{O} & \mathbb{O} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & & \vdots & \mathbb{O} \\ \mathbb{O} & \cdots & \cdots & \cdots & \mathbb{O} & R_{l-1,2} & L_{l-1,3} & \mathbb{O} & \mathbb{O} \\ \mathbb{O} & \cdots & \cdots & \cdots & \mathbb{O} & \mathbb{O} & \mathbb{O} & R_{l 2} & L_{l 3}\end{array}\right]$
and $P y=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{l}\end{array}\right]$. Here, \mathbb{O} is the zero block, $v_{1}=v_{13}$ and
$v_{i}=\left[\begin{array}{c}v_{i 2} \\ v_{i 3}\end{array}\right]$ for $i=2, \ldots, l-1$. The size of each zero block is such that BPy is represented in the form (15). The matrix B consists of $l \times(2 l-1)$ blocks. The vector $v=P y$ consists of $2 l-1$ subvectors $v_{13}, v_{22}, v_{23}, \ldots, v_{l 2}, v_{l 3}$.

The filter \mathscr{A} can be written as

$$
\mathscr{A}(\mathbf{y})=\mathscr{B} \mathscr{P}(\mathbf{y})
$$

where

$$
[\mathscr{B}(\mathbf{v})](\omega)=B[(\mathbf{v})(\omega)], \quad \mathbf{v}=\mathscr{P}(\mathbf{y})
$$

and

$$
[\mathscr{P}(\mathbf{y})](\omega)=P[(\mathbf{y})(\omega)] .
$$

4.2 Orthogonality of random vectors

For any $\mathbf{x}, \mathbf{y} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right)$, we denote

$$
E_{x y}=E\left[\mathbf{x y}^{T}\right]=\left\{E\left[\mathbf{x}_{i} \mathbf{y}_{j}\right]\right\}_{i, j=1}^{n}
$$

where $E\left[\mathbf{x}_{i} \mathbf{y}_{j}\right] \stackrel{\text { def }}{=} \int_{\Omega} \mathbf{x}_{i}(\omega) \mathbf{y}_{j}(\omega) d \mu(\omega)$. The pseudo-inverse matrix for any matrix M is denoted by M^{\dagger}.

Definition 3 [6, 7] Let $\mathbf{w}_{i j} \in L^{2}\left(\Omega, \mathbb{R}^{q_{i j}}\right)$ for each $i=1, \ldots, l$ and $j=1, \ldots, 4$. The random vectors $\mathbf{w}_{11}, \ldots, \mathbf{w}_{l 4}$ are called pairwise orthogonal if

$$
E_{w_{i r} w_{i s}}=\mathbb{O}_{i i} \quad \text { for } \quad r \neq s
$$

where $\mathbb{O}_{i i}$ is $p_{i} \times p_{i}$ zero matrix. The pairwise orthogonal random vectors $\mathbf{w}_{11}, \ldots, \mathbf{w}_{l 4}$ are said to be pairwise orthonormal if it is also true that

$$
E_{w_{i s} w_{i s}}=I \quad \text { for } \quad s=1, \ldots, 4
$$

Lemma $1[6,7]$ Let $\mathbf{v}_{i j} \in L^{2}\left(\Omega, \mathbb{R}^{q_{i j}}\right)$ for each $i=1, \ldots, l$ and $j=1, \ldots, 4$, and let
$\mathbf{w}_{i 1}=\mathbf{v}_{i 1} \quad$ and $\quad \mathbf{w}_{i s}=\mathbf{v}_{i s}-\sum_{\ell=1}^{s-1} \mathscr{Z}_{\text {ise }}\left(\mathbf{w}_{i \ell}\right) \quad$ for $s=2,3,4$
where $\mathscr{Z}_{\text {ise }}: L^{2}\left(\Omega, \mathbb{R}^{q_{i \ell}}\right) \rightarrow L^{2}\left(\Omega, \mathbb{R}^{q_{i s}}\right)$ is defined in the manner of (3) by the matrix $Z_{\text {is }} \in \mathbb{R}^{q_{i s} \times q_{i \ell}}$ given by

$$
\begin{equation*}
Z_{i s \ell}=E_{w_{i s} w_{i \ell}} E_{w_{i \ell} w_{i \ell}}^{\dagger}+M_{i s \ell}\left(I-E_{w_{i \ell} w_{i \ell}} E_{w_{i \ell} w_{i \ell}}^{\dagger}\right) \tag{20}
\end{equation*}
$$

where $M_{k \ell} \in \mathbb{R}^{q_{i s} \times q_{i \ell}}$ is arbitrary. Then $\mathbf{w}_{i 1}, \ldots, \mathbf{w}_{i 4}$ are pairwise orthogonal random vectors.

In (16), the terms $J_{1}\left(L_{13}\right)$ and $J_{i}\left(R_{i 2}, L_{i 3}\right)$ is defined by the operators $\mathscr{L}_{13}, \mathscr{R}_{i 2}$ and $\mathscr{L}_{i 3}$ and their action on the random block-vectors $\mathbf{v}_{13}, \mathbf{v}_{i 2}$ and $\mathbf{v}_{i 3}$ respectively. The corresponding mutually orthogonal random vectors are

$$
\begin{equation*}
\mathbf{w}_{13}=\mathbf{v}_{13}, \quad \mathbf{w}_{i 2}=\mathbf{v}_{i 2} \quad \text { and } \quad \mathbf{w}_{i 3}=\mathbf{v}_{i 3}-\mathscr{Z}_{i}\left(\mathbf{v}_{i 2}\right) \tag{21}
\end{equation*}
$$

where $i=2, \ldots, l$ and the operator $\mathscr{Z}_{i}: L^{2}\left(\Omega, \mathbb{R}^{q_{i 2}}\right) \rightarrow$ $L^{2}\left(\Omega, \mathbb{R}^{q_{i 3}}\right)$ is defined by the matrix

$$
\begin{equation*}
Z_{i}=E_{v_{i 3} v_{i 2}} E_{v_{i 2} v_{i 2}}^{\dagger}+M_{i}\left(I-E_{v_{i 2} v_{i 2}} E_{v_{i 2} v_{i 2}}^{\dagger}\right) \tag{22}
\end{equation*}
$$

with $M_{i} \in \mathbb{R}^{q_{i 3} \times q_{i 2}}$ arbitrary.
We write

$$
\begin{aligned}
\mathbf{w}(\omega)= & {\left[\mathbf{w}_{13}(\omega)^{T}, \quad \mathbf{w}_{22}(\omega)^{T}, \quad \mathbf{w}_{23}(\omega)^{T},\right.} \\
& \left.\ldots, \mathbf{w}_{l 2}(\omega)^{T}, \quad \mathbf{w}_{l 3}(\omega)^{T}\right]^{T},
\end{aligned}
$$

and

$$
Z=\left[\begin{array}{cccccccc}
I_{13} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \cdots & \mathbb{O} \\
\mathbb{O} & I_{22} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \cdots & \mathbb{O} \\
\mathbb{O} & -Z_{2} & I_{23} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \cdots & \mathbb{O} \\
\mathbb{O} & \mathbb{O} & \mathbb{O} & I_{32} & \mathbb{O} & \mathbb{O} & \cdots & \mathbb{O} \\
\mathbb{O} & \mathbb{O} & \mathbb{O} & -Z_{3} & I_{33} & \mathbb{O} & \cdots & \mathbb{O} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & & \vdots \\
\mathbb{O} & \cdots & \cdots & \cdots & \mathbb{O} & \mathbb{O} & I_{l 2} & \mathbb{O} \\
\mathbb{O} & \cdots & \cdots & \cdots & \mathbb{O} & \mathbb{O} & -Z_{l} & I_{l 3}
\end{array}\right]
$$

where $I_{i j}$ is $q_{i j} \times q_{i j}$ identity matrix for $i=1, \ldots, l$ and $j=$ 2,3 , and Z_{i} is defined by (22) for $i=2, \ldots, l$.

The matrix Z consists of $(2 l-1) \times(2 l-1)$ blocks.
Then (21) can be written in the matrix form as

$$
\mathbf{w}(\omega)=Z \mathbf{v}(\omega)
$$

with \mathbf{v} given above. Matrix Z implies the operator \mathscr{Z} : $L^{2}\left(\Omega, \mathbb{R}^{n}\right) \rightarrow L^{2}(\Omega, \mathbb{R})$ defined in the manner of (3).

Since Z is invertible, we can represent \mathscr{A} as follows:

$$
\begin{equation*}
\mathscr{A}(\mathbf{y})=\mathscr{K}[\mathscr{Z}(\mathscr{P}(\mathbf{y}))] \quad \text { where } \quad \mathscr{K}=\mathscr{B}_{\mathscr{Z}} \mathscr{Z}^{-1} \tag{23}
\end{equation*}
$$

A matrix representation of \mathscr{K} is

$$
K=\left[\begin{array}{ccccccccc}
L_{13} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \cdots & \mathbb{O} & \mathbb{O} \\
\mathbb{O} & T_{2} & L_{23} & \mathbb{O} & \mathbb{O} & \mathbb{O} & \cdots & \mathbb{O} & \mathbb{O} \\
\mathbb{O} & \mathbb{O} & \mathbb{O} & T_{3} & L_{33} & \mathbb{O} & \cdots & \mathbb{O} & \mathbb{O} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & & \vdots & \vdots \\
\mathbb{O} & \cdots & \cdots & \cdots & \mathbb{O} & T_{l-1} & L_{l-1,3} & \mathbb{O} & \mathbb{O} \\
\mathbb{O} & \cdots & \cdots & \cdots & \mathbb{O} & \mathbb{O} & \mathbb{O} & T_{l} & L_{l 3}
\end{array}\right]
$$

where

$$
\begin{equation*}
T_{i}=R_{i 2}+L_{i 3} Z_{i} \tag{24}
\end{equation*}
$$

for $i=2, \ldots, l$. We note that K consists of $l \times(2 l-1)$ blocks. As a result, in (17),
$\begin{aligned} R_{i 2} \mathbf{v}_{i 2}(\omega)+L_{i 3} \mathbf{v}_{i 3}(\omega) & =R_{i 2} \mathbf{w}_{i 2}(\omega)+L_{i 3}\left[\mathbf{w}_{i 3}(\omega)+Z_{i} \mathbf{w}_{i 2}(\omega)\right] \\ & =T_{i} \mathbf{w}_{i 2}(\omega)+L_{i 3} \mathbf{w}_{i 3}(\omega)\end{aligned}$
and hence

$$
\begin{equation*}
J(A)=J_{1}\left(L_{13}\right)+\sum_{i=2}^{l} \mathscr{J}_{i}\left(T_{i}, L_{i 3}\right) \tag{25}
\end{equation*}
$$

where

$$
\mathscr{J}_{i}\left(T_{i}, L_{i 3}\right)=E\left[\left\|\mathbf{u}_{i}-\left[\mathscr{T}_{i} \mathbf{w}_{i 2}(\omega)+\mathscr{L}_{i 3} \mathbf{w}_{i 3}\right]\right\|^{2}\right]
$$

with \mathscr{T}_{i} defined by

$$
\left[\mathscr{T}_{i} \mathbf{w}_{i 2}\right](\omega)=T_{i}\left[\mathbf{w}_{i 2}(\omega)\right]
$$

for all $i=2, \ldots, l$.

5. MAIN RESULTS

Lemma 2 For $A \in \mathbb{L}_{m}^{n}$, the following is true:

$$
\begin{align*}
\min _{A \in \mathbb{L}_{m}^{n}} J(A) & =\min _{L_{13}} J_{1}\left(L_{13}\right)+\sum_{i=2}^{l} \min _{T_{i}, L_{i 3}} \mathscr{J}_{i}\left(T_{i}, L_{i 3}\right) \tag{26}\\
& =\min _{L_{13}} J_{1}\left(L_{13}\right)+\sum_{i=2}^{l} \min _{R_{i 2}, L_{i 3}} J_{i}\left(R_{i 2}, L_{i 3}\right) . \tag{27}
\end{align*}
$$

Now, we are in the position to prove the main result given in Theorem 1 below. To this end, we use the following notation.

For $i=1, \ldots, l$, let λ_{i} be the rank of the matrix $E_{w_{i 3} w_{i 3}} \in$ $\mathbb{R}^{p_{i} \times p_{i}}$ and let ${ }^{1}$

$$
E_{w_{i 3} w_{i 3}}^{1 / 2}=Q_{i} U_{i}
$$

be the QR-decomposition for $E_{w_{i 3} w_{i 3}}^{1 / 2}$ where $Q_{i} \in \mathbb{R}^{p_{i} \times \lambda_{i}}$ and $Q_{i}^{T} Q_{i}=I$ and $U_{i} \in \mathbb{R}^{\lambda_{i} \times p_{i}}$ is upper trapezoidal with rank λ_{i}. We write $G_{i}=U_{i}^{T}$ and use the notation

$$
G_{i}=\left[g_{i 1}, \ldots, g_{i \lambda_{i}}\right] \in \mathbb{R}^{p_{i} \times \lambda_{i}}
$$

where $g_{i j} \in \mathbb{R}^{p_{i}}$ denotes the j-th column of G_{i}. We also write

$$
G_{i, s}=\left[g_{i 1}, \ldots, g_{i s}\right] \in \mathbb{R}^{p_{i} \times s}
$$

for $s \leq \lambda_{i}$ to denote the matrix consisting of the first s columns of the matrix G_{i}.

The s-th row of the unit matrix $I \in \mathbb{R}^{p_{i} \times p_{i}}$ is denoted by $e_{s}^{T} \in \mathbb{R}^{1 \times p_{i}}$.

For a square matrix $M=\left\{m_{i j}\right\}_{i, j=1}^{n}$, we also write

$$
M=M_{\nabla}+M_{\triangle}
$$

where

$$
M_{\nabla}=\left\{m_{i j} \mid m_{i j}=0 \quad \text { if } \quad i<j\right\}
$$

and

$$
M_{\triangle}=\left\{m_{i j} \mid m_{i j}=0 \quad \text { if } \quad i \geq j\right\}
$$

i.e. M_{∇} is lower triangular and M_{\triangle} is strictly upper triangular.

Theorem 1 The solution to the problem (11) is given by the operator $\mathscr{A}^{0} \in \mathbb{A}_{m}^{n}$ defined by the lower stepped matrix $A^{0} \in$ \mathbb{L}_{m}^{n} where
$L_{i 3}^{0}=\left[\begin{array}{c}\ell_{i, 1}^{0} \\ \vdots \\ \ell_{i, p_{i}}^{0}\end{array}\right] \quad$ and $\quad R_{i 2}^{0}=T_{i 2}^{0}-L_{i 3}^{0} Z_{i} \quad$ for $\quad i=1, \ldots, l$.
In (28), for each $i=1,2, \ldots, l$ and $s=1,2, \ldots, p_{i}$, the s-th row $\ell_{i, s}^{0}$ is defined by

$$
\begin{equation*}
\ell_{i, s}^{0}=e_{s}^{T} E_{u_{i} w_{i 3}} E_{w_{i 3} w_{i 3}}^{\dagger} G_{i, s} G_{i, s}^{\dagger}+b_{i}^{T}\left(I-G_{i, s} G_{i, s}^{\dagger}\right) \tag{29}
\end{equation*}
$$

where $b_{i}^{T} \in \mathbb{R}^{1 \times p_{i}}$ is arbitrary; the matrix $T_{i 2}^{0}$ is such that

$$
\begin{equation*}
T_{i 2}^{0}=E_{u_{i} w_{i 2}} E_{w_{i 2} w_{i 2}}^{\dagger}+F_{i}\left(I-E_{w_{i 2} w_{i 2}} E_{w_{i 2} w_{i 2}}^{\dagger}\right) \tag{30}
\end{equation*}
$$

with $F_{i} \in \mathbb{R}^{p_{i} \times q_{i 2}}$ arbitrary and I the $q_{i 2} \times q_{i 2}$ identity matrix.
The error associated with the operator \mathscr{A}^{0} is given by

$$
\begin{align*}
& E\left[\left\|\mathbf{x}-\mathscr{A}^{0}(\mathbf{y})\right\|^{2}\right]=\sum_{i=1}^{l}\left[\sum_{s=1}^{\lambda_{i}} \sum_{j=s+1}^{p_{i}} E\left[\left|e_{s}^{T} E_{u_{i} w_{i 3}} E_{w_{i 3} w_{k i 3}}^{\dagger} g_{i, j}\right|^{2}\right]\right. \\
& \left.\quad+\left\|E_{u_{i} u_{i}}^{1 / 2}\right\|_{F}^{2}-\left\|E_{u_{i} w_{i 2}} E_{w_{i 2} w_{i 2}}^{\dagger 1 / 2}\right\|^{2}-\left\|E_{u_{i} w_{i 3}} E_{w_{i 3} w_{i 3}}^{\dagger 1 / 2}\right\|_{F}^{2}\right] . \text { (31) } \tag{31}
\end{align*}
$$

[^0]Remark 1 The matrix $G_{i} \in \mathbb{R}^{p_{i} \times r}$ has rank λ_{i} and hence has λ_{i} independent columns. It follows that $G_{i, s} \in \mathbb{R}^{p_{i} \times s}$ also has independent columns and therefore also has rank s. Thus $G_{i, s}^{T} G_{i, s} \in \mathbb{R}^{\lambda_{i} \times \lambda_{i}}$ is non-singular and so $G_{i, s}^{\dagger}=$ $\left(G_{i, s}^{T} G_{i, s}\right)^{-1} G_{i, s}^{T}$. Hence

$$
\begin{aligned}
\ell_{i, s}^{0} & =e_{s}^{T} E_{u_{i} w_{i 3}} E_{w_{i 3} w_{i 3}}^{\dagger} G_{i, s}\left(G_{i, s}^{T} G_{i, s}\right)^{-1} G_{i, s}^{T} \\
& +b_{i}^{T}\left[I-G_{i, s}\left(G_{i, s}^{T} G_{i, s}\right)^{-1} G_{i, s}^{T}\right]
\end{aligned}
$$

for all $i=1,2, \ldots, l$.
We note that the results by Bode and Shannon [3], Fomin and Ruzhansky [4], Ruzhansky and Fomin [5], and Wiener $[1,2,6]$ are particular cases of Theorem 1 above.

5.1 Simulations

To illustrate the proposed method, we consider the best approximator $\mathscr{A}^{0} \in \mathbb{A}_{m}^{n}$ with $n=51$ and memory $m=$ $\left\{m_{1}, \ldots, m_{5}\right\}$, where $m_{1}=20, m_{2}=25, m_{3}=15, m_{4}=35$ and $m_{5}=25$.

Then the blocks of the matrix A^{0} are

$$
\begin{equation*}
L_{13}^{0} \in \mathbb{R}^{20 \times 20}, \quad R_{22}^{0} \in \mathbb{R}^{10 \times 15}, \quad L_{23}^{0} \in \mathbb{R}^{10 \times 10} \tag{32}
\end{equation*}
$$

$R_{32}^{0} \in \mathbb{R}^{5 \times 10}, \quad L_{33}^{0} \in \mathbb{R}^{5 \times 5}, \quad R_{42}^{0} \in \mathbb{R}^{10 \times 25}, \quad L_{43}^{0} \in \mathbb{R}^{10 \times 10}$.

$$
\begin{equation*}
R_{52}^{0} \in \mathbb{R}^{5 \times 20} \quad \text { and } \quad L_{53}^{0} \in \mathbb{R}^{5 \times 5} \tag{33}
\end{equation*}
$$

We apply $\mathscr{A}^{0} \in \mathbb{A}_{m}^{51}$ to the random vector \mathbf{y} under conditions as follows. In accordance with the assumption made above, we suppose that a reference random vector $\mathrm{x} \in L^{2}\left(\Omega, \mathbb{R}^{51}\right)$ is unknown and that noisy observed data $\mathbf{y} \in L^{2}\left(\Omega, \mathbb{R}^{51}\right)$ is given by q realizations of \mathbf{y} in the form of a matrix $Y \in \mathbb{R}^{n \times q}$ with $q=101$. Matrices $E_{u_{1} v_{13}}, \quad E_{v_{13} v_{13}}$ and matrices $E_{u_{i} v_{i 2}}, \quad E_{u_{i} v_{i 3}}, \quad E_{v_{i 2} v_{i 2}}$ and $E_{v_{i 3} v_{i 3}}$ for $i=$ $2, \ldots, 5$, or their estimates are assumed to be known.

In practice, these matrices or their estimates are given numerically, not analytically. Similarly to our methods presented in $[6,7]$, the proposed method works, of course, under this condition. In this example, we model the matrices used in the simulations with analytical expressions in the following way. First, we set $X \in \mathbb{R}^{n \times q}$ and $Y \in \mathbb{R}^{n \times q}$ by

$$
X=[\cos (\alpha)+\cos (0.3 \alpha)]^{T}[\cos (0.5 \beta)+\sin (5 \beta)]
$$

and

$$
Y=\left[\cos (\alpha) \bullet r_{1}+\cos (0.3 \alpha)\right]^{T}\left[\cos (0.5 \beta)+\sin (5 \beta) \bullet r_{2}\right],
$$

where

$$
\begin{gathered}
\alpha=\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right], \quad \alpha_{k+1}=\alpha_{k}+0.4, \quad k=0,1, \ldots, n-1, \\
\alpha_{0}=0, \quad \beta_{0}=0, \\
\beta=\left[\beta_{0}, \beta_{1}, \ldots, \beta_{q-1}\right], \quad \beta_{j+1}=\beta_{j}+0.4, \quad j=0,1, \ldots, q-1, \\
\cos (\alpha)=\left[\cos \left(\alpha_{0}\right), \ldots, \cos \left(\alpha_{n}\right)\right], \\
\sin (\beta)=\left[\sin \left(\beta_{0}\right), \ldots, \sin \left(\beta_{q-1}\right)\right],
\end{gathered}
$$

the symbol \bullet means the Hadamard product, r_{1} is a $1 \times n$ normally distributed random vector and r_{2} is a $1 \times q$ uniformly distributed random vector. Here, r_{1} and r_{2} simulate noise. ${ }^{2}$

[^1]Each column of Y is a particular realization of \mathbf{y}.
By the proposed procedure, we partition each column of X and Y in subvectors

$$
u_{1}, \ldots, u_{5} \quad \text { and } v_{13}, v_{22}, v_{23}, \ldots, v_{52}, v_{53}
$$

respectively.
Furthermore, $v_{13}, v_{22}, v_{23}, v_{32}, v_{33}$ and v_{34} have been orthogonalized to $w_{11}, w_{22}, w_{23}, w_{32}, w_{33}$ and w_{34}. Matrices (32)-(34) have then been evaluated by the procedure presented in Theorem 1 from u_{1}, \ldots, u_{3}, and $w_{11}, w_{22}, w_{23}, w_{32}$, w_{33} and w_{34}.

As a result, the estimate $\hat{\mathbf{x}}^{0}$ has been evaluated in the form \hat{x}^{0} such that

$$
\hat{x}^{0}=\left[\begin{array}{c}
L_{13}^{0} w_{13} \\
R_{22}^{0} w_{22}+L_{23}^{0} w_{23} \\
\vdots \\
R_{52}^{0} w_{52}+L_{53}^{0} w_{53}
\end{array}\right]
$$

On Fig. 1, the plots of columns 51 and 52 of the matrix Y are presented. They are typical representatives of the noisy data under consideration. On Fig. 2, the plots of columns 51 and 52 of the matrix X (solid line) and their estimates (dashed line with circles) by our filter are given.

REFERENCES

[1] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, N. J., 1991.
[2] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing, J. Wiley \& Sons, 2001.
[3] H. W. Bode and C. E. Shannon, A Simplified Derivation of Linear Least Square Smoothing and Prediction Theory, Proc. IRE, 38, pp. 417-425, 1950.
[4] V. N. Fomin and M. V. Ruzhansky, Abstract optimal linear filtering, SIAM J. Control Optim., 38, pp. 1334-1352, 2000.
[5] M. Ruzhanski and V. Fomin, Optimal Filter Construction for a General Quadratic Cost Functional, Bulletin of St. Petersburg University. Mathematics, 28, pp. 50-55, 1995.
[6] A. Torokhti, P. Howlett, Computing Methods for Modelling of Nonlinear Systems, Elsevier, 302 p. (in press).
[7] A. Torokhti and P. Howlett, Optimal Transform Formed by a Combination of Nonlinear Operators: The Case of Data Dimensionality Reduction, IEEE Trans. on Signal Processing, 54, 4, pp. 1431-1444, 2006.

[^0]: ${ }^{1}$ We recall that by (6), $q_{i 3}=p_{i}$.

[^1]: ${ }^{2}$ The matrix X can be interpreted as a sample of \mathbf{x}. By the assumptions of the proposed method, it is not necessary to know X. We use matrix X for illustration purposes only.

