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ABSTRACT

The paper concerns the optimal linear filtering of stochas-
tic signals associated with the notion of piecewise constant
memory. The filter should satisfy a specialized criterion for-

mulated in terms of a so called lower stepped matixTo

satisfy the special structure of the filter, we propose a new %
technique based on a block-partition of the lower stepped
part of matrixA into lower triangular and rectangular blocks, wherefij = [%p, . +p_y+1,- - Xpy+tp) i =1,...

Lij andRj withi=1,...,1,j=1,...,5 wherel ands are

given. We show that the original error minimization prob-

lem in terms of the matriA is reduced td individual error
minimization problems in terms of blocks; andR;;. The

so that
% =4/(y) wherex = [Xy,...,%n]".

Next, let us partitiork in such a way that
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0, & € L?(Q,RP), andpy+...+p = n.

1.2 The underlying problem

solution to each problem is provided and a representation /€ interpret random vectogsandx as observable data and

the associated error is given.

1. INTRODUCTION

reference vector, respectively. It is assumed $hedntainsx

and is contaminated with a random noise, and it is required to
find A so thate/ (y) estimates in the best possible in terms

of minimizing the mean square error. Moreover, to determine

While the general theory of optimal filtering is well elab- a best; in (4), the filter<” may transform no more than(i)

orated (see, e.g., [1]), the theory of optin@instrained

filtering is still not so well developed, although this is an

componenty,...,¥p,+. 4+p of y, where

area of intensive recent research (see, e.g., [2]). Despite im = (p1+...+p)—s+1, g=12...,(p1+...-+pi),

creasing demands from applications, this subject is hardly
tractable because of intrinsic difficulties in computing tech-

$=0,G+1...,(p1+...+p) and i=1....l

niques, when the filter should have a specific structure imSuch an filtere/ is called the filter with piecewise-constant

plied by the underlying problem.

This paper concerns the theory of optimal linear filtering

memory{my, ..., m}.
The above constraint implies that the filtef and con-

subject to a specialized criterion associated with the notiogsequently the matrixd, must have a compatible structure.
of piece-wise constant memory. The problem stems from afssential conditions are that the componetys, .. and
observation considered in Section 1.2. A formulation of they, ., have the same subscript and tiain (5) is differ-
problem is given in Section 3. The solution is provided inent for each, i.e., for eachy; in (4). This respectively means

Section 5.

1.1 Preliminary notation

LetQ be the set of outcomes in a probability spa€e>, u)
for which X is a o—field of measurable subsets@fand i :
>~ —[0,1] is an associated probability measure witfQ) =
1. The random variables, : Q — R andy, : Q — R are mea-
surable functions o for eachw € Q andk =1,2,...,n.
If xx andy, are square integrable for eakh=1,2,... n
then the square integrable random vectars L%(Q,R")
andy € L2(Q,R") are denoted by = [x3,...,xn]" and
Yy =[y1,.--,yn". We write

Xk = Xk(w),

X=[X1,...,%n

x=x(w), y=y(wfl)
and y:[y17~--»Yn]T~ (2)

Yk = yk(w)7
}T

LetAc R™" and lete : L2(Q,R") — L?(Q,R") be alinear
filter defined by the formula

[ (y)[(w) =Aly(w)] V yel*QR")andweQ (3)

that all entries above the diagonal of the matkiare zeros
and second, that for ead¢hthere can be a zero-rectangular
block in A from the left hand side of the diagonal.

An example of such a matriR is given in Fig. 1 for
| = 10where the shaded part designates non-zero entries and
non-shaded parts denote zero entrie& dnd wheregp; + p2
denotes dp; + p2)-th row, etc.). For lack of a better name,
we will refer toA similar to that in Fig. 1 as the lower stepped
matrix. We say that non-zero entries of the mafiform a
lower stepped part oAk.

Such an unusual structure of the filtlet makes the prob-
lem of finding the besty quite specific. This subject has a
long history [3], but to the best of our knowledge, even for
a much simpler structure of the filter when.< is defined
by a lower triangular matrix, the problem of determining the
beste/ has only been solved under the hard assumption of
positive definiteness of an associated covariance matrix (see
[3, 4, 5]). We avoid such an assumption and solve the prob-
lem in the general case of the lower stepped matrix (Theorem
1). The proposed technique is substantially different from
those considered in [3, 4, 5].
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1 Definition 2 The linear filter.«7 : L2(Q,R") — L?(Q,R")
\ is called a causal filter with piece-wise constant memory
P, — N\ {m,...,m} where
p+p [ N]
oz jr T\\ gz if i=1
7N m{ GotGa if i=2..., ®)
] if <7 is defined by the lower stepped mattixc R"™*" given
L by (8). The set of such filters is denoted A.
ML 3. STATEMENT OF THE PROBLEM
For anyx,y € L?(Q,R") and./ € A],, let
Figure 1: A lower stepped matrix and its partition. JA) =E[|x—=(y)|I*], (10)

where
2. LINEAR CAUSAL FILTER WITH
PIECEWISE-CONSTANT MEMORY [HX o (y / l|x(w )](w)||§du(w)

To define a linear causal filters with piece-wise constant
memory, we first need to formally define a lower stepped mawith || - |e the Euclidean norm.

trix. It is done below with a special partition &fin such a The problem is to find a filtew© € AN such that
way that its lower stepped part consists from rectangular and
lower triangular blocks as it is illustrated in Fig. 1. To real- J(A®) = min J(A). (11)
ize such a representation, we need to choose a non-uniform AL
partition of Ain a form similar to that in Fig. 1.
The block-matrix representation for is as follows. Here,[«°(y)](w) = A°[y(w)] andA € L},
Let It is assumed that is unknown and no relationship be-
tweenx andy is known except covariance matrices or their
A={Aj|AjeRP™Ii=1..]1,j=1,...,4}, (5 estimates formed from subvectorspfindx. We note that
similar assumptions are conventional for the known methods
wherep; +...+p =nandgi +... +0is = [1]-[7] concerning filtering of stochastic signals. The meth-

Letd, O € RP™Gi, Ljj € RP*4i and R. e RP*9i be  ods of a covariance matrix estimation can be found in [6].
the empty bIJock zero bIock lower trlangular block and rect-

angular block, respectively. 4. AUXILIARY RESULTS
. Afl The solution of the problem (11) given below, consists of
WewriteA= | : |, whereA =[A, ..., Aulforeach  ihe following steps. First, vector is partitioned in subvec-
A tors vis,voo,vas, ..., vi2, Vi3 in @ way which is compatible
i=1,...,l. Here,A is called the block-row. with the partition of matrixA in (8). Then the original prob-
Now, let lem can be representedlasdependent problems (26)—(27).
Second, to solve the problems (26)—(27), orthogonalization
A1 =[0,0,L13,014, A =[0i1,R2,Li3,0i4] of subvectorsvis, vz, vos, ..., vi2,vi3 is used. Finally, in
Theorem 1, the solution of the original problem is derived in
and terms of matrices formed from orthogonalized subvectors.
A1 =[011,R2,L13,0], We begin with partitions ok andy.
wherei=2,...,1 — 1.
Fori=1,...,1 —1, we also set 4.1 Compatible representation ofe/ (y)

—_— S o _ 6 Partitions ofx andy which are compatible with the par-
=03, G3=P, My1=0Gu12+Pi1 6)  iion of matrix A above are as follows.

and Qiy11+0iy12=0i1+m, (7) We write
whereqy; = 0. Then the matrixA is represented as follows: x=[ul,ub,...u]T and x=[u],ul,... uf]" (12)
L13 O14 whereu; € RPL, up € RP2, ..., u € RP are such that
01 Rz Las 024 T T
A— : : (8) Up = [X1,..., Xpy) ', U2 = [Xpy41s-- s Xppapol 5 {(13)
Or-11 Ro12 Liciz Qg U= Xpyttpgtdoee - Xpy bt (14)
011 R2 Lis

andug € L2(Q,RP1), up € L2(Q,RP2), ... uy € L?(Q,RP)
Definition 1 The matrixA given by(8) is called a lower are defined viai,uy,...,u similarly to (1).
stepped matrix. The set of lower stepped matrices is denoted Next, letvi; =0, vi» =0, vi3 = [yl,...,yqla]T and
by ]an. V14 = 0.
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Fori=2,...,1 — 1, we set

Vi1 = [YL cee 7yqi1]T7 Vi2 = [yqi1+17 cee 7yqi1+qi2]T7

T T
Vi3 = [Yoir+aio+ 1o - - - Yo +Gio+Gia) 5 Vid = [Yaia+0io+aiz+1s- - - Yn] -

If i =1, then

T T
Vit=[Y1,-- Yl » Vi2=Ygi+1-- -+ Yar+asl -
T

Vi3 = [Yg+qpt+1r-->¥n] s Via=0.

Therefore

L13vi3
RooVao + Loavas

Ay = (15)

Riovi2 +Liavis

We define.#j; and %; via Lj; and Rj respectively, in
the manner ofw defined viaA by (3). The vectorvjj €
L?(Q,RY%i) are defined similarly to those in (1).

Now, we can writeJ(A) given by (10), in the form

|
J(A) = X (L1a) +'ZJi(Ri2, Lis) (16)
where
Ji(L13) = E [[us — Zs(v1s)|)?]
and
J(Riz,Lig) = E [|Jui — [Zi2(vi2) + Za(via)]|[?] . (17)

We note that matriXA can be represented so that
Ay = BPy,

where

BeR™Y and PeR¥™N

with
|
g=0ai3+  (Gi2+gi3)
I; | |

are such that

Lz O O O O O O O
O Ry Ly O O O O O
: : S - : 0
O O R_12 Lz O O
o) O @) R2 Lis
(18)
Vi
andPy = [ : ] . Here, O is the zero blocky; = v43 and
Y
Vi = z'g fori =2,...,I — 1. The size of each zero block
I

is such thaBPyis represented in the form (15). The matrix

B consists of x (21 —1) blocks. The vectov = Py consists

of 21 — 1 subvectorsys, Voo, Vo3, ..., Vi2, V3.
The filter.«Z can be written as
A (y)=BP(y)

where

and

4.2 Orthogonality of random vectors

For anyx,y € L?(Q,R"), we denote
Ey=Elxy']= {E[Xiyj]}ir:j:l

whereE[xiy ] dZEfo xi(w)yj(w)du(w). The pseudo-inverse
matrix for any matrixM is denoted by ™.

Definition 3 [6, 7] Letwij € L?(Q,R%i) for eachi =1,...,]

andj=1,...,4. Therandom vectoré11,..., w4 are called
pairwise orthogonal if

Oy for r#s,

where Q) is pj x pi zero matrix. The pairwise orthogo-
nal random vectorsviy, ..., w)4 are said to be pairwise or-

thonormal if it is also true that

EWirWis =

Ewows =1 for s=1,....4
Lemmal [6, 7] Letvi; € L?(Q,RY%i) for eachi =1,...,I
andj=1,...,4, and let

s—1
Wi1 = Vi1 and Wis:Vis_/szisé(WiZ) fOI’S=2,3,4
(=1

(19)
whereZs : L2(Q,RY) — L?(Q,RY%) is defined in the man-
ner of (3) by the matri¥js, € R%s>di given by

Zisé = EWisWi[ E\I’i(Wi( + NIISK(I - EWi[Wi[ EV-‘\.’i[Wif) (20)
whereM,, € RYs*% js arbitrary. Thenwiq, ..., wis are pair-
wise orthogonal random vectors.

In (16), the terms; (L13) andJi(Ri2, Li3) is defined by the
operators#i3, Z» and_%3 and their action on the random
block-vectorsvys, viz andviz respectively. The correspond-
ing mutually orthogonal random vectors are

wiz=v13, Wizg=viz and wiz=viz—Zi(vi2) (21)
wherei = 2,...,1 and the operator?; : L?(Q,R%2) —
L?(Q,RY3) is defined by the matrix

Zi = Evy, E\J/rizviz +Mi(l - Evioviz E\J/rizviz) (22)
with M; € R%*%2 arbitrary.

We write
was(w)",

w(w) = [wis(w)", wa(w)T,

owip(w)T, wis(w)T]T,
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and
rliz O (0) O 0O 0 O 1
O Il O O O O O
O -Z I3 O O O O
O O 0 I 0 O O
Z= (@) 0) (O) —23 |33 0) ©)
") O 0 I O
L O O O -7 Iz
wherel;; is gjj x ¢j identity matrix fori=1,...,l andj =
2,3, andz; is defined by (22) for=2,...,1.
The matrixZ consists of 2| — 1) x (2I 1) blocks.

Then (21) can be written in the matrix form as

with v given above.

w(w) =2Zv(w)

MatrixZ implies the operator? :

L?(Q,R") — L?(Q,R) defined in the manner of (3).
SinceZ is invertible, we can represent as follows:

A (y) =

H[Z(2(y))]

A matrix representation of/” is

Lz O O O O O (0)
O T Lps O O O 0O 0
O O O T3 Lzz O (0]
K= . . . . . .
0 O T-1 L-13 0 O
(0) O O @) T L
where
Ti =Ri2+LizZ (24)
fori=2,...,1. We note thaK consists of x (2| —1) blocks.
As aresult, in (17),
Ri2vi2(w) + Lizvia(w) = Rawiz2(w) + Lis[wiz(w) + Ziwiz(w)]
= Tiwi2(w) + Liawiz(w)
and hence
I
J(A) = A(L13) + szi (Ti,Lia), (25)
i=
where
(T Lis) = E[[|lu — [ Fiwiz(w) + Lawis] || ?]

with .7 defined by
[Tiwiz)(w) = Ti[wiz(w)]

foralli=2

LA

min J(A)

AclLl,

where ¥ =221 (23)

5. MAIN RESULTS
Lemma 2 For A € Ly, the following is true:

|
= mmJl(ng) +

|
= minJy(L1a) +
L1z

'{'nlln/l(ﬂ’ |3) (26)

i3

R|r_r21,iLri]3Ji(Riz7 Lis). (27)

Now, we are in the position to prove the main result given
in Theorem 1 below. To this end, we use the following nota-
tion.

Fori=1,...,1, let Aj be the rank of the matriy,, €

RP*P and let s
W|/3W|3 QIUI

be the QR-decomposition fcﬁwi/swi3 whereQ; € RP>* and
Q'Q =1 andy; € RA*Pi is upper trapezoidal with rank;.
We writeG; = UiT and use the notation

Gi = [Gi1,---,0ip,] € RPA

whereg;; € RP denotes thg-th column ofG;. We also write

Gis= [Gi1,.-.,0is| € RP*S

for s < A; to denote the matrix consisting of the first
columns of the matrix;.
The s-th row of the unit matrid € RPi*Pi is denoted by
T 1xp
g € RWPi,
For a square matrikl = {mj }{';_;, we also write

M = Mg+ Ma
where
Mp={mj|m;=0 if i<j}
and
Mp ={mj|[m; =0 if i>j},
i.e. M is lower triangular ant¥l  is strictly upper triangular.

Theorem 1 The solution to the probleifil) is given by the

operatora?® e AN defined by the lower stepped matA%
Lp, where

eﬁl

L= : and R, =T9—-L%z for i=1,...,1I.

(28)
n (28), for eachi =1,2,...,1 ands=1,2,...,p;, thesth
row (Y is defined by

EIOS es EU|W|3 EVV|3W|3G| SGJr + bT( Gi,SGiTs) (29)
whereb| € RMPi s arbitrary; the matrixT3 is such that
TI(Z) = EuiWi2 i2Wi2 + F (I - EWiZWiz EVT\-IiZWig) (30)

with F; € RP*%2 arbitrary and| theq, x g2 identity matrix.
The error associated with the operator? is given by

A b

Ellx - o°(y)|I? =_'zl > 3 Bl BBl
i= s=1j=

1/2 t1/2 t1/2
+ HEUi/Ui |||2: - ||EUiWi2EWi2/Wi2H2 - HEUiW|3EW|3/W|3HF -(31)

1\We recall that by (8)giz = pi.
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Remark 1 The matrixGj € RPi*" has rankA; and hence Each column oF is a particular realization of.
has A; independent columns. It follows th& s € RPi*S By the proposed procedure , we partition each column of
also has independent columns and therefore also has rank andY in subvectors

s. ThusG[Gis € R%*A is non-singular and so's;fs =

_ Ug,...,Us and viz, Voo, Vo3, ..., Vs, V53,
(GIsGiﬁs) lGIs- Hence 1 5 13, V22, V23 52, V53
o T + AT ~ 1T respectively.
lis = &Euws EWiSWiSG"S(GLSG'vs) Gis Furthermoreyss, Voo, Vo3, V32, V33 andvs4 have been or-
+ biTU -G S(G;rsGiAs)ilGiTs] thogonalized tanig, Woz, Wo3, W3p, W3z andwss. Matrices
. o ' (32)—(34) have then been evaluated by the procedure pre-
foralli=1,2,...,1. sented in Theorem 1 fromn, . . ., Uz, andwiq, Woo, W3, Wap,

-Wa3 andwsa.
andV\I{\?ugﬁfntshI?; t[Z? rlglsjt;gzsgkiogfdaggrﬁga[?]’nogrgg]v\lzgrr?éﬁv As aresult, the estimaf® has been evaluated in the form

L,
[1, 2, 6] are particular cases of Theorem 1 above. %’ such that

0

5.1 Simulations RO L13W1%
. . 0 2o W22 + LyaWa3

To illustrate the proposed method, we consider the best X = .

approximator.«7® € AQ, with n = 51 and memorym = :

{my,...,ms}, wheremy = 20, np = 25, mg = 15, my = 35 R, w2+ L2awis3

andmg = 25. ) )
Then the blocks of the matri&® are On Fig. 1, the plots of columnsl and52 of the matrix

10015 0 10410 Y are presented. They are typical representatives of the noisy
R, e R 19, e R0 (32)  data under consideration. On Fig. 2, the plots of coluBihs
and52 of the matrixX (solid line) and their estimates (dashed

Lg.)3 c RZOX 20

3

5%10 0 5x5 10x25 0 10x10 ; o ! )
Rgz eR>,  Lgze R, Rﬁg eR™ LjzeR :335 line with circles) by our filter are given.
RS, eR™0  and L2 e RS (34) REFERENCES

We apply «7° € A3 to the random vectoy under . A .
conditions as follows. In accordance with the assumptiont] S- HaykinAdaptive Filter TheoryPrentice-Hall, Engle-

made above, we suppose that a reference random vector Wo0d Cliffs, N.J., 1991 o
X € L2<Q’R5l) is unknown and that noisy observed data[Z] V. J. Mathews and G. L. SlCUranZEOlynomlal Slgnal

y € L2(Q,R5Y) is given byq realizations ofy in the form of Processing,). Wiley & Sons, 2001.

a matrixY € R™9 with q = 101 MatricesEy,v,5,  Evyavis [3] H. W. Bode and C. E. Shannon, A Simplified Derivation
and matricesEyy,, Euvgs Evopvp and Eyay, fori = of Linear Least Square Smoothing and Prediction The-
2,...,5, or their estimates are assumed to be known. ory, Proc. IRE, 38, pp. 417-425, 1950.

In practice, these matrices or their estimates are givef4] V. N. Fomin and M. V. Ruzhansky, Abstract optimal lin-
numerically, not analytically. Similarly to our methods pre-  ear filtering, SIAM J. Control Optim.38, pp. 1334-1352,
sented in [6, 7], the proposed method works, of course, under 2000.

this condition. In this example, we model the matrices uset{i.s] M. Ruzhanski and V. Fomin, Optimal Filter Construc-

in the simulations with analytical expressions in the follow-" " +ion for a General Quadratic Cost Functior®illetin of
ing way. First, we seX € R"4 andY € R™9 by St. Petersburg University. Mathematic&8, pp. 50-55,

; 1995.
X = [coga) +cog0.3a)] " [cog0.58) + sin(5,
[cos@) o )1 [eost056) (5Bl [6] A. Torokhti, P. Howlett,Computing Methods for Mod-
and elling of Nonlinear Systemglsevier, 302 p. (in press).
Y = [coda)er; +cog0.3a)] T [cog0.58) + sin(5 ral, [7] A. Torokhti and P. Howlett, Optimal Transform Formed
[coda)ers s )] [cos0.56) (5B)er2] by a Combination of Nonlinear Operators: The Case of
where Data Dimensionality ReductiodEEE Trans. on Signal

P ing54, 4, pp. 1431-1444, 2006.
a =[ao,01,...,0n-1], Okr1=0k+04, k=0,1,... n—1, rocessing PP

ap=0, Po=0,
B=1[Bo.Bt,--.,By-1], Bj+1=Bj+04, j=0,1,....9-1,
coga) = [cogap),...,c08an)],
sin(B) = [sin(Bo), - -,SIN(Bg-1)],
the symbol means the Hadamard product,s al x n nor-

mally distributed random vector and is a1 x g uniformly
distributed random vector. Heng, andr» simulate noisé.

2The matrixX can be interpreted as a samplexofBy the assumptions
of the proposed method, it is not necessary to kixowVe use matrix for
illustration purposes only.



