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ABSTRACT

In this paper, we consider the problem of optimal bit allocation
for a multiuser multicarrier communications. Some of the existing
papers comment, without a proof, on the intractability of the prob-
lem and provide algorithms resulting in suboptimal bit allocation
to reduce the computation complexity. A formal proof for classi-
fying this problem as being NP-hard is presented in this article.

1. INTRODUCTION

In recent years multicarrier communications, with Orthogonal fre-
quency division multiplexing (OFDM) representing a flagship ex-
ample, has been assuming increased importance, [1]. Direct ap-
plications include, ADSL, VDSL and the IEEE 802.11a standard.
Bit loading has been used as an effective tool for improving perfor-
mance and enhancing throughput, [10]-[12]. Specifically, bit load-
ing seeks to distribute the bit rate across the various subchannels
characterizing a multicarrier system, to achieve optimality. For ex-
ample, given channel conditions, one may distribute the bit rates
across the carriers to minimize the transmission power needed to
meet appropriate QoS requirements.

This paper examines bit loading within the context of mul-
tiuser communications, i.e. when multiple services with different
data rate and QoS requirements must share the same multicarrier
communications system. In this case the goal will be not just to
distribute the bit rates across the carriers, but also to assign spe-
cific carriers to different services. For example, in [4], one hasK

users supported on anN -subchannel system. Thei-th user must
receive a total bit rate ofβi, and achieve symbol error rate (SER)
of ηi. For anN -subchannel system, suppose userk is assigned the
subchannels indexed by the setIk ⊂ {1, 2, · · · , N}. Supposexi

is the number of bits allocated to thei-th subchannel. Then it has
been shown in, [4] that the net transmission power equals

J =

K
∑

i=1

∑

k∈Ii

φk(xk),

where typically

φk(xk) = αk2xk with αk > 0. (1)

αk ’s reflect target SER performance, and channel and interference
conditions experienced in thek-th subchannel [4]. A highαk value
reflects adverse channel conditions and/or stringent performance
goals;xk is the (positive integer) number of bits assigned to each

symbol in the cognizant subchannel. TheK-user bit loading prob-
lem then becomes: under (1) find nonnegative integersxi, and
index setsIk, to minimizeJ above, subject to the condition that
for all k ∈ {1, · · · , K}

∑

k∈Ii

xk = βi.

Approximation algorithms achieving a suboptimal multiuser
bit loading exist in the literature. These include, [3], [5], [6], and
[7] the latter considering a variation. The motivation given for
studying suboptimal bit allocation is underscored by implicit and
explicit claims made in some of these papers that the underlying
optimization problem is NP-hard, i.e. an algorithm whose run time
grows polynomially withN is unlikely to be found. We note for
the sake of completeness that in the theory of computational com-
plexity there exist a class of problems called NP-complete which
are known not to have, as yet, algorithms that solve them with
a runtime that is a polynomial in the input size. Thus classify-
ing a problem as NP-hard would mean that the problem is just as
“hard” to solve as an NP-complete problem and therefore cannot
be solved in polynomial time.

However, the justification of the NP-hardness of the multiuser
bit loading problem, used in turn as a justification of seeking sub-
optimal solutions, has thus far been made without any proof or
reference. The paper [3], does cite a result from [13] to justify
the claim of NP-hardness. However, [13] demonstrates the NP-
hardness of the following problem. Given arbitrary convexfi,
positive realaij , find non-negative integersxij to:

Minimize : Z(X) =

n
∑

i=1

fi(

m
∑

j=1

aijxij), (2)

Subject to:
n

∑

i=1

xij = Nj , j = 1, 2, . . . , m. (3)

This problem is far more general than the K-user bit loading
problem, and its NP-hardness does not prove the NP-hardness of
the latter. Consequently, if for no other reason than the sake of
completeness, we present a proof for NP-hardness of the K-user
bit loading problem, thereby formally justifying the search for sub-
optimal solutions.

To this end we focus on showing that the 2-user bit loading
problem is it self NP-hard. Then NP-hardness of theK-user prob-
lem follows forK ≥ 2. The two user problem on its part can be
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recast as below.

Q: Under (1), given positive integersβ1 andβ2, positive num-
bersαi, find nonnegative integersxk andδk ∈ {0, 1} such that (4)
is minimized subject to (5).

Minimize : P (x1, .., xN ) =

N
∑

k=1

φk(xk), (4)

Constraint:























N
∑

k=1

δkxk = β1, where δk ∈ {0, 1},

N
∑

k=1

xk = β1 + β2,

xk ∈ {0, 1, ..., max{β1, β2}}.

(5)

Note δk = 1 indicates thatk-th subchannel is assigned to user
1. The target bit rates for users 1 and 2 areβ1, andβ2 respectively.

Our proof approach recognizes that a problem A is said to be
NP-hard if a problem B known to be NP-complete can be trans-
formed to a problem instance of A (in polynomial time) in the
sense that any problem instance of B has a solution if and only
if the transformed instance A has a solution. (Thus A is not eas-
ier than B since any instance of B can be solved by solving the
transformed instance of A). Note that the whole set of problem
instances of B may be transformed to only a subset of problem
instances of A.

The organization of this paper is as follows. In section 2 we
introduce an NP-complete problem which is used to prove thatQ
is NP-hard and present a polynomial time transformation of the
NP-complete problem to a problem instance ofQ. The proof for
NP-hardness is provided in Section 3.

2. EQUIVALENCE OF Q AND THE SUBSET COVER
PROBLEM

We now present a problem that qualifies as a simpler instance of
Q. Thus if this new problem is NP-Hard so isQ.

Problem A: Under (1), given a set of positive real numbersαi,
nonnegative integersbi, bi ≥ bi+1, and nonnegative integersβ1

andβ2, find nonnegative integersxk, δk satisfying the following
set of equations.

P (x1, .., xN ) ≤ P (b1, .., bN ), (6)

Constraint:























N
∑

k=1

δkxk = β1, where δk ∈ {0, 1},

N
∑

k=1

xk = β1 + β2,

xk ∈ {0, 1, ..., max{β1, β2}}

(7)

ProblemA is no harder than the corresponding minimization prob-
lemQ because the minimum valueP (x∗

1, x
∗
2, . . . , x

∗
N ) of the min-

imization problem immediately shows whetherP (x1, x2, . . . , xN )
≤ K for a certain constantK is possible or not. Note that in Prob-
lemA,K is chosen to beP (b1, . . . , bN ), for certain{b1, . . . , bN}.
The reason for this choice ofbk ’s will be apparent by the end of
this section.

In order to show thatQ is NP-hard we then simply need to
prove that a Problem-B which is known to be NP-complete could
be transformed to an instance ofA in polynomial time. Problem-
B turns out to be theSubset Cover problem, which is known to be
NP-complete, and has the following formulation,

Problem B : Given a set of nonnegative integers S ={b1, . . . , bN},
bi ≥ bi+1 and a positive integerβ1, determine if there exists a
subsetS1 ⊆ S such that elements ofS1 add up toβ1. This is
equivalent to findingδk such that

N
∑

k=1

δk.bk = β1, δk ∈ {0, 1}, ∀k.

N
∑

k=1

bk = β1 + β2

(8)

We show in the next section that problemB can be transformed
to an instance of problemA in polynomial time, and that problem
B has a solution if and only if that instance of problemA has a
solution. More specifically, for everybi andβi for which problem
B has a solution, there existαi > 0, obtained in a polynomial
time from thebi, for which the resulting ProblemA has a solution.
What is more thexi solving ProblemA equalbi, and theδi solving
the two problems are identical.

Theαi’s are chosen as follows: They must obey,

2b1−bi−1
< αi < 2b1−bi , ∀i, (9)

and
αi < αj , ∀i < j,

αi 6= 2Cαj , ∀i < j, C an integer
(10)

Sinceαi’s are real numbers, there is always a choice ofαi’s
satisfying (9) and (10). What is more the above transformation can
be completed in O(N).

3. PROOF FOR NP-HARDNESS OF Q

With the choice ofαi’s as explained in Section 2 we now show
thatQ is NP-hard. In particular we prove the following theorem.

Theorem 1 Given a set of nonnegative integers S = {b1, . . . , bN},
bi ≥ bi+1, positive integers β1 and β2, and αi as in (9, 10), the
only {x1, x2, . . . , xN} for which P(x1, . . . , xN ) ≤ P(b1, . . . , bN )

under the constraint
N
∑

k=1

xk = β1 + β2, is x1 = b1, x2 = b2, . . .,

xN = bN .

Consequently, if there existδ1, δ2 ∈ {0, 1}, that solve prob-
lemB for this choice ofbi, then withαi defined in (9, 10), prob-
lem A has a solution withxi = bi andδi that solve problemB.
Further sincexi = bi are the only solutions toP (x1, .., xN ) ≤
P (b1, .., bN ), under

N
∑

i=1

xi = β1 + β2,

problemA will not have a solution if problemB does not.
Thus indeed Theorem 1 proves that given any choice ofbi, βi,

there existαi obtained in a linear time from thebi, for which the
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solution of problemA exists iff problemB also has a solution, and
that indeed the solution to problemA is obtained entirely from that
of problemB. Thus the NP-hardness of problemA and hence also
of problemQ follows.

To prove Theorem 1, we provide four lemmas. The first lemma
proves that{x1, . . . , xN} = {b1, . . . , bN} is an optimal solution
for the allocation ofβ1+β2 bits. The last shows that{x1, . . . , xN}
= {b1, . . . , bN} is the only optimal solution under the constraint
N
∑

k=1

xk = β1 + β2.

Lemma 1 uses a result form [2] that solves the following single
user bit allocation problem. Withφk(.) as in (1) and a positive
integerB, and find nonnegative integersxk ∀k such that (11) is
minimized subject to (12).

Minimize : P (x1, .., xN ) =

N
∑

k=1

φk(xk), (11)

Constraint:
N

∑

k=1

xk = B. (12)

The solution in [2] definesψk(x) = φk(x) − φk(x − 1) ,

li =
⌈

log2(
αi

α1
)
⌉

and proceeds using:

Step-1: Find the smallest k such that

Rk =

k−1
∑

i=1

(lk − li) ≥ B

Step-2: Define
∆ = B − Rk−1

r = ∆mod(k − 1)

q = ∆div(k − 1)

suppose∀ ji ∈ {1, ..., k − 1}

ψji
(lk−1 − lji

+ q + 1) ≤ ψji+1
(lk−1 − lji+1

+ q + 1)

Now ∀ ji ∈ {1, 2, .., k − 1}

bji
=

{

lk−1 − lji
+ q + 1 if 1 ≤ i ≤ r,

lk−1 − lji
+ q else.

We can now prove Lemma 1.

Lemma 1 A solution to the optimization problem

Minimize : P (x1, .., xN ) =
N
∑

k=1

φk(xk), where φk(xk) = αk2xk ,

Constraint :
N
∑

k=1

xk = β1 + β2,

(13)
is given by {x1, x2, . . . , xN} = {b1, b2, . . . , bN}.

Proof: Using the single user discrete bit-loading algorithm pre-
sented in [2] for the choice ofαi’s described earlier we have,

li =

⌈

log2(
αi

α1

)

⌉

= b1 − bi.

We need to determine the smallestk for which the following
holds.

Rk =

k−1
∑

i=1

(lk − li) ≥ β1 + β2 (14)

It can be seen that

RN =
N−1
∑

i=1

(lN − li)

=
N−1
∑

i=1

(bi − bN )

= β1 + β2 − (N × bN )
≤ β1 + β2.

Therefore the smallestk for which (14) holds isk = N + 1 (since
lN+1 = ∞).

∆ = β1 + β2 − RN = N × bN

r = ∆ mod(N) = 0
q = ∆ div(N) = bN

Sincer = 0,

xi = lN − li + q

= bi − bN + bN

= bi, ∀i.

Lemmas 2 and 3 are preparatory to proving Lemma 4. In par-
ticularly Lemma 2 exposes an ordering among theαi.

Lemma 2 If {x1, x2, . . . , xN} is an optimal solution to the con-
strained optimization problem in Lemma(1) then, xi ≥ xi+1, ∀i

Proof: Supposing that∃ i, j for whichxi < xj for somei < j.

αi(2
xj − 2xi) < αj(2

xj − 2xi), becauseαj > αi, for j > i

αi.2
xj + αj .2

xi < αi.2
xi + αj .2

xj

This means that by swapping the number bits assigned to channels
i andj (while retaining the allocation for the remaining channels)
we could minimize the cost. This is a contradiction since the initial
assignment was know to be optimal.

Two further inequalities are provided by Lemma 3.

Lemma 3 With the choice of αi’s explained by (9) and (10) the
following inequalities hold,

α1.2
b1 < αi.2

bi+1, ∀i

αi.2
bi < α1.2

b1 , ∀i
(15)

Proof: From equations (9) and (10) we have the following.

α1.2
b1−bi−1

< αi < α1.2
b1−bi

Using the first half of the above inequality we have,

α1.2
b1−bi−1 < αi

α1.2
b1−1 < αi.2

bi

α1.2
b1 < αi.2

bi+1

Now using the second half of the inequality,

αi < α1.2
b1−bi

αi.2
bi < α1.2

b1

We now prove the last Lemma that together with Lemma 1 proves
Theorem 1.
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Lemma 4 If we have
N
∑

k=1

αk.2xk =
N
∑

k=1

αk.2bk with
N
∑

k=1

xk =

N
∑

k=1

bk = β1 + β2, with the αi’s chosen as described earlier we

have {x1, . . . , xN} = {b1, . . . , bN}

Proof: Let us assume that there exists somek such thatxk 6=
bk otherwise we are done.

CASE I: x1 > b 1

There exists somek such thatxk = bk−C2 for some positive
constantC2 while x1 = b1 +C1 (for some positive constantC1).
Using Lemma(3) we have.

α1.2
b1+C1−1 > αk.2bk−C2 , sinceC1, C2 ≥ 1

α1.2
b1+C1 + αk.2bk−C2 > α1.2

b1+C1−1 + αk.2bk−C2+1

α1.2
x1 + αk.2xk > α1.2

x1−1 + αk.2xk+1

The last equation implies that an allocation of{x1−1, x2, . . . ,

xk + 1, . . . , xN} yields a smaller cost. This is a contradiction.

CASE II: x1 < b 1

There exists somek such thatxk = bk+C2 for some positive
constantC2 while x1 = b1 −C1 (for some positive constantC1).
Using Lemma(3) we have.

αk.2bk+C2−1 > α1.2
b1−C1 , sinceC1, C2 ≥ 1

α1.2
b1−C1 + αk.2bk+C2 > α1.2

b1−C1+1 + αk.2bk+C2−1

α1.2
x1 + αk.2xk > α1.2

x1+1 + αk.2xk−1

The last equation implies that an allocation of{x1+1, x2, . . . ,

xk − 1, . . . , xN} yields a smaller cost. This, again, is a contradic-
tion and thereforex1 = b1. We now consider this scenario.
CASE III: x1 = b1.

Now ∃ k such thatxk = bk + C for some positive constant
C. Using Lemma(3) we have,

αk.2bk+C > α1.2
b1 , sinceC ≥ 1

α1.2
b1 + αk.2bk+C > α1.2

b1+1 + αk.2bk+C−1

α1.2
x1 + αk.2xk > α1.2

x1+1 + αk.2xk−1

The last equation clearly implies that an allocation of{x1 +1, x2,

. . . , xk−1, . . . , xN} yields a smaller cost. This is a contradiction.
Therefore from Cases I, II and III we can conclude thatxk =
bk, ∀k

4. CONCLUSIONS

In this paper we have presented a formal proof for classifying the
multiuser bitloading for multicarrier systems as NP-hard. This was
accomplished by proving the equivalence of the problem to the
Subset Cover problem which is known to be NP-complete. This
thus formally provides a hitherto unjustified rationale for seeking
suboptimal solutions to the multiuser bit loading problem.
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