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ABSTRACT

In this paper, an efficient method to implement undecimated
directional filter banks (UDFBs) is proposed. The method
is based on an observation that many non-separable two-
dimensional two-channel FBs can be efficiently implemented
by a separable structure if their polyphase components are
separable. Therefore, with appropriate delay and advance
blocks, undecimated non-separable FBs can be computed
with a comparable computational complexity to the separa-
ble case. Structures for 2-, 4- and 8-channel UDFBs are pre-
sented to illustrate the idea.

1. INTRODUCTION

The directional filter bank (DFB), of which subband parti-
tioning is presented in Fig. 1, was introduced by Bamberger
and Smith [1]. A major property of the DFB is its ability to
extract 2D directional information of an image, which is im-
portant in image analysis and other applications. The DFB is
maximally decimated and perfect reconstruction (PR). This
means that the total number of subbands’ coefficients is the
same as that of the original image, and they can be used to re-
construct the original image without error. The eight-channel
DFB (Fig. 1(b)) can be implemented by a binary-tree struc-
ture consisting of three levels of two-channel systems. Each
level can be implemented by using separable polyphase fil-
ters, which make the structure very computationally efficient.

One problem of image decomposition using decimated
FBs is that the representations are not shift-invariant [2]. For
many image analysis tasks, a critical representation of im-
age is not necessary, and overcomplete decompositions are
generally implemented. Directional filters employed in im-
age analysis are usually non-separable, which are computa-
tionally expensive and difficult to implement. Thus, there
exists a strong motivation for shift-invariant orientation fil-
ter with low computational complexity. Examples of un-
decimated DFBs (UDFB) are in [3, 4] for image enhance-
ment and denosing applications, but their implementation
is done by using two-channel non-separable FBs and has
not taken advantage of the efficient structure in the con-
ventional DFB [1]. The UDFB implementation proposed
in [5] is based on the ladder structure for two-channel fan
FBs. Since the polyphase realizations are separable, the ori-
entation filters have much lower complexity than the non-
separable ones. However, the framework is not optimal in
the sense that the computation is carried out at twice the input
rate and half of the computed outputs are discarded. More-
over, the extension from a fan FB to a2n-channel DFB is not
straightforward.
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Figure 1: Frequency divisions of the conventional DFB [1] in
case of: (a) four-channel DFB, and (b) eight-channel DFB.

Paper outline. An efficient structure to implement a 2-
D FB is reviewed in the next section. Not all 2-D maxi-
mally decimated FB can be realized by the structure which
requires only 1-D filtering. However, it is shown that many
2-D FBs with ‘reasonable’ frequency passband shapes are
supported [6]. A structure for an undecimated 2-D FB is
presented in Section 3 by using two copies of the separable
polyphase block. Only one of these matrices is needed in the
maximally-decimated case. The case of undecimated FBs
having2n channels is considered in Section 4. The paper is
concluded in Section 5.

A note on notation. Bold face letters represent vectors
and matrices. The superscriptT denotes the transpose opera-
tor. The matrix exponentials follow the notation used in [6],
i.e.

[z1, z2]
T

[

n00 n01

n10 n11

]

= (zn00

1 zn10

2 , zn01

1 zn11

2 ). (1)

Q =

[

1 1
1 −1

]

, D0 =

[

2 0
0 1

]

, and D1 =
[

1 0
0 2

]

. Consequently, we have:zQ =
(

[z1, z2]
T
)Q

=

(z1z2, z1z
−1
2 ). The notationN (M) is defined as the set of

integer vectors of the formMx wherex ∈ [0, 1)2.

2. SEPARABLE STRUCTURE FOR
TWO-CHANNEL 2-D FBS

An example of a 2-D maximally decimated FB is in Fig. 2(a),
where black and white regions indicate the stopband and
passband in the 2-D frequency plane. The FB is called a fan
or hourglass FB due to the shape of its passband supports.
As one can easily see, these 2-D filters can not be realized

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



by a separable structure; itsz-transform is not the product of
two polynomials ofz1 andz2. In order to be separable, the
passband shape must be rectangular and quadratically sym-
metric, which means that it has to be symmetric with respect
to ω1 andω2. However, in a critical sampling case, it is much
more efficient to carry out the computation in polyphase do-
main (Fig. 2(b)) since the calculation is at a lower rate, and
no computed coefficient is discarded. A 2-D FB is said to be
polyphase separable if the components of the polyphase ma-
trix are separable. For example, if the fan filters in Fig. 2(a)
are given as

[

HF
0 (z)

HF
1 (z)

]

=

[

H00(z
Q) H01(z

Q)
H10(z

Q) H11(z
Q)

] [

1
z−1
1

]

,

= H(zQ)

[

1
z−1
1

]

, (2)

where

HF
i (z1, z2) = Hi0(z1z2, z1z

−1
2 ) + z−1

1 Hi1(z1z2, z1z
−1
2 ),

for i = 0, 1. The fan FB is polyphase separable iff each ele-
mentHij(z1, z2) of H(z) is a product of two 1-D filters, i.e.
Hij(z1, z2) = αij(z1)βij(z2), i, j = 0, 1. Therefore, it is
interesting to see what passband shape can be polyphase sep-
arable. It is known that the polyphase components of a filter
in a maximally decimated FB are approximately allpass [7].
ThereforeHij(z), αij(z1), βij(z2), and Hij(z

Q) are ap-
proximately allpass filters. Based on the possible phase func-
tions of Hi0(z1z2, z1z

−1
2 ) and z−1

1 Hi1(z1z2, z1z
−1
2 ), one

can show that the FB with diamond or fan-shape passband
and decimation matrixQ can be implemented by separable
polyphase components [8, 9].

After the determination of which 2-D FB can be imple-
mented by 1-D polyphase, the next question is how to design
the polyphase matrix. In the original DFB [1], the structure
in Fig. 2(b) is used. This structure is a generalization of the
quadrature mirror filters (QMF) to two-dimension. The main
disadvantage of this method is that it is difficult to design the
synthesis filters, since an FIR solution is not possible except
for the trivial case ofαi(z), βi(z) being a delay. The most
commonly-used method in realization ofH(z) is the ladder
structure [8](Fig. 2(c)). This method has lower complexity
than the QMF approach, but the class of diamond FBs that
can be implemented by this structure is rather limited. For
example, one of the filters must be half-band, and one filter
support is approximately twice the other one in the case of
two ladder steps. The original construction of the structure
in [8] is for 1-D and 2-D diamond FBs. It is generalized to
quadrant FBs in [6] and fan FBs in [9]. Another method to
implementH(z) is by using the lattice structure [7]. This
method can yield exactly orthogonal FBs. However, it is dif-
ficult to design large filters with good passband and stop-
band characteristics because usually the objective function is
highly nonlinear with respect to the lattice parameters [10].

Another important point that differentiate 2-D multirate
systems from 1-D systems is that the signal can be resam-
pled by a unimodular matrix (up or downsampled by matrices
having determinant of±1) and the signal contents remain un-
changed. Therefore, by combining a resampling block with
a 2-D FB, the effective frequency supports can be changed.
For examples, the FB with parallelogram passband shape can
be implemented by the diamond FB [1].
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Figure 2: (a) Two-channel fan FB, (b) polyphase structure of
a QMF FB and (c) polyphase structure using ladders.

3. EFFICIENT IMPLEMENTATION OF
UNDECIMATED TWO-CHANNEL 2-D FBS

Let us consider an imagex(n), which is filtered by a filter
h0(n). X(z) andH0(z) can be written in the polyphase form
as follows:

X(z) = X0(z
Q) + z1X1(z

Q), (3)

and
H0(z) = H00(z

Q) + z−1
1 H01(z

Q). (4)

The filtered signaly0(n) also has two polyphase components
as in (5) at the top of next page. Let us define the following
polyphase vectors as

x(z) =

[

X0(z)
X1(z)

]

, xr(z) =

[

X1(z)
X0(z)

]

,

and h0(z) =

[

H00(z)
H01(z)

]

.

ThenY0(z) can be expressed as

Y0(z) = hT
0 (zQ)x(zQ)

+z1h
T
0 (zQ)diag(1, z−Q

1 z
−Q
2 )xr(zQ). (6)

Similarly, the undecimated outputY1(z) in the second chan-
nel can be written in the same fashion. Therefore, the over-
complete two-channel FB can be implemented by the struc-
ture in Fig. 3

Intuitively, the structure in Fig. 3 can be viewed as fol-
lows. The upper polyphase blockH(z) provides an output
of a decimated FB, and we need to recover decimated coef-
ficients in order to create undecimated images. Obviously,
these lost coefficients will be obtained from the decimated
FB if the input signal is appropriately shifted. That is pre-
cisely the reason for the delay blockz−1

1 z−1
2 before the lower

polyphase matrixH(z) in Fig. 3. The outputs from the two
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Y0(z) =
(

X0(z
Q)H00(z

Q) + X1(z
Q)H01(z

Q)
)

+
(

z−1
1 X0(z

Q)H01(z
Q) + z1X1(z

Q)H00(z
Q)

)

=
(

X0(z
Q)H00(z

Q) + X1(z
Q)H01(z

Q)
)

+ z1

(

X1(z
Q)H00(z

Q) + z
−Q
1 z

−Q
2 X0(z

Q)H01(z
Q)

)

. (5)

1

1z H z

1z

1z

1 1

1 2z z

Q

Q

Q

Q

Q

Q

0,0

10P

0

1

2

3

0y n

1y n

H z

Figure 3: Quincunx UDFB.

polyphase matrices are then interlaced to form the two un-
decimated subband imagesy0(n) andy1(n).

Note that the implementation of the UDFB in [5] is also
based on separable polyphase components of the decimated
two-channel FBs. Instead of using double polyphase ma-
trices, the input is upsampled byQ and processed in one
polyphase matrix. The output signals are then decimated by
Q to produce the desired subband images. Although the re-
sults of both methods are equivalent, the method in [5] dis-
cards half of the already computed coefficients. It is therefore
concluded that the structure in Fig. 4 requires only half of the
computation of that in [5]. Once this structure is used repeat-
edly in a binary-tree, the computational cost can be reduced
even further.

4. TREE-STRUCTURE UDFB

One of the advantages of the conventional DFB is that it can
be efficiently implemented by a binary-tree structure con-
sisting of two-channel FBs with separable polyphase com-
ponents. In fact, by cascading only 2-D FBs having that
property, other type of FBs can be obtained, such as the
nuqDFB [11]. Since it is possible to realize undecimated
two-channel FBs by its separable polyphase structure, the un-
decimated version of a2n-channel DFB can also be realized
in a similar way.

4.1 Structure for undecimated four-channel DFB

A block diagram of the four-channel UDFB, whose fre-
quency response is shown in Fig. 1(a), is presented in Fig. 4.
The blockP (0,0)

10 is the same as that in Fig. 3. The blocksPd
20

andPd
21, whered ∈ N (Q) =

{

[0, 0]T , [1, 0]T
}

, are similar

to P
(0,0)
10 as they are the polyphase matrices of 2-nd level fan

FBs. For simplicity, letyi(n), i = 0, 1, 2, 3 be the four out-
puts of the four-band UDFB. Since the outputs0 and1 of
P

(0,0)
10 in Fig. 3 are polyphase components of the first output

of the two-channel FB,y0(n) must be obtained from the out-
puts ofPd

20’s. It can be shown that first two outputs (0 and
1) of bothPd

20 blocks are the four polyphase components of
y0(n). Similarly, the other two outputs (2 and 3) correspond
to y1(n). y2(n) andy3(n) can be obtained in the same fash-
ion from bothPd

21 blocks. Table 1 summarizes the polyphase
components with their associated delays for eachyi(n). In
a maximally decimated case, the four subsampled subbands
are at outputs 0 and 2 (marked by bold arrows in Fig. 4) of
the topPd

20 and Pd
21 blocks, which are the first polyphase

components ofyi(n).
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Figure 4: Four-channel UDFB.

4.2 Extension to 2n-channel UDFB

Generalization to2n-channel can be done recursively by cas-
cading the polyphase blocksPnj at the4n−1 polyphase com-
ponents (before upsampling) at leveln − 1. These new4n

polyphase components are then upsampled by their corre-
sponding (possibly different) decimation matrices, and fol-
lowed by appropriate advances.

Let us consider the case of eight-channel UDFB. In the
binary-tree structure of the eight-channel DFB in [1], whose
subband frequency supports are presented in Fig. 1(b), four
parallelogram two-channel FBs are used at the third level.
The passbands of these two-channel FBs have parallelogram
shapes, and the decimation matrices areD0’s for the first two
FBs andD1’s for the others. Assume that these four FBs
are polyphase separable, and letPd

3j be their corresponding
polyphase blocks, wherej = 0, ..., 3 and d ∈ N (2I) =
{

[0, 0]T , [0, 1]T , [1, 0]T , [1, 1]T
}

. In order to create an un-
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Table 1: The polyphase components at the output ofP2i and its corresponding outputs in the four-channel UDFB in Fig. 4.

P
(0,0)
20 P

(1,0)
20 P

(0,0)
21 P

(1,0)
21

y0(n) 0, 1(z2) 0(z1), 1(z1z2)
y1(n) 2, 3(z2) 2(z1), 3(z1z2)
y2(n) 0, 1(z2) 0(z1), 1(z1z2)
y3(n) 2, 3(z2) 2(z1), 3(z1z2)

Table 2: The polyphase components at the output ofP3i

and its corresponding outputs in the eight-channel UDFB in
Fig. 5.

(i = 0, 1) P
(0,0)
3i P

(0,1)
3i P

(1,0)
3i P

(1,1)
3i

y2i(n) 0,
1(z1)

0(z2),
1(z1z2)

0(z2
1),

1(z3
1)

0(z2
1z2),

1(z3
1z2)

y2i+1(n) 2,
3(z1)

2(z2),
3(z1z2)

2(z2
1),

3(z3
1)

2(z2
1z2),

3(z3
1z2)

(i = 0, 1) P
(0,0)
3(i+2) P

(0,1)
3(i+2) P

(1,0)
3(i+2) P

(1,1)
3(i+2)

y2i+4(n) 0,
1(z2)

0(z2
2),

1(z3
2)

0(z1),
1(z1z2)

0(z1z
2
2),

1(z1z
3
2)

y2i+5(n) 2,
3(z2)

2(z2
2),

3(z3
2)

2(z1),
3(z1z2)

2(z1z
2
2),

3(z1z
3
2)

decimated version, fourPd
3j (of eachj) are connected to

the polyphase components corresponding to subbandj of the
2nd level (see Table 1). Fig. 5 shows the connection between
the 2nd and 3rd levels of the tree using 16 blocks ofPd

3j . This
produces a total of16×4 = 64 polyphase components for the
8 undecimated subbands. Thus, each subband image is com-
posed of8 polyphase components. In general a2n-channel
UDFB would require4n−1 blocksP ·

nj , 0 ≤ j < 2n−1, at the
n-th level of the tree to provide4n−1 × 4 = 4n polyphase
components of the2n undecimated subbands. Note that fil-
ters used in eachP ·

nj are the same as that of the decimated
version, which can be polyphase separable for the DFB case.

According to Fig. 5, the polyphase outputs0 and 1 of
Pd

3j are components of the undecimated subband2j, and
the polyphase outputs2 and 3 belong to the undecimated
subband2j + 1. These polyphase components are upsam-
pled by appropriate decimation matrices. For the case of 8-
channel DFB, the outputs ofPd

30’s andPd
31’s are upsampled

by (2I)(D0) = 2D0 whereas those ofPd
32’s andPd

33’s are
upsampled by(2I)(D1) = 2D1. These upsampled com-
ponents are then shifted by different advances as shown in
Fig. 5. Letd0 = [1, 0]T andd1 = [0, 1]T . For eachd, it can
be shown that:

1. outputs 0 and 2 ofPd
3j must be advanced byzD⌊j/2⌋d,

and
2. outputs 1 and 3 ofPd

3j must be advanced by
zD⌊j/2⌋d+d⌊j/2⌋ .

Table 2 summarizes the polyphase components with their as-
sociated delays for eachyi(n).

Fig. 6 shows an example of a directional filter of an eight-
channel UDFB. The filter is constructed using the proposed
structure where the impulse responses in Fig. 6(a) are the
eight polyphase components. The resulting impulse response
obtained by interlacing these polyphase components is pre-
sented in Fig. 6(b) and its frequency response is in Fig. 6(c).

5. CONCLUSION

An efficient structure for the implementation of a shift-
invariant directional analysis is presented in this paper.Al-
though the discussion is limited to the case of UDFBs, the
proposed approach can be applied to all undecimated FBs
that have an efficient structure for their polyphase matri-
ces. The directional filters implemented by the structure have
computational complexity depending linearly on the size of
the filters. The proposed structure reduces half of the com-
putational compared to the previous approach in [5].
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Figure 5: Eight-channel UDFB.
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Figure 6: (a) Eight polyphase components of a filter in the
conventional DFB.(b) The impulse response attained by up-
sampling and interlacing the eight polyphase components
and (c) The frequency response of the filter in (b).
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