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ABSTRACT as those discussed in [16, 17] and also in this paper, the integrations

§ed to compute the filtering distribution and the integrations em-

Particle filters have recently been applied to speech enhancemelll]o ed to estimate the clean speech signal and model parameters do
when the input speech signal is modeled as a time-varying autord” Y P g p

. . : . ; ot have closed-form analytical solutions. Approximation methods
gressive process with stochastically evolving parameters. This typ%ave to be employed for these computations. The approximation

of modeling results in a nonlinear and conditionally Gaussian state- ethods developed so far can be grouped into three classes: (1) an-
space system that is not amenable to analytical solutions. Prior wo P group :

in this area involved signal processing in the fullband domain andYtiC approximations such as the Gaussian sum filter [19] and the
assumed white Gaussian noise with known variance. This pap&*iended Kalman filter [20], (2) numerical approximations which

extends such ideas to subband domain particle filters and colordJ2ke the continuous integration variable discrete and then replace
noise. Experimental results indicate that the subband particle filtegach integral by a summation [21], and (3) sampling approaches

achieves higher segmental SNR than the fullband algorithm and &-'Ch as the unscented Kalman filter [22] which uses a small num-
effective in dealing with colored noise without increasing the com-2€" Of deterministically chosen samples and the particle filter [23]
putational complexity. which uses a larger number of random (Monte Carlo simulation)

samples for the computations. The analytic approximations are
computationally simple but usually fail in complicated situations.
1. INTRODUCTION The numerical approximations are only suited for low-dimensional

Speech enhancement has been an active area of research duringiée-spaces. In [16, 17], particle filters have been successfully em-
past forty years. Speech enhancement algorithms available in ttdoyed for speech enhancement. The methods developed in [16, 17]
literature can be broadly divided into two categories - non-modevere in the fullband domain and only white Gaussian noise with
based and model based algorithms. Representative approacHg¥wn variance was considered. )
in the non-model based algorithms include spectral subtractive- In this paper, we present a speech enhancement algorithm that
type algorithms [1, 2] and signal subspace-based algorithms [3, 4gmploys particle filters in the subband domain. Typically, subband
Model based algorithms employ models of speech in the enhanc&Peech signals have flatter power spectrum as compared to the cor-
ment process. Autoregressive (AR) models are widely used to regesponding fullband signals. We can therefore use lower order TV-
resent the vocal tract transfer function. Example of model basePARCOR models for the subband signals. This usually reduces the
speech enhancement algorithms include the iterative Wiener filte€omputational complexity of the algorithm. We show in this paper
ing approaches [6, 7]. Kalman filtering based algorithms [8, 9, 10fhat while maintaining similar computational complexity, the sub-
form another class of model-based speech enhancement algorithnk@nd modeling can model the speech power spectrum more accu-
Almost all such methods are based on autoregressive modeling &itely and result in better enhancement results. The enhanced full-
speech signals and linear Gaussian state-space representation of 838d speech signals are obtained by synthesizing the enhanced sub-
system. Speech enhancement algorithms that assume specific pré@nd speech signals. The particle filter based speech enhancement
ability distributions of speech signals and then derive minimumalgorithms in [16, 17] assume white Gaussian noise with known
mean-square error estimates of the clean speech signals [11, 1¢griance, which is unrealistic in practical applications. This work
and those that assume composite source models (a composite soug&éends the algorithm to solve the enhancement problem in col-
model is composed of a finite set of statistically independent subored noise environments. In order to accomplish this, we model the
sources with each subsource representing a particular class of sgglored noise by an AR model and augment the state-space model
tistically similar speech sounds) such as Hidden Markov Modeldor the white noise case. Experimental results show that the sub-
(HMMs) and use different estimators for different classes of speechand particle filter achieves higher segmental SNR improvement
signals [13, 14] also belong to the class of model based methods. than the fullband scheme in white Gaussian noise without increas-
AR models of speech used in the iterative Wiener filtering andng the computational complexity. The subband particle filter is also
Kalman filtering approaches [6, 7, 8, 9, 10] assume that the articeffective in dealing with colored noise. .
ulatory shape of the vocal tract remains fixed throughout the anal- _The rest of this paper is organized as follows. Section 2 de-
ysis interval. However, in reality the vocal tract is changing con-Scribes the subband system model and the estimation objectives. In
tinuously. To better model the non-stationarity of speech signalsSection 3, we present the subband particle filter and the noise esti-
time-varying autoregressive (TVAR) models of speech have beefation algorithm. Section 4 prowdes exp_erlmental results. Finally,
proposed [15]. In [16], a TVAR model with stochastically evolv- We make our concluding remarks in Section 5.
ing parameters was adopted and shown to outperform standard AR
models. By transforming between the AR coefficients and the re- 2. THE SUBBAND SYSTEM MODEL
flection qoefficients using standard .Levinson recursion, Fong [17], the fullband domain, the noisy speegft) can be expressed as
used a time-varying partial correlation (TV-PARCOR) model and
showed that the TV-PARCOR is a better physical representation of y(t) = s(t) +n(t), 1)
audio signals than the TVAR model. We adopt the TV'PA.RCORWheres(t) andn(t) are the clean speech signal and the additive
modelr:n our TettT]Od' Wt'th the T\éAR or TV'P'?‘%(.:OR mo<|j_el|ng of hackground noise, respectively. The fullband signal is decomposed
Speech signals, the system can be representea in a nonlinear Confll, 5 set of subband signals using an analysis filter bank and the
tionally Gaussian state-space form. Analytic solutions for recursive b -nd signal can be written as
Bayesian state estimation exist only for a small number of specifi€
cases [18]. For nonlinear conditionally Gaussian state-space models yi(t) = s(t)+ni(t), 2)
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wherei is the subband index.
The component of the clean speech sigggl) in theith sub-
band is modeled asth order TVAR process,e.,

p

Y a(0s(t—K)+ 05,85 (1)
k=1

s(t) = 3

Here, ai; = [a((1),---,ai:(p)]" is time-varying AR coefficients
vector associated with thth subband ane (t) is a white Gaussian
excitation with unit variance. The variance of the excitatioa§§.

We assume that the colored noise statistics change sufficient
slowly so that they can be approximated as not changing during _

short time intervals. In such short time intervals, we modelithe
subband componemi(t) of the colored noise as gth order AR
processi.e.,

q
ni(t) = > bi(k)si(t—k)+ onen(t). 4)
K=1
Here, b = [bi(1),---,bi(q)]" is thei-th subband AR coefficients

vector andey, (t) is a white Gaussian excitation with unit variance.

The variance of the excitation m%l and is not knowra priori.

recursions
p(xi(t+1)yi(1:t)) =
[ RexiOlyi(2 :0)pexi(t+ Dxi()dxi(t) (12)
p(xi(t+1)lyi(1:t+1)) =
Plyi(t+1)|xi(t+1))p(xi(t+1)[yi(1:1)) (13)

p(yi(t+lyi(1:1))

Once the distribution function is known, the MMSE estimate of the
Evtate vector is given by

%i(1) = E(x(Dlyi(1:0) = [x(0pG(Olyi(L:0)dxi(0). (14)

From the state-space representation (10) and (11), we can see
that if the model parametets t, os,, bj and oy, are known, the
estimation problem can be solved using a Kalman filter. However,
the parameters are unknown and have to be jointly estimated with
the state vectax;(t). This results in a conditionally Gaussian state-
space system and has no closed form solution for the computation
of the filtering distribution and the state estimation. Particle filter
as an approximation method is then adopted to solve the estimation
problem in this paper.

Given the clean speech and noise models in the subbands, we L€t us define ZaT speech  parameter VeCt@f(t') =
can develop a state-space system model in the following manndgit(1),---,ait(p),logag ]’ that is to be estimated with the

Let us definex;(t) = [si(t),---,S(t— p+1),ni(t),---,ni(t — g+
D)7, ei(t) = [es (t)en ()] andyi(t) = [yi(t)]" and the system ma-
trices

AS Opx
A= oot R ©)
PP AL L (prg)x(pta)
where
ait(1) at(2 ar(p—1) ar(p)
1 0 0 0
A= %1 ° 0 ®)
0 0 1 0 Jpp
and
bi(1) bi(2) bi(q—1) bi(q)
1 0 0 0
Ar=| % ¢ ° 0 @
0 0 1 0 4
Let
Os, 0
B — Op-1)x1  O(p-1)x1 ®)
) Uni
Og-1)x1 O@-1)x1 I (pigx2
and
p-1  g-1
~ N
Cit = [10--:010 -0l (p1q)- 9)
Then, we can rewrite (2), (3) and (4) in state-space form as
xi(t) = Aitxi(t—1)+Bitei(t) (10)
yilt) = Cigxi(t). 11)

In order for a sequential minimum mean square error (MMSE)For a tutorial discussion of particle filtering, refer to [23].

state vectorx;(t). The noise parameters will be estimated sep-
arately during intervals where speech is absent from the signal.
To facilitate a particle filter solution, we further assume a TV-
PARCOR model [17] for the time-varying AR coefficients of the
speech signal. That is, the time-varying AR coefficients are first
transformed to a set of time-varying reflection coefficients using
Levinson recursion. The corresponding reflection coefficients
is applied a constrained Gaussian random walk model. The
constraints imposed are such that stability of the model is ensured.
The constrained random walk model for the reflection coefficients
is

if mavic|pi (K)| < 1
otherwise

21\-
Pit-1) ={ gl;(g‘tfl’épl)’ (15)

p(pit

Here,pit = [pit(1),--,pi(p)]" is the set of reflection coefficients
associated with the speech signal at tim&he logarithm of speech
excitation variance also follows a Gaussian random walk model,
i.e., we assume that
(logo? |logo2 ) =N(loga? _,52) (16)
pllogaog, 1090y, , 905, 1:%,)-

The estimation objectives then become the computation of the

joint distribution p(x;(t), 6;(t)|yi(1 : t)) and the MMSE estimates

E{xi(t), 6(t)lyi(1:1))}.

3. SUBBAND PARTICLE FILTERING AND NOISE
ESTIMATION

The subband particle filter based speech enhancement algorithm is
illustrated in Figure 1. The algorithm first decomposes the input
signal into subband components, performs enhancement in the sub-
band domain, and then reconstructs the enhanced fullband signal
using a synthesis filter bank. In subsection 3.1, a sequential Monte
Carlo method for estimating the state and speech parameter vector
from the observed noisy signal is presented. In subsection 3.2, we
will discuss the method used to estimate the noise parameters.

3.1 Subband patrticle filter

The subband particle filter adopted in this paper is the Rao-
Blackwellized particle filter similar to those developed in [16, 17].
We

estimation of the state vector, we have to know the distribution funcpresent the algorithm according for our state-space model in what
tion p(x;(t)|yi(1:t)). This distribution can be obtained using the follows.
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Figure 1: Subband speech enhancement system.

3.1.1 Sequential Bayesian importance sampling
Suppose that it is possible to sampleparticles{x (1:t),6m (
)

t);m=1,...,N} according top(x;(1:t),6(1: t)\y.(l t)
empirical estimate of this distribution is
1 N
Pu(xi(1:),6(1:0lyiL ) =5 > Suaran.gran). (A7)
N &
whered.) is the Dirac delta function. Using this empirical distri- Recall thatp(x;(t),

The importance weights can also be recursively evaluated as

m o PM(L:t—1),6M(1:t—1[yi(1:t—1))
It U (L - 1), 0L - Dlyi(L - 1)
p(x{M(t), 8M(t)|x™(1:t—1),6M(1:t—1),yi(1:t))
m(x{"(t),8M(t)|x"(1:t—1),8M(1:t—1),yi(1:1))
— (M p(x|m(t)>9|m(t)‘xim 1 't_l)veim(l :t_l)-,yi(l :t))
L m(t), Q)L - 1), Q7L it 1), yi(1:)
(22)
and the normalized importance weights @Q ST “““

Thus, given an estimate qf{(xj(1:t—1),6(1: t— )|yi(l
t—1)), the estimate op(x;(1:t),6(1:t)|yi(1:t)) is obtained by
augmentingx["(1:t —1),6M(1 :t — 1)) with (x]"(t),8™(t)),m=
1,...,N and recurswely updating the importance weights ac-
cordlng to (22). (x"(t),6M(t)),m=1,...,N are sampled from
m(x;(t), 6 (t)[x"(1 : t— 1), Gm(l t—1),yi(1:t)). The marginal
distributlon p(xI (t),6i(t )|y|(1 t)) is estimated as

WO (1), BT (1)).
=1

B(t)|yi(1:t) = (23)

P (xi (1),

?MZ

3.1.2 Rao-Blackwellization
6(1:9lyi(1:t) = p(xi(t)|6(1:t),yi(1:

bution, the MMSE state and speech parameters estimates can HeP(6 (1 :t)[yi(1:t)) and thatp(x;(t)[6(1:t),yi(1:t)) is a Gaus-

obtained as

(i(1:1), é(1't))
7/ xij(1:t),

=N Z xM(1:1),6M(1:1))

1:1)) Py (dxi (1:1),d6 (1 :1)]yi (1 :1))

(18)

According to the strong law of large numbers, this estimate con-o Form=1,.

verges to the true estimate ngoes to infinity [23].
Unfortunately,p(xi(1:t),6(1:t)|yi(1:t)) is usually too com-
plicated to sample directly. Instead, a simpler distributigs; (1

t),6(1:1)|yi(1:t)) which can be easily sampled from and whose

support includes that gf(x; (1 :t),6(1:t)|yi(1:t)) is employed.

This method is called Bayesian importance sampling (BIS) [24].

An empirical estimate op(x;(1:t),6/(1:t)|yi(1:t)) using BIS is

given by
N
Pu(xi(1:t),8(1:)|yi(1:1) = 5 @idum1n).grary, (19)
m=1
where, the normalized importance weighi, = Wa’l‘—qﬂ and the

Pe(11),6M(11)|yi(11))

n(xl,n(l:t)’elm(lmyi(11)) . With the BIS, the

importance weighte; O

MMSE state and speech parameters estimates can be obtained as

N

)=y &Rl

m=1

(%(1:1),6(1 '1),8M(1:1)). (20)

In order to estimate(x;(1:t),6(1:t)|yi(1:t)) at any time
t without changing the past simulated trajectorieg™(1 : t —
1)76im(l:t71))7m:17'~'7
The basic idea of sequential BIS is thatx; (1 :t —1),6(1:t —
1yi(1:t—1))is afactor ofr(x;(1:t),6/(1:t)|yi(1:1)),i.e,

m(xi(1:t),6(1: t)b’l t) =
m(xi(1:t—1), -

(1:
Bi(1:t—1)[yi(1:t—1))x
m(xi(t), 6 (t)[xi(1:

t—1),6(1:t—1),yi(1:1)).
(21)

N, we employ a sequential BIS scheme.

sian dlstrlbutlon that can be analytlcally evaluated using a Kalman
filter. We assume that the noise parameters are already estimated
and known. Then from the Rao-Blackwell theorem [25], we can re-
duce the estimation variance by only samplp(@ (1 :t)|yi(1:t))
and analytically evaluating(x;(t)|6™(1 :t),yi(1:t)) to obtain an
estimate ofp(x;(t),8(1:t)|yi(1:t)). We can summarize the Rao-
Blackwellized particle filter as follows.

e Samplert(6(t)|6(1:t—1),yi(1:t)) for M(t),m

and8™(1: t) (6M(1:t—1),6M(1)).

.,N, evaluate the importance weights up to a nor-

OM(11-1) yi(Lt
malizing constanml,[ Owl 4 néemi g‘\em(u 1; i.ﬁuii

e p(6(1:t)]yi(1:t)) can then be approximated (6 (1
Dlyi(L:t)) = -1 O Sgm(vs)-

e The estimates of the speech parameters and the state vector can
be expressed as

—m

(24)

z ?Mz
o
=

S GE{xi(0]6M(L:0).yi(1:1)},  (25)
m=1

where, E{x;(t)|6™(1 : t),yi(1 :t)} can be computed using a
Kalman filter. For details of Kalman filtering, please refer to
[26].

3.1.3 Resampling

One problem with the sequential BIS is that after several time steps,
many importance weights will have insignificant values. This will
cause large estimation variances. In order to alleviate this problem,
many resampling schemes have been proposed such as sampling
importance resampling [27], residual resampling [28] and strati-
fied resampling [29]. The generic stratified resampling scheme is
adopted in this paper. For details of the algorithm, please refer to
[29].

3.2 Noise parameter estimation

For noise parameter estimation, we first design a voice activity de-
tector in each subband. Then we collect all the noise only segments
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and construct a sequence of noise samples. We can then estimate Input SegSNR improvement(dB
the noise parameters using the Yule-Walker method from the noise SegSNR(dB)[ Fullband|  Subband
only sequence. -5 6.90 12.37

The voice activity detector we adopt here is based on the min- 0 5.15 10.25
imum controlled recursive averaging noise spectrum estimation 5 3.42 9.61
method [12]. We summarize the algorithm as follows. For each 10 2.44 7.52
subband noisy signaj (t), we first estimate the energy recursively
as, Table 1: Comparison of SegSNR improvement in white Gaussian

S(t) = asS(t— 1)+ (1—as)y2(t), (26)  Noise.

where0 < as < 1is a forgetting factor. Then we track the minimum
value of §(t) denoted byS min(t). A samplewise comparison of Tnput SegSNR improvement(dB)
the smoothed energy and the corresponding variable in the previous SegSNR(dB)[ Cohen [33] Subband PF
frame allows the following update for the minimum value Traffic | F-16 | Traffic | F-16

-5 7.64 | 598 | 782 | 812
0 5.67 | 407 530 | 6.77
5 330 [ 259 314 | 475
10 123 | 083] 1.11 | 2.89

S min(t) = mMin{S min(t —1),S(t)}. 27)

Finally, we compute the ratio of the smoothed energy to its mini-
mum value and compare the ratio with a threshbldIf the ratio

is larger than the threshold, we consider it speech active. Other- ) ] ] )
wise, we consider it noise only. Once the noise only sequence is Table 2: Comparison of SegSNR improvement in colored noise.
obtained, a standard Yule-Walker autoregressive parameter estima-

tion algorithm [30] is applied to get the noise parameters.

4. EXPERIMENTAL RESULTS dB. From Table 1 and Figure 2, we can see that the subband do-
' ) . main speech enhancement algorithm exhibits much smaller estima-
The filter bank we used to obtain our experimental results wWagion variance and thus much higher segSNR improvement. This
a nonuniform pseudo-QMF bank [31, 32] which achieves criticalis hecause while maintaining similar computation complexity, the
band division. The length of the prototype filterd86samples. A syppand modeling can model the speech power spectrum more ac-
1s long clean speech signal with sampling rate 16kHz was used. F%rately and result in better enhancement results.
noise parameter estimation, the forgetting factowas chosen to

be0.8 and the thresholdl was set t®. For colored noise, we chose
a first order AR model withg = 1 to represent the noise signal in Input Noisy Speech Signal
each subband. We also employed a first order time-varying autorec+ w w
gressive modep = 1 for the speech signal in each subband. The o2 1
importance distribution was chosen to be the prior distribuiien,
n(6i(t)|6(1:t—1),yi(1:t)) = p(6(t)|6(t—1). With the Gaussian
random walk models defined in (15) and (16), it is easy to samplé®’
this prior distribution. The number of particléswas selected as 0400 200 300 400 500 600 700 800 900 1000
100in all the experiments. The variances of the Gaussian random) , Fullband RBPF Estimates
walk models in (15) and (16) were setd = 0.001anddZ = 0.01 0'2
For the first set of experiments, we compare the algorithm of
this paper with the fullband Rao-Blackwellized particle filter [17]in  °
white Gaussian noise to show that our subband particle filter algo-2
rithm achieves higer segmental SNR improvement and at the samg, s ‘ ‘ s s ‘
time takes similar CPU time per iteration as compared to the full- © 1 200 300 A0 @ iReerEsimans 0 20 %00 1000
band particle filter algorithm. The segmental SNR is a widely used®#+
objective measure for speech enhancement systems and is defined

O

as o
SegSNR o2
L-1 5 70'40 100 200 300 400 500 600 700 800 900 1000
LMo zo|s(n+ mL)| t
= > 10logg = ; : : : , ,
M £, L-1 5 Figure 2: Comparison of the estimated clean speech at input
Zo\s(nerL)fé(nerL)\ SegSNR ob dB.
n=!
(28)

For the second set of experiments, we compare the SegSNR
where s(n) and §(n) denote the clean speech and the enhanceidmprovement of our algorithm to the two-state modeling algorithm
speech, respectively. Hemd, is the number of frames in the speech [33] when the clean speech signal is corrupted by colored noise.
segment and. is the number of samples per frame. The segmenTwo colored noise signals - traffic and F-16 noise - were added to
tal SNR improvement was estimated by subtracting the SegSNR @ clean speech signal at different Segmental SNRs. Table 2 shows
the enhanced speech from the SegSNR associated with the noiye experimental results. From Table 2, we can see that the subband
speech. White Gaussian noise was added to a clean speech sigpatticle filter performs — 3dB better for the F-16 noise case than
at different segmental SNRs. Without optimization, the CPU timeghe two-state modeling algorithm. The two-state modeling algo-
were 0.908% per iteration for the subband algorithm a@®@982%  rithm performs slightly better or similar to the particle filter for the
per iteration for the fullband algorithm on a standard 1.4 GHz PCtraffic noise case. However, the performance difference is less than
Table 1 shows the comparison of the SegSNR improvements in thi34dB in all cases tabulated in Table 2. Informal listening tests have
example. Figure 2 shows the comparison of the estimated cleasso shown that the subband particle filter method exhibits lower
speech signal for these two approaches at an input SegSMR ofresidual noise than the two-state modeling approach [33].
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5. CONCLUSIONS [16] J. Vermaak, C. Andrieu, A. Doucet and S.J. Godsill, “Parti-

This paper presented a subband domain particle filter based speech cle methods for Bayesian modeling and enhancement of speech

enhancement system. We have shown through experiments that the singlas"IEEE Trans. Speech and Audio Processiugl. 10,

: c . pp. 173-185, Mar. 2002.
subband domain particle filter performs better in terms of segmen- -
tal SNR as compared to the corresponding fullband domain algd17] W. Fong, S.J. Godsill, A. Doucet and M. West, “Monte
rithm. The algorithm is able to deal with colored noise, whereas ~ Carlo smoothing with application to audio signal enhance-
only white Gaussian noise with known variance was considered ment,” IEEE Trans. Signal Processingol. 50, pp. 438-449,
in previous application of particle filters to speech enhancement Feb. 2002.
[16, 17]. We compared our speech enhancement results in colorgtig] B. Ristic, S. Arulampalam and N. GorddBeyond the Kalman
noise with a two-state modeling algorithm [33] and demonstrated  Filter: Particle Filters for Tracking Applications Norwood,
that our method is effective in dealing with colored noise. We have  MA: Artech House, 2004.
assumed that the colored noise is stationary in our paper. A noi 9] H.W. Sorenson and D.L. Alspach, “Recursive Bayesian esti-
parameter estimation that can track the non-stationarity of the back- ~“mation using Gaussian sum#utomaticavol. 7, pp. 465-479,
ground noise is under development. 1971.
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