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ABSTRACT 

Abstract— The H.264/AVC is the most recent standard of 
video compression. In this paper, an original and efficient 
architecture of inter prediction block in an H.264/AVC 
decoder is presented. It is shown that the bit-serial arith-
metic can be successfully used for interpolation filter im-
plementation and the resulting architecture is fully pipe-
lined. The inter prediction module was implemented in 
Verilog HDL and synthesized and then tested on Xilinx 
Virtex IV family devices. The simulation results indicate 
that the proposed bit-serial architecture of interpolation 
filter is very efficient and clock frequency close to the im-
age sampling frequency is enough to perform image recon-
struction. 

1. INTRODUCTION 

The H264/AVC [1,2] is a new video coding standard. Its 
compression efficiency is much better than any previous 
technique like MPEG4 or H.263. Due to high complexity 
of tools used by AVC/H.264 standard [3,4], high clock 
frequencies of hardware decoders (both pure hardware and 
DSP based structures) are required. However, it causes 
higher power consumption, which can be an obstacle for 
some applications e.g. mobile devices. Therefore, in order 
to achieve low power consumption it is necessary to de-
velop new structures of decoder’s blocks. 

The AVC decoder consists of stream parser block, 
management unit and reconstruction module. The most 
complex part of the decoder is image reconstruction. Dur-
ing the image reconstruction process an intra-frame (intra) 
or an inter-frame (inter) prediction as well as an inverse 
integer transform of prediction error are carried out.  

In this paper a bit-serial architecture of the inter predic-
tion module is presented. The proposed structure of recon-
struction entity (shown in Fig.1) consists of blocks of inter 
and intra predictors, an inverse transformation module, lo-
cal buffers (cache and context) and two fifo queues. Fifo 
queues contain coefficients (coeff fifo) and control data e.g. 
prediction modes and motion vectors (command fifo). This 
modules are universal interfaces of reconstruction module 
and  contain data loaded from a hardware parser or a proc-
essor unit. The proposed reconstruction block enables re-
construction of a frame of a sequence encoded in any possi-
ble mode. A bit-serial architecture for the intra image pre-

diction and transformation module was shown in [5]. It is 
proved that the bit-serial structure may as efficient as the par-
allel one and it seems to be more suitable for implementing in 
FPGA structures. It is because of utilizing of local connections 
mostly, narrow data busses and simple logic functions (e.g. 
serial adders).  

An interpolation process for luminance and chrominance 
samples uses different algorithms. The most complex part of 
inter prediction in AVC is luminance samples prediction due to 
numerous prediction modes and advanced interpolation algo-
rithm. Therefore, it is the main part of this paper. 

 

 

Figure 1. AVC reconstruction block diagram. 

2. THE H.264/AVC INTER PREDICTION 

The H.264/AVC inter prediction can be invoked in four main 
modes: Inter16x16, Inter16x8, Inter8x16 and Inter8x8. Each 
mode defines different partitioning of a macroblock as shown 
in Fig.2. Furthermore, Inter8x8 prediction mode block can be 
split into four 4x4 blocks and a separate motion vector can be 
defined for each one of such elements. The AVC defines accu-
racy of motion vector estimation as well. The maximal accu-
racy of the inter prediction algorithm for luminance samples is 
a quarter of a sample distance (a quarter-pel interpolation). 
The AVC standard allows for using one-directional or two-
directional inter prediction of each image block.  
In the decoder it is necessary to perform an inverse process to 
reconstruct the original image samples. This is achieved by 
invoking an interpolation algorithm. 
 

0
0

1

0 1

0 1

2 3

INTER 16x16 INTER 16x8 INTER 8x16 INTER 8x8

0
0

1

0 1

0 1

2 3

INTER 16x16 INTER 16x8 INTER 8x16 INTER 8x8

 

Figure 2. A macroblock partitioning for AVC main prediction modes. 
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The samples’ interpolation is done in a different way de-
pending on motion vectors values. Interpolation is a very 
complex filtering problem and requires a lot of data to be 
fetched from memory. In general, in order to start filtering 
process of a single 4x4 block it is necessary to load values 
of one 4x4 block and its surrounding (Fig.3) from a refer-
ence image. This part of the algorithm depends on macrob-
lock type and motion vectors’ values that point a reference 
image area in a reference pictures. The number of samples 
that must be loaded to interpolate single 4x4 image block 
(16 samples) is up to 81 per each motion vector. Accord-
ingly to the AVC standard it is possible to assign up to two 
motion vectors to each 4x4 luminance block. Since there 
are 16 blocks in a macroblock and 1602 macroblocks in 
4CIF (720x576) or SDTV (704x576) image the number of 
samples that must be loaded from external memory is 
2*81*16*1620*16 =  4 199 040 samples per each frame. 

This results in considerable transfers of data from ex-
ternal memory up to 100 MB/s in the case of 25 Hz 4CIF 
sequence. It was shown that this can be a serious problem 
and a special structures for data acquisition may be re-
quired[6]. 

 

 

Figure 3. Luminance samples interpolation using 6-tap filter. 

 
The other stage of the algorithm is filtering of samples of 
4x4 block and output values computation. The prediction 
values for a half and a quarter-pel positions are calculated 
by applying 6-tap filter defined by equation (1) and simple 
bilinear filter.  

 +−⋅+−⋅−−= )1(20)3(5)5()( nxnxnxnx   

                         )5()3(5)1(20 +++⋅−+⋅+ nxnxnx  (1) 

The filtering process can be carried out in vertical 
or/and horizontal directions. In the case of half-pel interpo-
lation this process is invoked once but when the output 
sample is a quarter-position sample it is necessary to per-
form additional filtering. 

A separate issue is chrominance samples interpolation. 
An output value is a weighted sum of nearest four full-
sample location values and it is defined be equation (2).  

 +⋅−+⋅−−= BFFAFFyxy CYCXCYCXCC )8()8)(8(),(  

      DFFCFF CYCXCYCX ⋅+⋅−+ )8(  (2) 

 
In Fig.4 an example of chrominance samples interpolation 

is shown. The weight coefficients FCX and FCY are defined by 
the standard and depend on output sample’s position. 

 

 

Figure 4. Chrominance samples interpolation. 

3. THE ARCHITECTURE 

The proposed architecture of an inter prediction block is 
shown in Fig.4 The two main parts of this entity are  
a local cache memory with data pre-fetch and a filters’ matrix.  

The filtering process is performed in two stages for each 
4x4 image block. The steps of this algorithm are: data loading 
from cache memory into a buffer and filtering. The filtering 
algorithm is always carried in 4x4 block regardless the mode 
used. 

  

Figure 5. Inter-frame prediction with serial filtering. 

3.1 Data pre-fetch 

Before interpolation process can be invoked all the necessary 
data must be transferred from extern memory into local cache. 
The main purpose of using dedicated pre-fetch module is 
minimizing number of an access cycles and delay caused by 
address switching in DDR or SDR RAM memories. In order 
to achieve this attention was paid to data alignment and 
method of data fetching.  

In the proposed structure the cache memory is a matrix 
of 6x6 blocks (24x24 samples). In each step of the algorithm 
the cache memory is updated accordingly to current macrob-
lock type and prediction mode. The module acquires samples 
that are aligned in 32-bit words and ordered linearly in mem-
ory within for a 4x4 image block. Additionally, a number of 
reading modes is used to minimize the amount of data trans-
ferred from RAM memory. As already mentioned, there can 
be up to sixteen motion vectors per macroblock. In the worst 
case, when each 4x4 image block was encoded separately a 
lot of data must be read to perform the interpolation process. 
However, when bigger partitions are used it is possible to use 
previously read data and introduce pipelining. 
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The macroblock partitioning modes are not equally 
probable[7]. It was shown that this can be exploiting in con-
struction of a fast inter mode selection algorithms as well 
[8]. Therefore, the proposed algorithm uses four modes 
illustrated in Fig.6. Mode M0 is the basic mode that is used 
in most cases. It allows for reading 4x4 reference block and 
its surrounding. The remaining modes (M1, M2 and M3) are 
exploiting when transferring additional data for bigger par-
titions. Some examples of data reading are presented in 
Fig.7.  Cache filling and filtering operations are pipelined. 
When all data for a single 4x4 block are already loaded into 
cache memory the interpolation process is started. At the 
same time data acquirement for the next block is invoked. 
In Fig.8 a time diagram of example process is shown (case 
of Intra_8x8). Data loading is carried out in three stages in 
this mode. A single 4x4 block and all surrounding blocks 
are loaded first (first stage: 9 blocks). Next, the first block 
interpolation is started and second stage data are loaded into 
cache (second stage: 3 + 3 blocks). 

 

 

Figure 6. Memory reading modes (cache update). 

 

Figure 7. Examples of applying reading modes and cache memory 
partitioning (a – Intra4x4, b –  Intra4x8, c –Intra8x4,  

d – Intra8x8). 

 
After completing all operations the third stage of data ac-
quisition is carried out (1 block). Finally, when all data re-
quired for the first 8x8 block are stored in cache loading for 
another image partition can be started (second part filling in 
Fig.8). 

The same module is also used in the interpolation 
process of chrominance samples. In this case fetching is 
much less complex because only four reference samples are 
required to calculate an output sample. To interpolate a 4x4  
 

 

Figure 8. Time diagram of local cache filling (Intra8x8 mode). 

 
chrominance block 9 reference samples must be read. There-
fore, if only a single chrominance block is read the interpola-
tion process may be started. 

3.2 Luminance filtering block 

The bit-serial AVC filter structure is shown in Fig.9. It is a 
very simple entity that is composed of four serial adder sec-
tions and four delays and is implemented in bit-serial arithme-
tic. 
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Figure 9. Inter-frame prediction with serial filtering  
Σ- serial adder, T- delay) 

 
Taking into account simplicity of this filter it is possible to 
implement a matrix of filters that allow for interpolating all 
samples within a 4x4 image block simultaneously.  
The structure of serial filtering matrix is a 9x9 matrix contain-
ing 36 vertical and 36 horizontal filters. The allocation of 
filters is shown in Fig.10. This filters set is used to compute 
all partial values and sixteen output samples’ values within an 
image block. An advantage of this structure is relatively small 
portion of data that must be read from the memory. To inter-
polate one sample 36 data samples must be read from the 
cache memory; however, to interpolate all sixteen samples in 
a block, the structure requires only 81 reference values to be 
loaded. That is because the data samples can be shared be-
tween several filters.  
Some filters in the proposed matrix are reduced because sev-
eral coefficients are common for vertical and horizontal proc-
essing (grey squares in Fig.10). This fact causes the reduction 
of the structure. The decrease of area in comparison to size of 
full structure containing 72 filters is about 50%.  
Depending on the filtering mode the result is selected from 
among 72 filters. For central half-pel samples interpolation 
the result is combined with the use of additional sixteen filters 
that process previously filtered data.  
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Figure 10. Serial filters matrix. 

3.3 Chrominance filtering block 

The architecture of a chrominance filtering block is pre-
sented in Fig.11. The structure contains four simple multi-
pliers that are implemented as parallel 6-bit accumulators 
(ACC) and output accumulator (DA-ACC). The output 
accumulator is implemented in distributed arithmetic. 

 

 

Figure 11. Structure of  chrominance interpolation filter  
(A,…, D – reference samples, Fa, …, Fd – weight coefficients, 

ACC – accumulator, DA-ACC – output accumulator). 

 
Four chrominance samples are calculated simultaneously; 
therefore the matrix contains four simple filters. The refer-
ence values A, …, D are the nearest full position chromi-
nance samples.  

Weight coefficients Fa, …, Fd are calculated as prod-
ucts of values defined by the standard and they are constant 
within a single chrominance block. Therefore, these values 
are computed during samples loading stage (caching) in 
advance prior to filtering stage and a single multiplying unit 
is used. In this way the structure is reduced and  the filter’s 
structure shown in Fig.11 uses previously prepared weights. 

4. SYNTHESIS RESULTS 

The proposed architecture has been implemented in order to 
fulfil requirements of low transfers from memory and effi-
cient data processing.   

The structure was also synthesized with Xilinx ISE tool 
for Virtex2 and Virtex4 family devices. The synthesis re-
sults are presented in table 1. The area of cache module is 
374 FPGA slices and the maximal operating frequency is 

about 198MHz for Xilinx Virtex IV (150MHz – Viretx II).  The 
area occupancy of filters matrix is 610 slices and the maximal 
operating frequency is 534MHz for Virtex IV (about 350 MHz 
for Virtex II).  

The chrominance interpolation module maximal operating 
frequency is 203 MHz and the area usage is 94 slices. 

 
Table 1. Synthesis results for Xilinx Virtex IV.  

 

Module Cache 
Luminance 

filters matrix 
Chrominance 

filters 

Area occupancy 
[FPGA slices] 

374 610 94 

Maximal operating 
frequency [MHz] 

198,1 534,9 203,5 

 
The implemented module is relatively small structure and can 
operate at a high clock frequency thus high processing effi-
ciency is achieved. 
The small data transfers are achieved for larger partitions (the 
lowest in the case of Inter_16x16 mode). Taking into account 
statistics of intra prediction modes (the most probable partition 
sizes are 16x16 and 8x8) it can be stated that the average re-
quired data transfer for one-directional interpolation is about 
35MB/s (it is less than half of the worst case transfer). The 
average transfer for the two directional-interpolation is about 
55MB/s (because of different statistics of interpolation modes 
usage). 

 
Table  2. Data transfers for one-directional inter prediction 

(single port memory, 32-bit words) 

Macroblock  type 

Mode 
(partition 

size) 

Number  
of partitions 

per macroblock 

Number of 
reference samples 

 (32-bit words) 

Required data 
transfer 

 (4CIF, 25Hz)1 
[MB/s] 

16x16 1 576 (144) 22,25 
16x8 

(8x16) 
2 768 (192) 29,66 

8x8 4 1024 (256) 39,55 
4x8 

(8x4) 
8 1536 (384) 59,33 

4x4 16 2304 (576) 88,99 

 
In Fig.12 a time diagram of interpolation procedure is shown. 
The loading stage consists in reading 81 data samples thus it 
requires 81 clock cycles. The filtering stage and output values 
computation requires about 44 clock cycles. Summing up, the 
processing time of a single 4x4 image block is 125 clock cy-
cles. However, due to pipelining that is exploited the macrob-
lock processing time is 1357 clock cycles. This is about 5,3 
clock cycle per sample. An improved version of the presented 
module uses double port memories and this allows for reduc-
ing required clock frequency (data loading time is 50% 
shorter). The processing efficiency in this case is 754 clock 
cycles per macroblock and this is about 3 cycles per sample.  

                                                           
1 In the case of two-directional image prediction the required transfer 
is doubled 
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Interpolation of chrominance samples is carried out 
within 16 clock cycles.  
 

5. CONCLUSIONS 

Original architecture of inter prediction block for 
H.264/AVC decoder has been presented. Software simula-
tions and tests on FPGA device (Virtex) confirm that de-
scribed bit-serial architecture is suitable for FPGA devices. 
Moreover, proposed design achieves high performance with 
relatively low clock frequencies.  

Described module of inter prediction is an independent 
module and can be used as a part of hardware decoder or as 
a hardware accelerator for processor based decoder as well.  
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Figure 12. Macroblock filtering efficiency (single port cache memory, 16 samples  
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