
A BIT-SERIAL ARCHITECTURE FOR H.264/AVC INTERFRAME DECODING

Paweł Garstecki, Adam Łuczak and Tomasz śernicki

Division of Multimedia Telecommunications and Radioelectronics,
Poznan University of Technology

Piotrowo 3a, 60-695 Poznan, Poland
[pgarstec, aluczak, tzernicki] @multimedia.edu.pl

web: www.multimedia.edu.pl

ABSTRACT

Abstract— The H.264/AVC is the most recent standard of
video compression. In this paper, an original and efficient
architecture of inter prediction block in an H.264/AVC
decoder is presented. It is shown that the bit-serial arith-
metic can be successfully used for interpolation filter im-
plementation and the resulting architecture is fully pipe-
lined. The inter prediction module was implemented in
Verilog HDL and synthesized and then tested on Xilinx
Virtex IV family devices. The simulation results indicate
that the proposed bit-serial architecture of interpolation
filter is very efficient and clock frequency close to the im-
age sampling frequency is enough to perform image recon-
struction.

1. INTRODUCTION

The H264/AVC [1,2] is a new video coding standard. Its
compression efficiency is much better than any previous
technique like MPEG4 or H.263. Due to high complexity
of tools used by AVC/H.264 standard [3,4], high clock
frequencies of hardware decoders (both pure hardware and
DSP based structures) are required. However, it causes
higher power consumption, which can be an obstacle for
some applications e.g. mobile devices. Therefore, in order
to achieve low power consumption it is necessary to de-
velop new structures of decoder’s blocks.

The AVC decoder consists of stream parser block,
management unit and reconstruction module. The most
complex part of the decoder is image reconstruction. Dur-
ing the image reconstruction process an intra-frame (intra)
or an inter-frame (inter) prediction as well as an inverse
integer transform of prediction error are carried out.

In this paper a bit-serial architecture of the inter predic-
tion module is presented. The proposed structure of recon-
struction entity (shown in Fig.1) consists of blocks of inter
and intra predictors, an inverse transformation module, lo-
cal buffers (cache and context) and two fifo queues. Fifo
queues contain coefficients (coeff fifo) and control data e.g.
prediction modes and motion vectors (command fifo). This
modules are universal interfaces of reconstruction module
and contain data loaded from a hardware parser or a proc-
essor unit. The proposed reconstruction block enables re-
construction of a frame of a sequence encoded in any possi-
ble mode. A bit-serial architecture for the intra image pre-

diction and transformation module was shown in [5]. It is
proved that the bit-serial structure may as efficient as the par-
allel one and it seems to be more suitable for implementing in
FPGA structures. It is because of utilizing of local connections
mostly, narrow data busses and simple logic functions (e.g.
serial adders).

An interpolation process for luminance and chrominance
samples uses different algorithms. The most complex part of
inter prediction in AVC is luminance samples prediction due to
numerous prediction modes and advanced interpolation algo-
rithm. Therefore, it is the main part of this paper.

Figure 1. AVC reconstruction block diagram.

2. THE H.264/AVC INTER PREDICTION

The H.264/AVC inter prediction can be invoked in four main
modes: Inter16x16, Inter16x8, Inter8x16 and Inter8x8. Each
mode defines different partitioning of a macroblock as shown
in Fig.2. Furthermore, Inter8x8 prediction mode block can be
split into four 4x4 blocks and a separate motion vector can be
defined for each one of such elements. The AVC defines accu-
racy of motion vector estimation as well. The maximal accu-
racy of the inter prediction algorithm for luminance samples is
a quarter of a sample distance (a quarter-pel interpolation).
The AVC standard allows for using one-directional or two-
directional inter prediction of each image block.
In the decoder it is necessary to perform an inverse process to
reconstruct the original image samples. This is achieved by
invoking an interpolation algorithm.

0
0

1

0 1

0 1

2 3

INTER 16x16 INTER 16x8 INTER 8x16 INTER 8x8

0
0

1

0 1

0 1

2 3

INTER 16x16 INTER 16x8 INTER 8x16 INTER 8x8

Figure 2. A macroblock partitioning for AVC main prediction modes.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

The samples’ interpolation is done in a different way de-
pending on motion vectors values. Interpolation is a very
complex filtering problem and requires a lot of data to be
fetched from memory. In general, in order to start filtering
process of a single 4x4 block it is necessary to load values
of one 4x4 block and its surrounding (Fig.3) from a refer-
ence image. This part of the algorithm depends on macrob-
lock type and motion vectors’ values that point a reference
image area in a reference pictures. The number of samples
that must be loaded to interpolate single 4x4 image block
(16 samples) is up to 81 per each motion vector. Accord-
ingly to the AVC standard it is possible to assign up to two
motion vectors to each 4x4 luminance block. Since there
are 16 blocks in a macroblock and 1602 macroblocks in
4CIF (720x576) or SDTV (704x576) image the number of
samples that must be loaded from external memory is
2*81*16*1620*16 = 4 199 040 samples per each frame.

This results in considerable transfers of data from ex-
ternal memory up to 100 MB/s in the case of 25 Hz 4CIF
sequence. It was shown that this can be a serious problem
and a special structures for data acquisition may be re-
quired[6].

Figure 3. Luminance samples interpolation using 6-tap filter.

The other stage of the algorithm is filtering of samples of
4x4 block and output values computation. The prediction
values for a half and a quarter-pel positions are calculated
by applying 6-tap filter defined by equation (1) and simple
bilinear filter.

 +−⋅+−⋅−−=)1(20)3(5)5()(nxnxnxnx

)5()3(5)1(20 +++⋅−+⋅+ nxnxnx (1)

The filtering process can be carried out in vertical
or/and horizontal directions. In the case of half-pel interpo-
lation this process is invoked once but when the output
sample is a quarter-position sample it is necessary to per-
form additional filtering.

A separate issue is chrominance samples interpolation.
An output value is a weighted sum of nearest four full-
sample location values and it is defined be equation (2).

 +⋅−+⋅−−= BFFAFFyxy CYCXCYCXCC)8()8)(8(),(

 DFFCFF CYCXCYCX ⋅+⋅−+)8((2)

In Fig.4 an example of chrominance samples interpolation

is shown. The weight coefficients FCX and FCY are defined by
the standard and depend on output sample’s position.

Figure 4. Chrominance samples interpolation.

3. THE ARCHITECTURE

The proposed architecture of an inter prediction block is
shown in Fig.4 The two main parts of this entity are
a local cache memory with data pre-fetch and a filters’ matrix.

The filtering process is performed in two stages for each
4x4 image block. The steps of this algorithm are: data loading
from cache memory into a buffer and filtering. The filtering
algorithm is always carried in 4x4 block regardless the mode
used.

Figure 5. Inter-frame prediction with serial filtering.

3.1 Data pre-fetch

Before interpolation process can be invoked all the necessary
data must be transferred from extern memory into local cache.
The main purpose of using dedicated pre-fetch module is
minimizing number of an access cycles and delay caused by
address switching in DDR or SDR RAM memories. In order
to achieve this attention was paid to data alignment and
method of data fetching.

In the proposed structure the cache memory is a matrix
of 6x6 blocks (24x24 samples). In each step of the algorithm
the cache memory is updated accordingly to current macrob-
lock type and prediction mode. The module acquires samples
that are aligned in 32-bit words and ordered linearly in mem-
ory within for a 4x4 image block. Additionally, a number of
reading modes is used to minimize the amount of data trans-
ferred from RAM memory. As already mentioned, there can
be up to sixteen motion vectors per macroblock. In the worst
case, when each 4x4 image block was encoded separately a
lot of data must be read to perform the interpolation process.
However, when bigger partitions are used it is possible to use
previously read data and introduce pipelining.

Serial
filters
matrix

B
U
F
F

R
A
M CACHE

Control

out

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

The macroblock partitioning modes are not equally
probable[7]. It was shown that this can be exploiting in con-
struction of a fast inter mode selection algorithms as well
[8]. Therefore, the proposed algorithm uses four modes
illustrated in Fig.6. Mode M0 is the basic mode that is used
in most cases. It allows for reading 4x4 reference block and
its surrounding. The remaining modes (M1, M2 and M3) are
exploiting when transferring additional data for bigger par-
titions. Some examples of data reading are presented in
Fig.7. Cache filling and filtering operations are pipelined.
When all data for a single 4x4 block are already loaded into
cache memory the interpolation process is started. At the
same time data acquirement for the next block is invoked.
In Fig.8 a time diagram of example process is shown (case
of Intra_8x8). Data loading is carried out in three stages in
this mode. A single 4x4 block and all surrounding blocks
are loaded first (first stage: 9 blocks). Next, the first block
interpolation is started and second stage data are loaded into
cache (second stage: 3 + 3 blocks).

Figure 6. Memory reading modes (cache update).

Figure 7. Examples of applying reading modes and cache memory
partitioning (a – Intra4x4, b – Intra4x8, c –Intra8x4,

d – Intra8x8).

After completing all operations the third stage of data ac-
quisition is carried out (1 block). Finally, when all data re-
quired for the first 8x8 block are stored in cache loading for
another image partition can be started (second part filling in
Fig.8).

The same module is also used in the interpolation
process of chrominance samples. In this case fetching is
much less complex because only four reference samples are
required to calculate an output sample. To interpolate a 4x4

Figure 8. Time diagram of local cache filling (Intra8x8 mode).

chrominance block 9 reference samples must be read. There-
fore, if only a single chrominance block is read the interpola-
tion process may be started.

3.2 Luminance filtering block

The bit-serial AVC filter structure is shown in Fig.9. It is a
very simple entity that is composed of four serial adder sec-
tions and four delays and is implemented in bit-serial arithme-
tic.

a

T T T T∑ ∑ ∑ ∑

b
c
d
e
f

c+d

-

-

4(c+d)-(e+b) 20(c+d)-5(e+b)

a-5b+20c+20d-5e+f

a

T T T T∑ ∑ ∑ ∑

b
c
d
e
f

c+d

-

-

4(c+d)-(e+b) 20(c+d)-5(e+b)

a-5b+20c+20d-5e+f

Figure 9. Inter-frame prediction with serial filtering
Σ- serial adder, T- delay)

Taking into account simplicity of this filter it is possible to
implement a matrix of filters that allow for interpolating all
samples within a 4x4 image block simultaneously.
The structure of serial filtering matrix is a 9x9 matrix contain-
ing 36 vertical and 36 horizontal filters. The allocation of
filters is shown in Fig.10. This filters set is used to compute
all partial values and sixteen output samples’ values within an
image block. An advantage of this structure is relatively small
portion of data that must be read from the memory. To inter-
polate one sample 36 data samples must be read from the
cache memory; however, to interpolate all sixteen samples in
a block, the structure requires only 81 reference values to be
loaded. That is because the data samples can be shared be-
tween several filters.
Some filters in the proposed matrix are reduced because sev-
eral coefficients are common for vertical and horizontal proc-
essing (grey squares in Fig.10). This fact causes the reduction
of the structure. The decrease of area in comparison to size of
full structure containing 72 filters is about 50%.
Depending on the filtering mode the result is selected from
among 72 filters. For central half-pel samples interpolation
the result is combined with the use of additional sixteen filters
that process previously filtered data.

a) b)

d)c)

current partition

second stage

first stage

third stage

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

1
-5

1
20

1
1

20
1

-5
1

-5
1

-5
20

-5
20

-5
-5

1
-5

1
20

-5
20

20 20
-5

20
1

20
1

20
1

20
-5

20
20 20

-5
20

-5
1

-5
20

-5
20

-5
-5

1
-5

1
-5

1
20

1
1

20
1

-5
1

F
ilt

er

Filter
Filter

Filter
Filter

Figure 10. Serial filters matrix.

3.3 Chrominance filtering block

The architecture of a chrominance filtering block is pre-
sented in Fig.11. The structure contains four simple multi-
pliers that are implemented as parallel 6-bit accumulators
(ACC) and output accumulator (DA-ACC). The output
accumulator is implemented in distributed arithmetic.

Figure 11. Structure of chrominance interpolation filter
(A,…, D – reference samples, Fa, …, Fd – weight coefficients,

ACC – accumulator, DA-ACC – output accumulator).

Four chrominance samples are calculated simultaneously;
therefore the matrix contains four simple filters. The refer-
ence values A, …, D are the nearest full position chromi-
nance samples.

Weight coefficients Fa, …, Fd are calculated as prod-
ucts of values defined by the standard and they are constant
within a single chrominance block. Therefore, these values
are computed during samples loading stage (caching) in
advance prior to filtering stage and a single multiplying unit
is used. In this way the structure is reduced and the filter’s
structure shown in Fig.11 uses previously prepared weights.

4. SYNTHESIS RESULTS

The proposed architecture has been implemented in order to
fulfil requirements of low transfers from memory and effi-
cient data processing.

The structure was also synthesized with Xilinx ISE tool
for Virtex2 and Virtex4 family devices. The synthesis re-
sults are presented in table 1. The area of cache module is
374 FPGA slices and the maximal operating frequency is

about 198MHz for Xilinx Virtex IV (150MHz – Viretx II). The
area occupancy of filters matrix is 610 slices and the maximal
operating frequency is 534MHz for Virtex IV (about 350 MHz
for Virtex II).

The chrominance interpolation module maximal operating
frequency is 203 MHz and the area usage is 94 slices.

Table 1. Synthesis results for Xilinx Virtex IV.

Module Cache
Luminance

filters matrix
Chrominance

filters

Area occupancy
[FPGA slices]

374 610 94

Maximal operating
frequency [MHz]

198,1 534,9 203,5

The implemented module is relatively small structure and can
operate at a high clock frequency thus high processing effi-
ciency is achieved.
The small data transfers are achieved for larger partitions (the
lowest in the case of Inter_16x16 mode). Taking into account
statistics of intra prediction modes (the most probable partition
sizes are 16x16 and 8x8) it can be stated that the average re-
quired data transfer for one-directional interpolation is about
35MB/s (it is less than half of the worst case transfer). The
average transfer for the two directional-interpolation is about
55MB/s (because of different statistics of interpolation modes
usage).

Table 2. Data transfers for one-directional inter prediction

(single port memory, 32-bit words)

Macroblock type

Mode
(partition

size)

Number
of partitions

per macroblock

Number of
reference samples

 (32-bit words)

Required data
transfer

 (4CIF, 25Hz)1
[MB/s]

16x16 1 576 (144) 22,25
16x8

(8x16)
2 768 (192) 29,66

8x8 4 1024 (256) 39,55
4x8

(8x4)
8 1536 (384) 59,33

4x4 16 2304 (576) 88,99

In Fig.12 a time diagram of interpolation procedure is shown.
The loading stage consists in reading 81 data samples thus it
requires 81 clock cycles. The filtering stage and output values
computation requires about 44 clock cycles. Summing up, the
processing time of a single 4x4 image block is 125 clock cy-
cles. However, due to pipelining that is exploited the macrob-
lock processing time is 1357 clock cycles. This is about 5,3
clock cycle per sample. An improved version of the presented
module uses double port memories and this allows for reduc-
ing required clock frequency (data loading time is 50%
shorter). The processing efficiency in this case is 754 clock
cycles per macroblock and this is about 3 cycles per sample.

1 In the case of two-directional image prediction the required transfer
is doubled

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

Interpolation of chrominance samples is carried out
within 16 clock cycles.

5. CONCLUSIONS

Original architecture of inter prediction block for
H.264/AVC decoder has been presented. Software simula-
tions and tests on FPGA device (Virtex) confirm that de-
scribed bit-serial architecture is suitable for FPGA devices.
Moreover, proposed design achieves high performance with
relatively low clock frequencies.

Described module of inter prediction is an independent
module and can be used as a part of hardware decoder or as
a hardware accelerator for processor based decoder as well.

ACKNOWLEDGMENT

The work was supported by the public founds as a re-
search project.

REFERENCES

[1] ISO/IEC~JTC~1/SC~29/WG~11, “ISO/IEC 14496 10
Advanced Video Coding “, Redmond, July 2003

[2] T. Wiegand, G.J. Sullivan, G. Bjöntegaard, A. Luthra,
“Overview of the H.264/AVC video coding standard”,
IEEE. Trans. on Circuits and Systems for Video Technol-
ogy, vol. 13, pp. 560—576, July 2003

[3] M. Horovitz, A. Joch, F. Kossentini and A. Hallapuro,
“H.264/AVC Baseline Profile Decoder Complexity Analy-
sis”, IEEE. Trans. on Circuits and Systems for Video

Technology, vol. 13, pp. 704—716, July 2003

[4] V. Lappalainen, A. Hallapuro and T.D. Hämäläinen,
“Complexity of Optimized H.26L Video Decoder Imple-
mentation”, IEEE. Trans. on Circuits and Systems for Video
Technology, vol. 13, pp. 717—725, July 2003

[5] P. Garstecki, A. Łuczak, “A flexible architecture for
image reconstruction in H.264/AVC decoders”, In proc. of
17th ECCTD’05, Cork, Ireland, vol. I, pp. 217-220, August
2005

[6] H.-Y Kang, K.-A. Jeong, J.-Y. Bae, Y.-S. Lee,
S.-H.Lee, “MPEG4 AVC/H.264 decoder with scalable bus
architecture and dual memory controller”, In Proc of Inter-

national Symposium on Circuits and Systems, Vancouver,
Canada, vol.2, pp. 145-148, May 2004.
 [7] T. Dzięcielewski, T. Grajek, J. Marek, „Experimental
analysis of encoding modes statisctics in advanced video cod-
ing”, X Poznan Telecommunication Workshop, Poznań, Po-
land, pp. 115-120, 2005 (Polish version only)

 [8] Z. Zhou, M.-T. Sun, “Fast macroblock inter mode decision
and motion estimation for H.264/MPEG-4 AVC”, In proc. of
ICIP’04, Singapore, vol. 2, pp. 789-792, October 2004.

0 81 111 125

Block
number

1

2

16

1

2

16

Data loading

Filtering process

Prediction output

1357

Clock
cycles

Figure 12. Macroblock filtering efficiency (single port cache memory, 16 samples

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

