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ter heterogeneity. Traditional approaches, or two-data se
(TDS) algorithms, require a training data set in order to es-
timate the interference covariance matrix and implement th
adaptive filter. When the training data exhibits statisties-
erogeneity with respect to the test data, the TDS detectors
sufer from a degradation in their performance. The single-
data set (SDS) detectors have been proposed to deal with thi
problem by operating solely on the test data. In this paper, .
we propose a novel hybrid approach that combines the SDS )g\lsl )Q\LN
and TDS algorithms, taking the degree of heterogeneity into -
account. We derive the hybrid detectors and propose the uns‘—igure 1: Sliding window partitioning strategy for data ma-
of the generalised inner product as a heterogeneity measutss of range gate

We also give expressions for their probabilities of falsermal '
and detection under heterogeneous assumptions. Sinmulatio
results show that new detectors combine the advantages of

both the TDS and SDS algorithms resulting in improved per- ¢ getection problem is usually treated as a hypothesis
formance in homogeneous interference as well as robustnegis for the presence of the signal. The null and alternative
to heterogeneity. hypotheses are given byoHX = N, and H : X = @S+N. It

is well known that the optimum process@fpy, is [3]

We address the problem of radar target detection under clut- ‘ =
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1. INTRODUCTION

_pe-l
Space-Time Adaptive Processing (STAP) for radar target de- Wopt =BC™s, (4)

tection has been heavily researched for over thirty yea;% being an arbitrary constant asdhe space-time test steer-
[1,2]. The problem is essentially that of detecting the pre '@g vector of lengthM = MsM, S= Ss0® S0 . The filter

ence of a signal with a known template embedded in coloure ; d itablv ch h Id
Gaussian interference. Consider a Sizdinear antenna ar- output power is compared to a suitably chosen threspio

ray that collectd\; data snapshots for each range gate. The

; . 2 Hp
data matrix of the range gate of interest, say range gate EWH xtt| = 5)
is then partitioned with a sliding window of sizZés x M; [t| o |_T0 &

as shown in fig. 1. This results ¥t = LsL; sub-matrices

that are stacked into column vectors and arranged into o lengthKt space-time steering vectorcorresponds to
matrix X. The parameterks andL; are clearly given by e frequency pair of. The superscripts, T andH denote
Ls=Ns—Ms+1 andLi = N~ M +1. The signal modelis  {he conjugate, transpose and hermitian respectively.
given by The optimum processor requires knowledge of the true
X =aS+N. (1) interference covariance mati® which is not usually avail-

Herea is a complex magnitudes the template of the sig- able. Practical algorithms, such as the GLRT [4] and AMF

. <ah L [5], designated here as the'two-data-set’ (TDS) algorghm
nal of interest (SOI), whoske™ column is given byssis® S, replaceC with an estimate obtained from an independent
and the noise matrikl consists of zero-mean circular COM- aining data set. This training data is usually extractechf
plex Gaussian mterfere_nc_e (clutter plus noise) with calam adjacent range gates to the test gate.
Nk ~ CN'w(0,C). The indicesk, s andl; are related by The training data must be homogeneous with the test data
k=1sNs+1¢ +1 and the symbok denotes the Kronecker 5, free from targets. However, it has been recognised for
product. The spatial and temporal steering vect®s,and  gome time that real clutter data can exhibit significantioete

S, are respectively given by geneity, [6] and [7], a problem that has attracted a sigmifica
_ _ _ T amount of research. Training data selection strategigsasic
Ssl; = [eJZ’T'sfs elzrls+D)fs eJZ”('S+Ms)fs] ,and (2) the non-homogeneity detection (NHD), aimed at improving

_ _ _ - the quality of the training data set were suggested, e.6].[8,
Sl = [e’z’”‘ft el i eJZ”('”M‘)f‘] . (3)  The generalised inner product (GIP) was a proposed as an



NHD that allows heterogeneous training data snapshots to tikat have been formulated in such a way as to endow them
excluded. In [10], on the other hand, the authors present theith the CFAR property under the assumed noise conditions.
direct data domain (B) that processes the test data directly ~ When the two data sets are homogeneous with respect to
in a deterministic way. The Dwas used in [11,12] as a pre- €ach other, both the SDS and TDS approaches obtain ML
processor and cascaded with an adaptive TDS detector sughtimates of the interference covariance matrix from twe st
as the AMF to give a hybrid detection approach that is mordistically independent data sets. Consequently, the astisn
robust to heterogeneous clutter. This strategy involves ththemselves are mutually statistically independent. This o
use of an NHD, such as the GIP, to construct suitable trainSérvation leads us to propose improving the covariance ma-

ing data sets and to switch between the hybrid detector andtéx estimation in the homogeneous case by combining the
TDS detector. two estimates to obtain a new estim3teThe combined es-

Recently, an alternative strategy for the detection probtimate uses a larger amount of data and would be expected to
lem has been put forward in [13] and [14]. In the case wherdield a detection performance that is closer to the optimum
no suitable training data can be obtained, the proposed déan the two individual approaches. This case is treated in
tectors work solely on the test data and implement a datgubsection 2.1. Under heterogeneous conditions, however,
adaptive CFAR test. These algorithms, namely the GMLEIjhe_ use of the training data set covariance matrix estimate,
and MLED, which we designate here as the ‘single-dataR’ in the total covariance matriX leads to a degrada}tlon in
set’ (SDS) algorithms, eliminate the need for independentthe performance. As the degree of heterogeneity increases,
training data by deriving a covariance matrix estimate fronp© does the performance loss. When this loss, with respect
the test data itself. This makes them suitable for applical® the optimum, surpasses that of the SDS case it becomes
tion in heterogeneous environments. Thefjetifundamen- desirable to revert to the SDS a.\Igontth and rely solely on
tally from the TDS algorithms in that they are high-resauti Q- Therefore, the general hybrid detector we propose, uses
CFAR spectral estimators. In [15] the performance of botif Suitably devised heterogeneity measure to determine the
the SDS and TDS algorithms under steering vector mismatcfanner in whictR andQ are combined to givE. This case
was assessed. It was shown that the SDS algorithms enjoy®dealt with in subsection 2.3.
higher resolution than their TDS counterparts but are less r
bust to steering vector mismatch.

In this paper, we propose a new hybrid detection strategilow let us restrict our attention to the homogeneous case and
that combines the TDS and SDS philosophies, thereby benproceed to derive the expression for the hybrid covariance
fitting from the advantages of each. Instead of relying golel matrix estimate. To this end, we resort to a procedure simila
on either the test or the training data, we make use of botto that established in [14].
data sets, at the same time taking into account the degree Assume that, in addition to the test data Xetwe have
of heterogeneity. This results in a gain in the homogeneousn independent training data W}Ej , that is homogeneous
case due to the increased sample support size, as well aswith the test data. That iz ~ CNM((i C). Also for the pur-
improvement in the performance in the heterogeneous cagmse of the analysis, let us assume that, although the tiest da
due to the scaling of the contribution of the training data acsnapshots were obtained using a sliding window, the columns
cording to the measured degree of heterogeneity. The papef X are statistically independent. The likelihood function of
is organised as follows: In the following section the hybridthe training data given the covariance matrix is
approach is discussed. The algorithm is derived for the ho-

2.1 Homogeneous Case

mogeneous case in section 2.1 and its statistical propertie 1\« _yKt Ho-lp,

given in 2.2. In 2.3 the heterogeneous case is dealt with. f(zIC) = ) €T

Simulation results are presented in section 3 and finallyesom K

conclusions are given in section 4. _ etr(—KtC‘lR), (6)
™M|C|

2. HYBRID ALGORITHM . . .
whereZ is an M x K; matrix whosek" column is the vec-

Traditional implementations of the optimal proce_ssqr_,rsuc torz, R = Kit 2:21 ZkaH, and et(—M) = e 'M) with tr(M)
as the GLRT [4] and AMF [5], assume the availability of heing the trace oM. We have also made use of the iden-

an independent training data set that is identically disted .. 4., H oo )
to, in other words homogeneous with, the interference in thd v Mv = tr(Mvv ) The test data likelihood function not

test range cell. They use this training data set to obtain Iy depends on the covariance matbbut also on the pa-
maximum likelihood (ML) estimateR, of the interference a@meter through the data mean. Itis, thus, given by
covariance matrix. In the radar context, this training dath 1 \Kr

is usually drawn from adjacent range cells. Various factors  f(x|C o) = (_) etr{—(KT _ 1)C‘1Ma}, @)
such as terrain type variations, height profile and shadgpwin aM|C|

can render the clutter returns range-heterogeneous acd hen L <K

result in a degradation in the performance of the traditionawhere M, = g 3,7, (X — ast(K)(xk — est(k)", and the
TDS detectors, [7]. The SDS algorithms, on the other handsubscripte indicates the dependence Mf on a. Since the
have been proposed to deal with this heterogeneity probletnaining and test data sets are independent, their joiat lik
by eliminating the need for a training data set, [13] and [14]lihood function is obtained from the product of (6) and (7).
They carry out the processing solely on the test range cellhus, settind = K; + Kt, we have under the null hypothesis
They obtain a maximum likelihood estimat®, of the in- K

terference covariance matrix from the test data set. These 1

algorithms are essentially high resolution spectral estims fo(X.ZIC) = (nM—|C|) etr{—(K -1C 20}' (8)



whereXg = é [(KT = 1)Mg+ K(R]. Similarly, underthe al- K -1 andWw* = 0. This implies thatg and £ are mu-
ternative hypothesis, the joint likelihood is tually independent and distributed gs- CNm(as,C) and
(K=1)Z ~ CWn(C,K-1). At this point we see that the
1\ 1 problem has a similar formulation to that of the GMLED and
fi(X.ZIC.a) = (ﬂM—ICI) etr{—(K— 1)C za}- (9)  MLED in [14]. The resulting expressions of tha, andPg
are
1
Following the procedure of [14], we maximise each of the _ -L . _
likelihoods with respect to their parameters and take ttie ra Pra() = j; (@) Gl L+ LM=D)dn. (1)
of the maxima. Clearly, the maximum & with respect taC

is obtained wheiC = Zo. Similarly, the maximum of; over wherel. = K =M, fy(7;L.+1,M—1) s the type | beta distri-

the values o€ is obtained whel€ = Z,,. It remains for us to bution, and
maximise the expression &f overa. That is we require 1
) Pa= [ hO) (L + 1M -1y (16)
0
maxmaxfy = max{———1 . 10
act a ((eyr)M|Za|) (10) The functionh(r) is defined as

This is equivalent to minimising the determinant expressio L L - h
in the denominator with respect &0 Expanding the expres-  h(p) =1- (1+r)‘LZ( | )T'e‘lﬁ Z — (ﬂ) . A7)
sion of M, and carrying out the minimisation in a similar =1 n=0 niil+r
manner to the procedure of [14], we arrive at the result
The parametep is the signal to noise ratiqy = |a|>. The
. 1dizg thresholdr is algorithm dependent and is given by=
&= et (11) (K =1—7)for Yu1, andr = 7y, (K — 1) for Yuy.

where X = 17 [KiR+(Kr - 1)Q], Q = 3 (XX" —gg") 2:3 Heterogeneous Case _
andg = 2 Xt". Substituting the various expressions into the!Ve now consider the heterogeneous case and modify the hy-
ftl brid expression oE, derived above, to take the heterogeneity
into account. The algorithm presented here will be referred

likelihood functions and taking thét" root of their ratio, we
obtain the desired likelihood ratio test. Thus, we arrivihat {5 55 the variable-scale hybrid (VSH). That of the homoge-

following two hybrid statistical tests neous case will then be denoted as fixed-scale hybrid (FSH).
H As the clutter becomes range-heterogeneous, the training
|sfz-1g12 1 data se”Z becomes less statistically representative of the in-
YH1 = 2y, (12)

terference in the test data. This results in a degradatitivein
performance of the TDS detectors as well as the FSH algo-
rithms. The heterogeneity clearly leaves the SDS algosthm

sHZ‘ls(l + K%lgHE‘lg) Ho

and

Hy-1g2 Hi undfected. As the degree of heterogeneity increases, we de-
Yy, = IS"E" gl > 4. (13) sire to rely less on the data sétin the covariance matrix
sHx-ls Ho estimate. When the performance of the FSH algorithms be-

. ) comes inferior to that of the SDS detectors, the former shoul
As expected in the homogeneous case, the hybrid detectase made identical to the latter by eliminating the contiitnut
have similar expressions to the SDS and TDS detectors bgf 7 in . Thus, we propose the following procedure for es-
with the covariance matrix estimaZeobtained from both the  timating the covariance matrix
training and test data.

1

2.2 Statistical Analysis L o= bk (KT - DQ+DKR], - (18)
We now proceed to give the expressions for the probabili- . . .
ties of false alarm and detection for the hybrid algorithm.Whereb is a suitably chosen constant such thati< 1, with
Based on the problem formulation and with reference to [4] ~. 1 corre§pond|pg to the homogen_eous case. The qther
and [14], it is straightforward to establish the CFAR prdper imit, b =0 is obtained when the hybrid algorithms deterio-
of the Hybrid detectors. Furthermore, we expect that the ex:2t€ beyond the SDS detectors.

pressions th®r, andPg are analogous to those of the TDS The_formulation_ju_st presented can be generalised further
and SDS algorithms. by treating each training data snapshot separately andweig

To start we define a neM x K data matrixD by concate- ing its contribution by its own degree of heterogeneity with
nating the test and training da@,= [X|Z]. Then, the mean respect to the test data. The resulting expression becomes

vectorg and the covariance matrix estimate can be re-written 1 9y
as T = ———|(Ky-1 ZBZ"™|, 19
K TruE (KT -DR+2zBZ"]. (19)
1
g= WDW , and X=DWD", (14)  whereB is a diagonal matrix with the diagonal elements

corresponding to the weights assigned to each training data

AT LT . Shapshot and sausfymgﬁ)bkk <1, In t_he hpmogeneous
wherew =[O , 7]  is a lengthK vector and the matrix case B would become identical to the identity matrix and
W =l —w*w'. Now observe thalV is idempotent of rank the algorithms correspond to the FSH formulation.



A thorough investigation of the general form of (19) is
beyond the scope of this paper, and consequently we restri .
ourselves to the case whedg € {0, 1}, where 0 corresponds
to zx being deemed heterogeneous with the test data.

For our choice of théyk, we resort to the GIP which has
been studied in [9]. Given the covariance matrix estim@te,
the GIP for the training data snapshgts

Probability of Detection vs SNR, Under Homogeneity Assumption for M = 16, and Kr = K‘ =2M
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P = 7% Q & (20) R
Kr-1 %
. B . 4 MLED - Simulations

The GIP statisticgyk are mutually independent and are sta- ’ Lo Fshr - meary
tistically independent of the true covariance matrix. They o3 S smers
can be easily shown to have the standard distribufion o T S
M 1 1 - Simulations

KT——MFMsKT—M’ [16] pp. 74. Now employing a two-sided hy- st - Simu

pothesis test and setting a (one-sided) type-1 eezawe can ° i N i i ®
then obtain a lower and upper thresholgsand vy for re-

jecting the hypothesis thag and the test data have the same

covariance matrix, Figure 2: Probability of detection vs SNR f&, = 1072
with homogeneous training data.

e=Pr(p<sv)=1- betain«( ,M, Kt — M) (21)

VL + 1
and
) lower and upper thresholets = 0.632 andvy = 1.582. Thus,
e=Pr(p>wy) = betamt{y MKy - M) (22)  atraining data snapshot was accepted only if its GIP fell be-
v tween these two limits. We can see from the plot that the
Finally, by is set to 1 ifv; < pxk < vy and to 0 otherwise. variable scale detectors show some deterioration withrexsp
to their FSH counterparts. This is due to the occasional re-
3. SIMULATIONS jection of homoegeneous training data snapshots due to thei

tatistical variation which consequently lowers tlkeetive
ample support size. However, the loss is small and the VSH
etectors still outperform the other algorithms. The tle¢or
[¥al FSH curves were kept in the plot for comparison pur-

To illustrate the performance advantages of the proposed
gorithms, they were simulated along with the TDS and SD

detectors in the one dimensional case. For the reader’s co
venience, we start by summarising The various statistitls: A
the tests considered here have either the form of equatidn

(12) or that of (13) with the covariance matrix estimate and  The performance results under the Nitzberg heterogene-
the training data set size changing between tffetince de-  jty model are shown in fig. 3. Firstly, notice that the perfor-
tectors. Thus, for the GLRT, the test statistic is given bymance of the SDS detectors remains exactly the same since
(12), but withX replaced byR andK —1 replaced byK:.  they are unfiected by the heterogeneity. The TDS detectors,
Similarly the GMLED statistic is also given by (13) wid  on the other hand, show severe degradation for the relgtivel
used instead of andKr -1 in place ofK —1. The AMF  penign heterogeneity model we are considering, in fact the
and MLED, on the other hand, use the form in (13) but withamF completely fails (which explains why its curve is miss-
the variable replacements mirroring those of the GLRT anghg from the plot). The fixed scale hybrid algorithms also de-
GMLED respectively. _ _ teriorate since they are always incorporating the fulltirag

The parameters used in the simulation wite- 16 and  data set in their covariance matrix estimation. The vaeiabl
Kt = K¢ = 2M. 10° Monte Carlo runs were averaged to ob-scale algorithms, on the other hand, exhibit the robustness
tain the Py curves for aPta = 1073, For the interference that they gain from assessing the degree of heterogeneity of
heterogeneity, we adopted the model of [6] (which we deeach training data snapshot and rejecting those that exceed
note as the Nitzberg model). Accordingly, the training datahe limit we set. The first VS-Hybrid algorithm (VSH1) still
snapshotsz, are drawn from the distributio@N'w(0,9C),  enjoys a gain over the SDS algorithms and actually outper-
whereq is gamma distributed such that the mean interferforms all of the detectors considered here. The second VS-
ence power is equal to that of the test data and the spreadybrid detector matches the performance of the MLED de-
parameter = 0.5. Fig. 2 shows the detection performancetector, thus withstanding the heterogeneous déitze
under complete homogeneity. Looking at the FSH detectors,
we note that their simulated curves agree with the theailetic  Itis worthy of note here that the algorithms were assessed
results. Furthermore, these detectors show the expecied gaising a benign heterogeneity model. Radar clutter hetero-
over the TDS and SDS algorithms. This gain results from thgeneity is more likely to exhibit, in addition to power fluc-
increased sample support obtained from the use of both dataations, actual covariance matrix structure variatigng,
sets in the covariance matrix estimation. The FSH curve®/hereas the power fluctuations can be accounted for by the
now correspond to the performance resulting from41  Nitzberg model used above, other heterogeneity types re-
training data snapshots. The figure also shows the perfoquire more complicated models and result in more severe
mance of the variable scale hybrid algorithms. For these ddesses. Under these conditions, the advantages of the pro-
tectors, we have set the test powes 0.1. This resulted in  posed algorithms would be accentuated.



Probability of Detection vs SNR, Under Heterogeneity with a = 0.5, for M = 16, and K =K =2M
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Figure 3: Probability of detection vs SNR &, = 1072
with heterogeneous training data. The Nitzberg heterogene
ity model was used with a spread parameter0.5. [

4. CONCLUSIONS

In this paper we have presented a novel hybrid signal dq'll]
tection approach that is robust to the heterogeneity pnoble
that is found to #Alict training data in practical radar target
detection scenarios. The novel detectors proposed here com
bine the test and training data to increase the sample suppor
for the covariance matrix estimation. This results in a per-
formance gain under homogeneous interference conditionE:2]
The theoretical probabilities of false alarm and detectin

the new detectors were also given. The heterogeneity of
the training data results in a degradation in performande an
must be taken into account. Therefore, a non-homogeneity
detector was used to scale the contribution of the trainingl3]
data to the covariance matrix estimation according to the ob
served degree of heterogeneity. A variable-scale forrmulat

of the hybrid detectors was given and simulated under both
homogeneous and heterogeneous interference conditions.[14]
was found to possess a superior performance to the TDS al-
gorithms in both homogeneous and heterogeneous scenar-
ios. Furthermore, it has better detection performance thagS]
the SDS algorithms under homogeneity and is comparable

or even can outperform them when applied to heterogeneous
data.
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