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ABSTRACT

We address the problem of radar target detection under clut-
ter heterogeneity. Traditional approaches, or two-data set
(TDS) algorithms, require a training data set in order to es-
timate the interference covariance matrix and implement the
adaptive filter. When the training data exhibits statistical het-
erogeneity with respect to the test data, the TDS detectors
suffer from a degradation in their performance. The single-
data set (SDS) detectors have been proposed to deal with this
problem by operating solely on the test data. In this paper,
we propose a novel hybrid approach that combines the SDS
and TDS algorithms, taking the degree of heterogeneity into
account. We derive the hybrid detectors and propose the use
of the generalised inner product as a heterogeneity measure.
We also give expressions for their probabilities of false alarm
and detection under heterogeneous assumptions. Simulation
results show that new detectors combine the advantages of
both the TDS and SDS algorithms resulting in improved per-
formance in homogeneous interference as well as robustness
to heterogeneity.

1. INTRODUCTION

Space-Time Adaptive Processing (STAP) for radar target de-
tection has been heavily researched for over thirty years,
[1, 2]. The problem is essentially that of detecting the pres-
ence of a signal with a known template embedded in coloured
Gaussian interference. Consider a sizeNs linear antenna ar-
ray that collectsNt data snapshots for each range gate. The
data matrix of the range gate of interest, say range gater,
is then partitioned with a sliding window of sizeMs ×Mt
as shown in fig. 1. This results inKT = LsLt sub-matrices
that are stacked into column vectors and arranged into a
matrix X. The parametersLs and Lt are clearly given by
Ls = Ns −Ms +1 andLt = Nt −Mt +1. The signal model is
given by

X = αS+N. (1)

Hereα is a complex magnitude,S the template of the sig-
nal of interest (SOI), whosekth column is given byss,ls ⊗ st,lt
and the noise matrixN consists of zero-mean circular com-
plex Gaussian interference (clutter plus noise) with columns
nk ∼ CNM(0,C). The indicesk, ls and lt are related by
k = lsNs + lt + 1 and the symbol⊗ denotes the Kronecker
product. The spatial and temporal steering vectors,ss,ls and
st,lt , are respectively given by

ss,ls =

[

e j2πls fs e j2π(ls+1)fs . . . e j2π(ls+Ms) fs
]T
, and, (2)

st,lt =

[

e j2πlt ft e j2π(lt+1)ft . . . e j2π(lt+Mt) ft
]T
. (3)
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Figure 1: Sliding window partitioning strategy for data ma-
trix of range gater.

The detection problem is usually treated as a hypothesis
test for the presence of the signal. The null and alternative
hypotheses are given by H0 : X = N, and H1 : X = αS+N. It
is well known that the optimum processor,wopt, is [3]

wopt = βC−1s, (4)

β being an arbitrary constant ands the space-time test steer-
ing vector of lengthM = MsMt, s = ss,0 ⊗ st,0 . The filter
output power is compared to a suitably chosen thresholdγ,
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The lengthKT space-time steering vectort corresponds to
the frequency pair ofs. The superscripts∗, T andH denote
the conjugate, transpose and hermitian respectively.

The optimum processor requires knowledge of the true
interference covariance matrixC, which is not usually avail-
able. Practical algorithms, such as the GLRT [4] and AMF
[5], designated here as the‘two-data-set’ (TDS) algorithms,
replaceC with an estimate obtained from an independent
training data set. This training data is usually extracted from
adjacent range gates to the test gate.

The training data must be homogeneous with the test data
and free from targets. However, it has been recognised for
some time that real clutter data can exhibit significant hetero-
geneity, [6] and [7], a problem that has attracted a significant
amount of research. Training data selection strategies such as
the non-homogeneity detection (NHD), aimed at improving
the quality of the training data set were suggested, e.g. [8,9].
The generalised inner product (GIP) was a proposed as an



NHD that allows heterogeneous training data snapshots to be
excluded. In [10], on the other hand, the authors present the
direct data domain (D3) that processes the test data directly
in a deterministic way. The D3 was used in [11,12] as a pre-
processor and cascaded with an adaptive TDS detector such
as the AMF to give a hybrid detection approach that is more
robust to heterogeneous clutter. This strategy involves the
use of an NHD, such as the GIP, to construct suitable train-
ing data sets and to switch between the hybrid detector and a
TDS detector.

Recently, an alternative strategy for the detection prob-
lem has been put forward in [13] and [14]. In the case where
no suitable training data can be obtained, the proposed de-
tectors work solely on the test data and implement a data-
adaptive CFAR test. These algorithms, namely the GMLED
and MLED, which we designate here as the ‘single-data-
set’ (SDS) algorithms, eliminate the need for independent
training data by deriving a covariance matrix estimate from
the test data itself. This makes them suitable for applica-
tion in heterogeneous environments. They differ fundamen-
tally from the TDS algorithms in that they are high-resolution
CFAR spectral estimators. In [15] the performance of both
the SDS and TDS algorithms under steering vector mismatch
was assessed. It was shown that the SDS algorithms enjoy a
higher resolution than their TDS counterparts but are less ro-
bust to steering vector mismatch.

In this paper, we propose a new hybrid detection strategy
that combines the TDS and SDS philosophies, thereby bene-
fitting from the advantages of each. Instead of relying solely
on either the test or the training data, we make use of both
data sets, at the same time taking into account the degree
of heterogeneity. This results in a gain in the homogeneous
case due to the increased sample support size, as well as an
improvement in the performance in the heterogeneous case
due to the scaling of the contribution of the training data ac-
cording to the measured degree of heterogeneity. The paper
is organised as follows: In the following section the hybrid
approach is discussed. The algorithm is derived for the ho-
mogeneous case in section 2.1 and its statistical properties
given in 2.2. In 2.3 the heterogeneous case is dealt with.
Simulation results are presented in section 3 and finally some
conclusions are given in section 4.

2. HYBRID ALGORITHM

Traditional implementations of the optimal processor, such
as the GLRT [4] and AMF [5], assume the availability of
an independent training data set that is identically distributed
to, in other words homogeneous with, the interference in the
test range cell. They use this training data set to obtain a
maximum likelihood (ML) estimate,R, of the interference
covariance matrix. In the radar context, this training dataset
is usually drawn from adjacent range cells. Various factors
such as terrain type variations, height profile and shadowing,
can render the clutter returns range-heterogeneous and hence
result in a degradation in the performance of the traditional
TDS detectors, [7]. The SDS algorithms, on the other hand,
have been proposed to deal with this heterogeneity problem
by eliminating the need for a training data set, [13] and [14].
They carry out the processing solely on the test range cell.
They obtain a maximum likelihood estimate,Q, of the in-
terference covariance matrix from the test data set. These
algorithms are essentially high resolution spectral estimators

that have been formulated in such a way as to endow them
with the CFAR property under the assumed noise conditions.

When the two data sets are homogeneous with respect to
each other, both the SDS and TDS approaches obtain ML
estimates of the interference covariance matrix from two sta-
tistically independent data sets. Consequently, the estimates
themselves are mutually statistically independent. This ob-
servation leads us to propose improving the covariance ma-
trix estimation in the homogeneous case by combining the
two estimates to obtain a new estimateΣΣΣ. The combined es-
timate uses a larger amount of data and would be expected to
yield a detection performance that is closer to the optimum
than the two individual approaches. This case is treated in
subsection 2.1. Under heterogeneous conditions, however,
the use of the training data set covariance matrix estimate,
R, in the total covariance matrixΣΣΣ leads to a degradation in
the performance. As the degree of heterogeneity increases,
so does the performance loss. When this loss, with respect
to the optimum, surpasses that of the SDS case it becomes
desirable to revert to the SDS algorithms and rely solely on
Q. Therefore, the general hybrid detector we propose, uses
a suitably devised heterogeneity measure to determine the
manner in whichR andQ are combined to giveΣΣΣ. This case
is dealt with in subsection 2.3.

2.1 Homogeneous Case

Now let us restrict our attention to the homogeneous case and
proceed to derive the expression for the hybrid covariance
matrix estimate. To this end, we resort to a procedure similar
to that established in [14].

Assume that, in addition to the test data setX, we have
an independent training data set{zk}

Kt
k=1, that is homogeneous

with the test data. That iszk ∼ CNM(0,C). Also for the pur-
pose of the analysis, let us assume that, although the test data
snapshots were obtained using a sliding window, the columns
of X are statistically independent. The likelihood function of
the training data given the covariance matrix is

f (Z|C) =

(

1
πM |C|

)Kt

e−
∑Kt

k=1 zH
k C−1zk

=

(

1
πM |C|

)Kt

etr
(

−KtC−1R
)

, (6)

whereZ is an M ×Kt matrix whosekth column is the vec-
tor zk, R = 1

Kt

∑Kt
k=1 zkzH

k , and etr(−M) = e−tr(M) with tr (M)
being the trace ofM. We have also made use of the iden-
tity vHMv = tr

(

MvvH
)

. The test data likelihood function not
only depends on the covariance matrixC but also on the pa-
rameterα through the data mean. It is, thus, given by

f (X|C,α) =

(

1
πM |C|

)KT

etr
{

−(KT −1)C−1Mα
}

, (7)

where Mα = 1
KT−1

∑KT
k=1 (xk −αst(k))(xk −αst(k))H, and the

subscriptα indicates the dependence ofM on α. Since the
training and test data sets are independent, their joint like-
lihood function is obtained from the product of (6) and (7).
Thus, settingK = Kt +KT , we have under the null hypothesis

f0(X,Z|C) =

(

1

πM |C|

)K

etr
{

−(K−1)C−1
ΣΣΣ0

}

. (8)



whereΣΣΣ0 =
1

K−1 [(KT −1)M0+KtR]. Similarly, under the al-
ternative hypothesis, the joint likelihood is

f1(X,Z|C,α) =

(

1
πM |C|

)K

etr
{

−(K−1)C−1
ΣΣΣα

}

. (9)

Following the procedure of [14], we maximise each of the
likelihoods with respect to their parameters and take the ratio
of the maxima. Clearly, the maximum off0 with respect toC
is obtained whenC = ΣΣΣ0. Similarly, the maximum off1 over
the values ofC is obtained whenC = ΣΣΣα. It remains for us to
maximise the expression off1 overα. That is we require

max
α

max
C

f1 = max
α

(

1

(eπ)M |ΣΣΣα|

)K

. (10)

This is equivalent to minimising the determinant expression
in the denominator with respect toα. Expanding the expres-
sion of Mα and carrying out the minimisation in a similar
manner to the procedure of [14], we arrive at the result

α̂ =
1
|t|

sH
ΣΣΣ
−1g

sHΣΣΣ
−1s
, (11)

whereΣΣΣ = 1
K−1 [KtR+ (KT −1)Q], Q = 1

KT−1

(

XXH −ggH
)

andg = 1
|t|XtH. Substituting the various expressions into the

likelihood functions and taking theKth root of their ratio, we
obtain the desired likelihood ratio test. Thus, we arrive atthe
following two hybrid statistical tests

YH1 =
|sH
ΣΣΣ
−1g|2

sHΣΣΣ
−1s

(

1+ 1
K−1gHΣΣΣ

−1g
)

H1
≷

H0

γ, (12)

and

YH2 =
|sH
ΣΣΣ
−1g|2

sHΣΣΣ
−1s

H1
≷

H0

γ. (13)

As expected in the homogeneous case, the hybrid detectors
have similar expressions to the SDS and TDS detectors but
with the covariance matrix estimateΣΣΣ obtained from both the
training and test data.

2.2 Statistical Analysis

We now proceed to give the expressions for the probabili-
ties of false alarm and detection for the hybrid algorithm.
Based on the problem formulation and with reference to [4]
and [14], it is straightforward to establish the CFAR property
of the Hybrid detectors. Furthermore, we expect that the ex-
pressions theP f a andPd are analogous to those of the TDS
and SDS algorithms.

To start we define a newM×K data matrixD by concate-
nating the test and training data,D = [X|Z]. Then, the mean
vectorg and the covariance matrix estimate can be re-written
as

g =
1
|w|

Dw∗, and ΣΣΣ = DWDH , (14)

wherew =
[

0T
Kt ,1

tT
]T

is a lengthK vector and the matrix

W = IK −w∗wT . Now observe thatW is idempotent of rank

K − 1 and Ww∗ = 0. This implies thatg and ΣΣΣ are mu-
tually independent and distributed asg ∼ CNM(αs,C) and
(K − 1)ΣΣΣ ∼ CWM(C,K − 1). At this point we see that the
problem has a similar formulation to that of the GMLED and
MLED in [14]. The resulting expressions of theP f a andPd
are

P f a(γ) =
∫ 1

0
(1+ τ)−L fβ(η;L+1,M−1)dη. (15)

whereL = K −M, fβ(η;L+1,M−1) is the type I beta distri-
bution, and

Pd =

∫ 1

0
h(η) fβ(η;L+1,M−1)dη. (16)

The functionh(η) is defined as

h(η) = 1− (1+ τ)−L
L

∑

l=1

(

L
l

)

τle−
ηρ

1+τ

l
∑

n=0

1
n!

(

ηρ

1+ τ

)n
. (17)

The parameterρ is the signal to noise ratio,ρ = |α|2. The
thresholdτ is algorithm dependent and is given byτ =
γ�(K −1−γ) for YH1, andτ = ηγ�(K −1) for YH2.

2.3 Heterogeneous Case

We now consider the heterogeneous case and modify the hy-
brid expression ofΣΣΣ, derived above, to take the heterogeneity
into account. The algorithm presented here will be referred
to as the variable-scale hybrid (VSH). That of the homoge-
neous case will then be denoted as fixed-scale hybrid (FSH).

As the clutter becomes range-heterogeneous, the training
data setZ becomes less statistically representative of the in-
terference in the test data. This results in a degradation inthe
performance of the TDS detectors as well as the FSH algo-
rithms. The heterogeneity clearly leaves the SDS algorithms
unaffected. As the degree of heterogeneity increases, we de-
sire to rely less on the data setZ in the covariance matrix
estimate. When the performance of the FSH algorithms be-
comes inferior to that of the SDS detectors, the former should
be made identical to the latter by eliminating the contribution
of Z in ΣΣΣ. Thus, we propose the following procedure for es-
timating the covariance matrix

ΣΣΣ =
1

KT +bKt −1
[(KT −1)Q+bKtR] , (18)

whereb is a suitably chosen constant such that 0≤ b≤ 1, with
b = 1 corresponding to the homogeneous case. The other
limit, b = 0 is obtained when the hybrid algorithms deterio-
rate beyond the SDS detectors.

The formulation just presented can be generalised further
by treating each training data snapshot separately and weigh-
ing its contribution by its own degree of heterogeneity with
respect to the test data. The resulting expression becomes

ΣΣΣ =
1

KT −1+ tr(B)

[

(KT −1)Q+ZBZH
]

, (19)

where B is a diagonal matrix with the diagonal elements
corresponding to the weights assigned to each training data
snapshot and satisfying 0≤ bkk ≤ 1,. In the homogeneous
case,B would become identical to the identity matrix and
the algorithms correspond to the FSH formulation.



A thorough investigation of the general form of (19) is
beyond the scope of this paper, and consequently we restrict
ourselves to the case wherebkk ∈ {0,1}, where 0 corresponds
to zk being deemed heterogeneous with the test data.

For our choice of thebkk, we resort to the GIP which has
been studied in [9]. Given the covariance matrix estimate,Q,
the GIP for the training data snapshotzk is

pkk =
1

KT −1
zH

k Q−1zk. (20)

The GIP statisticspkk are mutually independent and are sta-
tistically independent of the true covariance matrix. They
can be easily shown to have the standard distributionp ∼

M
KT−M FM,KT−M, [16] pp. 74. Now employing a two-sided hy-
pothesis test and setting a (one-sided) type-I error,ǫ, we can
then obtain a lower and upper thresholdsνL andνU for re-
jecting the hypothesis thatzk and the test data have the same
covariance matrix,

ǫ = Pr(p ≤ νL) = 1−betainc

(

1
νL+1

,M,KT −M

)

(21)

and

ǫ = Pr(p ≥ νU ) = betainc

(

1
νU +1

,M,KT −M

)

(22)

Finally, bkk is set to 1 ifνL ≤ pkk ≤ νU and to 0 otherwise.

3. SIMULATIONS

To illustrate the performance advantages of the proposed al-
gorithms, they were simulated along with the TDS and SDS
detectors in the one dimensional case. For the reader’s con-
venience, we start by summarising The various statistics: All
the tests considered here have either the form of equation
(12) or that of (13) with the covariance matrix estimate and
the training data set size changing between the difference de-
tectors. Thus, for the GLRT, the test statistic is given by
(12), but withΣΣΣ replaced byR and K − 1 replaced byKt.
Similarly the GMLED statistic is also given by (13) withQ
used instead ofΣΣΣ andKT − 1 in place ofK − 1. The AMF
and MLED, on the other hand, use the form in (13) but with
the variable replacements mirroring those of the GLRT and
GMLED respectively.

The parameters used in the simulation wereM = 16 and
KT = Kt = 2M. 105 Monte Carlo runs were averaged to ob-
tain the Pd curves for aP f a = 10−3. For the interference
heterogeneity, we adopted the model of [6] (which we de-
note as the Nitzberg model). Accordingly, the training data
snapshots,zk, are drawn from the distributionCNM(0,qC),
whereq is gamma distributed such that the mean interfer-
ence power is equal to that of the test data and the spread
parametera = 0.5. Fig. 2 shows the detection performance
under complete homogeneity. Looking at the FSH detectors,
we note that their simulated curves agree with the theoretical
results. Furthermore, these detectors show the expected gain
over the TDS and SDS algorithms. This gain results from the
increased sample support obtained from the use of both data
sets in the covariance matrix estimation. The FSH curves
now correspond to the performance resulting from 4M − 1
training data snapshots. The figure also shows the perfor-
mance of the variable scale hybrid algorithms. For these de-
tectors, we have set the test power,ǫ = 0.1. This resulted in
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Figure 2: Probability of detection vs SNR forP f a = 10−3

with homogeneous training data.

lower and upper thresholdsνL = 0.632 andνU = 1.582. Thus,
a training data snapshot was accepted only if its GIP fell be-
tween these two limits. We can see from the plot that the
variable scale detectors show some deterioration with respect
to their FSH counterparts. This is due to the occasional re-
jection of homoegeneous training data snapshots due to their
statistical variation which consequently lowers the effective
sample support size. However, the loss is small and the VSH
detectors still outperform the other algorithms. The theoret-
ical FSH curves were kept in the plot for comparison pur-
poses.

The performance results under the Nitzberg heterogene-
ity model are shown in fig. 3. Firstly, notice that the perfor-
mance of the SDS detectors remains exactly the same since
they are unaffected by the heterogeneity. The TDS detectors,
on the other hand, show severe degradation for the relatively
benign heterogeneity model we are considering, in fact the
AMF completely fails (which explains why its curve is miss-
ing from the plot). The fixed scale hybrid algorithms also de-
teriorate since they are always incorporating the full training
data set in their covariance matrix estimation. The variable
scale algorithms, on the other hand, exhibit the robustness
that they gain from assessing the degree of heterogeneity of
each training data snapshot and rejecting those that exceed
the limit we set. The first VS-Hybrid algorithm (VSH1) still
enjoys a gain over the SDS algorithms and actually outper-
forms all of the detectors considered here. The second VS-
Hybrid detector matches the performance of the MLED de-
tector, thus withstanding the heterogeneous data effect.

It is worthy of note here that the algorithms were assessed
using a benign heterogeneity model. Radar clutter hetero-
geneity is more likely to exhibit, in addition to power fluc-
tuations, actual covariance matrix structure variations,[7].
Whereas the power fluctuations can be accounted for by the
Nitzberg model used above, other heterogeneity types re-
quire more complicated models and result in more severe
losses. Under these conditions, the advantages of the pro-
posed algorithms would be accentuated.
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with heterogeneous training data. The Nitzberg heterogene-
ity model was used with a spread parametera = 0.5.

4. CONCLUSIONS

In this paper we have presented a novel hybrid signal de-
tection approach that is robust to the heterogeneity problem
that is found to afflict training data in practical radar target
detection scenarios. The novel detectors proposed here com-
bine the test and training data to increase the sample support
for the covariance matrix estimation. This results in a per-
formance gain under homogeneous interference conditions.
The theoretical probabilities of false alarm and detectionfor
the new detectors were also given. The heterogeneity of
the training data results in a degradation in performance and
must be taken into account. Therefore, a non-homogeneity
detector was used to scale the contribution of the training
data to the covariance matrix estimation according to the ob-
served degree of heterogeneity. A variable-scale formulation
of the hybrid detectors was given and simulated under both
homogeneous and heterogeneous interference conditions. It
was found to possess a superior performance to the TDS al-
gorithms in both homogeneous and heterogeneous scenar-
ios. Furthermore, it has better detection performance than
the SDS algorithms under homogeneity and is comparable to
or even can outperform them when applied to heterogeneous
data.
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