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ABSTRACT

Transcranial magnetic stimulation (TMS) is a well-known
technique to study brain function. Location of TMS points
can be visualized on the subject’s Magnetic Resonance Im-
age (MRI). However inter-subject comparison is possible
only after a normalization i.e. a transformation of the stimu-
lation points to a reference atlas image.

Here, we propose a generic and automatic image pro-
cessing pipe-line for normalizing a collection of subjects’
MRI and TMS points. The normalization uses a loop of
rigid-transform followed by Basis-Splines registration. The
used reference atlas is the common Montreal National Insti-
tute (MNI) brain atlas [2]. We show preliminary results from
10 subjects. Those normalized points were compared to the
SPM normalization and validated by TMS experts.

1. INTRODUCTION

In neuroscience, the function of a given cortical area can be
studied by exploring the consequences of transcranial mag-
netic stimulation (TMS) on tasks under investigation, e.g.
grasping an object or mental computation. In the TMS tech-
nique [4], the stimulation is induced by a coil, placed tan-
gentially over the surface of the skull. When triggered, an
important transient current passes through the coil and in-
duces a magnetic field, activating underlying cortical brain
areas and interfering with their normal function.

In order to obtain reproducibility and to enable inter-
subject comparison, TMS points must be expressed within
a common brain reference. Different brain references ex-
ist and are used within the neuroimaging community. One
of the first references used is the Talairach stereotaxic sys-
tem based on post mortem histological sections of the brain
of a 60-year-old female subject [11]. The Montreal Neu-
rological Institute (MNI) created a composite MRI dataset
from 305 young normal subjects whose scans were individ-
ually mapped into the Talairach system (MNI305) [2]. Fur-
thermore, one of the MNI lab members, Colin Holmes, was
scanned 27 times (Colin27). Those scans were registered
and averaged to create a very high detailed MRI dataset of
one brain and were then matched to the MNI305. The cur-
rent version of the well-known SPM, a statistical paramet-
ric mapping software commonly used in the functional brain
imaging community, uses the reference “ICBM152”, the av-
erage of 152 normal MRI scans that have also been matched
to the MNI305.

The process of mapping TMS coordinates from the sub-
ject image into the atlas reference system is called normaliza-
tion. The inverse process is designated as denormalization.
Solving the normalization and denormalization problems is
thus equivalent to finding the best spatial transformation for
establishing a correspondence between the subject and the
atlas space of coordinates. In this study, we propose the use
of a generic and automatic image registration technique for
addressing these problems.

Image registration is the concept of mapping homologous
points of different images representing a same object. In im-
age processing the abstract definition of homology is substi-
tuted by a measurable criterion of image similarity, evaluated
by means of an image-to-image metric.

Talairach [11] defined a brain coordinate system whose
origin is placed at the anterior commissure (AC) and such
that the line joining anterior and posterior commissure (PC)
is horizontal. After this global alignment, the Talairach trans-
form maps brains of different shape and size using quadrant
by quadrant linear scaling.

Friston et al. [3] proposed kernel convolutive intensity
normalization and non-rigid spatial transformations using
basis functions. They linearize the image matching equa-
tion in order to obtain an algebraic solution in terms of least
squares. This approach is the method used in SPM.

A more generic approach defines image registration as an
iterative optimization, modifying the parameters of a trans-
form in order to improve a given image-to-image metric be-
tween a fixed and a transformed moving image [7]. This
method is useful where the linearization hypotheses under-
lying Friston’s algebraic formulation do not hold and is im-
plemented in the widely used Insight Segmentation and Reg-
istration Toolkit (ITK) [5].

We have chosen this general approach in order to use a
metric different than least-squares and more suitable to mul-
timodality. Further we iteratively establish registration rather
than to use a first guess. Our registration method can equally
be applied to most other types of medical image, including
CT scan, PET or fMRI.

The paper is organized as follows. We first present our
normalization approach, based on the chaining of affine and
B-Splines transformation models. We then present sample
results of 10 subject image to atlas registration, as well as
their corresponding TMS point normalizations. Finally, we
discuss and compare our results with those provided by the
semi-automatic SPM approach [3].
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Figure 1: Image registration as an optimization loop. The
optimization loop consists of an optimizer that modifies the parameters of a transform
in order to improve the image-to-image metric. Two different transform models are
used, each of which has a different optimizer that corresponds.

2. METHODS

2.1 TMS Acquisition

The normalization is tested on TMS points acquired in 10
subjects. Four brain areas, namely the left (L) or right (R)
ventral (PMv) and dorsal (PMd) premotor cortex, are se-
lected to test their respective contribution to precision grasp-
ing [1]. Stimulation point coordinates are acquired using a
magnetic field digitizer. They are registered with the corre-
sponding subject MRI, as described in [9]. After the nor-
malization procedure, we expect to find all points from given
brain area to be located on the same position on the Colin27
atlas.

2.2 Brain Images

Images, which the native TMS coordinates refer to, are ac-
quired for each subject. They are T1-weighted MR head
scans of different resolutions and non-uniform field of view.
At acquisition, subject images are oriented for the anterior
and posterior commissure to be located on the same axial
slice. Image origin (physical space) is placed at the pixel in
the lower left posterior image corner (0, 0, 0).

The reference used in the current application is Colin27.
The image is a MRI T1 acquisition with uniform spacing of
1 mm per pixel. Its physical origin is located in the AC, at
voxel (90, 126, 72).

2.3 Image Registration Pipeline

The structure of the image registration process we use is il-
lustrated in figure 1. For normalization, the subject image is
fixed, and one wants to find the transform that best maps its
points into the moving atlas image. We define the follow-
ing optimization loop: The moving image is resampled us-
ing the current spatial transform estimation, and compared to
the fixed image by means of the mutual information image-
to-image metric. An optimizer block evaluates the metric,
estimates its gradient and possibly its Hessian, and tunes the
parameters of the transform. Iteratively, the spatial transform
leading to an image similarity optimum is established.

2.3.1 Image Resampling and Transform Direction

The transform being optimized maps points of the fixed im-
age physical space into the moving image physical space.
When resampling the moving image, for the whole reference
image the intensities of corresponding points in the moving
image are looked up.

The deformable transform model is non invertible and
transformations are only possible in one direction. The im-

Figure 2: Image configuration for non-invertible registration.
Fixed and moving image have to be set in order to correspond to the desired transform
direction. Image resampling takes place in the opposite direction (dashed line).

age configuration is imposed by the further use of the output
transform, as illustrated in figure 2:

• For normalization, TMS coordinates are transformed
from subject to atlas. The subject image is setup as fixed
image and the atlas is the moving image.

• For denormalization, TMS coordinates are mapped from
the atlas reference into the subject coordinate system.
Therefore, the atlas constitutes the fixed image while the
subject image is moving.

2.3.2 Transform Models

First, we use a rigid transformation that accounts for global
misalignment (rotation and translation). After this initializa-
tion, a deformable transform model is used to establish local
homology, correcting local deformations and differences in
size and proportion.

Rigid Transform Model. The space of possible transfor-
mations is reduced to rigid and affine transforms. We define
a rigid transformation as rotation about the center c, followed
by translation t. The m-dimensional transform of a point P
can be written as follows:

T (P) = A(P− c)+ c+ t (1)

where A = SR is the product of the diagonal scaling matrix
S and the rotation matrix R. Such a transform counts 4m
parameters and is therefore particularly simple. Further it is
analytically defined for any point.

A gradient descent method is appropriate to run the op-
timization. We use the simultaneous perturbation stochastic
approximation (SPSA) method, which allows for a faster gra-
dient estimation than classical steepest descent implementa-
tions [10].

B-Spline Deformable Transform. B-Spline deformable
transform is a semi-free-form transform. Deformation vec-
tors are placed on a uniform grid. These vectors are the
parameters modified during the optimization process. The
dense deformation field is interpolated using B-Splines.

Using a smooth third-order basis spline, interpolation can
be calculated on 3 nodes less than are present in the grid
along each dimension. For a 3D image and n = 10 effective
grid points per dimension, the number of transform param-
eters is p = 6591. We use an implementation of the quasi-
Newton limited memory Broyden-Fletcher-Goldfarb-Shanno
optimization algorithm (L-BFGS) [6] to handle this huge pa-
rameter space.
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2.3.3 Mutual Information Image-to-Image Metric

The use of mutual information (MI) as an image metric has
been introduced by Viola and Wells. The two images are con-
sidered as two discrete random variables, X and Y . Mutual
information is defined as follows:

MI(X ,Y ) = H(X)+H(Y)−H(X ,Y) (2)

where H(X ,Y ) is the joint entropy of the two images and
H(X), H(Y ) their respective marginal entropy. MI can be
interpreted as the loss of uncertainty obtained when consid-
ering both images jointly, compared to observing them inde-
pendently.

Maximum MI can be obtained for matched images whose
intensities are not equal, but mapped in a bijective way, i.e.
there exists a bijective function that maps the intensities of I1
to the intensities of I2. This characteristic is interesting when
comparing images of different modalities.

While Viola-Wells propose Parzen-window PDF estima-
tion, Mattes establishes the joint histogram of the fixed and
the moving image using B-Spline kernels [8]. Along the
fixed image dimension, smoothing is not necessary as no
interpolation and derivation takes place. Along the moving
image dimension, however, a third order B-Spline kernel is
used, giving rise to a smooth histogram with continuous gra-
dient, which is important in derivative calculation:

q(i1, i2) = 1
N ∑x

β 1
(

i1 −
I1(x)−min(I1)

∆i1

)

·β 3
(

i2 −
I2(x)−min(I2)

∆i2

)

(3)
where β n is the nth-order B-Spline, min(I{1,2}) the
least pixel intensity of the images and ∆i{1,2} =
(maxI{1,2}−minI{1,2})/h{1,2} the respective histogram
bin size, h{1,2} being the corresponding number of histogram
bins. Marginal PDF are calculated by summing the joint
PDF along the complementary dimensions.

The Mattes normalization with respect to the minimal
and maximal intensity value in an image makes this approach
particularly interesting, as fewer image pre-processing is
necessary, which makes it the implementation of our choice.

2.3.4 Model Cascading

When cascading, transforms are ideally passed to the sub-
sequent image registration step under their analytical form.
However, to simplify the implementation and for easier mod-
ularity, the output transform of the first step is applied to re-
sample the moving image as an approximation of the fixed
image and this resampled output image serves as moving im-
age of the subsequent registration step. This is illustrated in
figure 3 a).

2.4 TMS Point Transformation

Once the spatial correspondence between the subject and at-
las image is established, the transform can be used to map
points from the fixed image reference into the moving image
space.

Compared to image registration, transforms have to be
applied in reverse order to each of the acquired TMS points.
First, the B-Spline deformable model transforms TMS points
from fixed image into the intermediate rigid and scale estima-
tion, and second, the rigid and scale transform maps into the
native atlas reference space, as illustrated in figure 3 b).

a) b)

Figure 3: Cascading image registration steps. a) Rigid and scale
transformation T1 is established. The resampled image is used as moving image of the
second registration step T2 and resampled a second time (dash-dotted line). b) To
map a point from fixed image space to original moving image space, transforms are
applied in reverse order.

a) b) c)

Figure 4: Brain MRI images resulting from subject-atlas reg-
istration. a) Original native subject MRI. b) Normalization transformation
applied to Colin27. c) Original atlas (Colin27).

3. RESULTS

3.1 MRI Subject-Atlas Registration

In figure 4 resulting warped images for one subject-atlas reg-
istration are illustrated.

3.2 TMS Point Normalization

Stimulation points from ten different subjects have been nor-
malized after image registration. Their sample means corre-
sponding to each of the four brain areas are calculated. The
complete normalized set has been projected on a 3D render-
ing of the atlas brain (figure 5).

More detailed analysis of obtained data and its disper-
sion is done by calculation of the covariance matrix Σ for
the four populations. Main directions of dispersion can be
obtained when proceeding to an eigenvector decomposition.
This decomposition yields the two matrices V and D that ver-
ify Σ = VDV−1, where V is the orthonormal matrix whose
columns contain the eigenvectors of Σ, and D is the diagonal
matrix composed of the corresponding eigenvalues. Standard
deviation along the established main dispersion directions is
given by the square root of the respective eigenvalue. Data
are shown in table 1.

3.3 Comparison to Semi-Automatic Normalization Us-
ing SPM Registration

Every TMS point has equally been normalized using a semi-
automatic approach based on SPM image registration. Sub-
ject and atlas images are registered using the spatial normal-
ization method of the SPM package. In the resampled regis-
tered image, an expert manually identified the TMS points as
they appeared in the native subject image. Both normalized
sets are illustrated in figure 6. To compare both methods,
the same covariance analysis and eigenvector decomposition
has been done for the SPM normalization, as for our method
before. Further, pairwise differences are calculated, giving
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Figure 5: Normalized TMS points and sample mean. TMS
points gathered from 10 subjects are normalized onto the atlas brain (small blue
spheres, 10 on the left and 6 on the right hemisphere). The sample mean has been
drawn as big red spheres.

PMvR PMvL
µauto ( 61 , 11.6 , 21.3 ) ( -60.7 , 13.7 , 24.7 )

Σ

(

10.3 −6.5 2.3
−6.5 11.3 1.6
2.3 1.6 43.9

) (

5.6 4.8 2.7
4.8 43.6 −26.5
2.7 −26.5 34.7

)

V

(

0.732 0.679 0.062
0.678 −0.735 0.038
−0.071 −0.014 0.997

) (

0.880 0.475 −0.032
−0.327 0.555 −0.765
−0.345 0.683 0.643

)

D

(

4.091 0 0
0 17.322 0
0 0 44.111

) (

2.751 0 0
0 14.963 0
0 0 66.098

)

σ ( 2.02 , 4.16 , 6.64 ) ( 1.66 , 3.87 , 8.13 )

PMdR PMdL
µauto ( 25.6 , -12.6 , 72.3 ) ( -26.8 , -9.8 , 70.7 )

Σ

(

10.3 −4.6 −5.4
−4.6 36.3 −6.8
−5.4 −6.8 16.9

) (

22.8 6.0 −0.4
6.0 49.7 −14.7
−0.4 −14.7 12.5

)

V

(

0.817 0.568 −0.104
0.239 −0.168 0.956
0.526 −0.806 −0.273

) (

−0.106 −0.979 −0.172
0.338 0.127 −0.933
0.935 −0.157 0.318

)

D

(

5.488 0 0
0 19.258 0
0 0 38.731

) (

7.179 0 0
0 22.011 0
0 0 55.843

)

σ ( 2.34 , 4.39 , 6.22 ) ( 2.68 , 4.69 , 7.47 )

Table 1: Dispersion analysis of normalized TMS points. The
population mean is given by µauto. Σ denotes the respective estimated covariance ma-
trix. V is the matrix containing the eigenvectors of Σ, indicating the main spatial direc-
tions of dispersion, respective variances are given by the diagonal eigenvalue matrix D.
σ is the standard deviation in mm along the eigenvectors.

rise to indicators such as mean difference vectors and mean
difference norms. Results are presented in table 2.

4. DISCUSSION

4.1 Image Registration

Mutual information is an appropriate image-to-image metric
for brain MRI subject-atlas registration. Even if images have
been acquired using theoretically equal MR weightings, they
differ in intensities, which makes the use of rigid metrics,
such as mean squared differences, inappropriate. Further,
MI enables the later change of the atlas weighting or modal-
ity without important adaptation of the registration tool. The
metric value can be used as a quality criterion of the registra-
tion, but interpretation of the metric value is not straightfor-
ward.

The results we obtained have been validated by experts in
the domain of TMS research. Physicians carefully evaluated
the registration results. They visually compared the resam-
pled image to the target image. The position was checked
for both left and right, ventral and dorsal premotor cortex. In
general, most of the resampled atlas images correspond well
to the original subject images, and image registration can be
considered of good quality. However, several subjects reveal

Figure 6: TMS point normalization comparison to SPM re-
sults. Automatic normalization results are drawn in blue. Yellow spheres represent
results of SPM image registration and manual point identification.

PMvR PMvL PMdR PMdL

µSPM

(

55.67
16.00
25.67

) (

−59.60
16.30
23.20

) (

24.33
−4.67
72.00

) (

−22.30
−4.20
71.40

)

σ

(

2.32
5.75
8.85

) (

1.18
2.09
9.04

) (

2.38
2.78
6.51

) (

1.74
1.98
5.69

)

µauto −µSPM

(

4.65
−3.86
−3.71

) (

−1.16
−2.59
1.46

) (

0.73
−5.77
−0.24

) (

−4.54
−5.45
−0.62

)

‖µauto −µSPM‖ 7.09 3.19 5.82 7.12
E(‖auto−SPM‖) 9.19 7.81 8.08 11.05

Table 2: Comparison of TMS points normalization using
SPM registration. The population mean is given by µSPM. σ is the stan-
dard deviation in mm along the main directions of dispersion. µauto − µSPM de-
notes the difference vector between population means and ‖µauto −µSPM‖ its norm.
E(‖auto−SPM‖) represents the mean distance between corresponding points.

some difficulties of the registration tool. In fact, some orig-
inal images do not have exactly the same field of view and
major parts of problematic regions are not represented in the
atlas. To prevent the image registration process from being
disturbed by such differences, prior masking of those critical
regions would be necessary.

One of the main factors leading to successful image regis-
tration is that images do contain the same body parts (similar
FOV) and that sufficient image margins are present.

If the transform is to be used in both directions, a pseudo-
inverse has to be constructed, or registration has to be run
with both configurations simultaneously. However, image
registration with swapped image configuration is unlikely to
yield symmetrical transformations. Subsequent normaliza-
tion and denormalization of a TMS point will most probably
differ from the original TMS point.

4.2 Normalization Dispersion

Low standard deviation of the normalized points indicate
good registration quality. However, the contrary statement
would not hold, as dispersion can be due to different causes,
e.g.:
• Poor registration quality at normalization,
• Registration errors at point to image registration,
• Non precise point localization at acquisition,
• Structural differences between subjects (homologous

points are not situated at topologically corresponding co-
ordinates).
Dispersion analysis reveals interesting information about

the main directions of spatial dispersion. In fact, spatial dis-
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persion is not uniform. Standard deviation along the princi-
pal axes lies around 2, 4 and 8 mm respectively. The eigen-
vector corresponding to the direction of least standard devia-
tion is oriented along the cortex surface normal. Both higher
dispersion directions are in the plane tangential to the brain
surface.

Along the normal direction, one intuitively expects least
dispersion, as at each phase committed error is minimal:
Registration is easier normal to contours rather than tangen-
tial, as stated by the aperture problem. Points are explicitly
selected at the cortex surface, which leads to a weaker error
injection at acquisition time.

Based on the current data it is impossible to conclude
about the exact contributions of the different sources to the
observed inplane dispersion. With an inplane standard devi-
ation of around 4 and 8 mm respectively, the overall normal-
ization quality can still be qualified as good.

4.3 Comparison to Semi-Automatic SPM Normalization

Dispersion analysis of the normalized TMS points based on
SPM image registration followed by manual point identifica-
tion yields standard deviation measures similar to the ones
obtained with our presented method. This is an indicator of
similar image registration quality.

Sample means of the four normalized point populations
differ by 5 to 7 mm between our method and the SPM com-
parison. A horizontal shift in the anterior-posterior direction
of 2.6 up to 5.8 mm is common to all four point sets, ac-
counting for the major part of mean differences. Mean norms
of pairwise difference vectors lie between 7.8 and 11 mm,
which is almost double the distance between respective pop-
ulation means. This indicates a large random contribution to
normalization differences.

5. CONCLUSIONS

In this paper we presented a fully automatic approach to
spatial TMS point normalization using subject-atlas registra-
tion of brain MRI scans. A general subject-atlas registra-
tion framework has been developed that yields good qual-
ity spatial mapping of brain MRI. The presented registration
pipeline consisting of, firstly, affine and, secondly, B-Spline
deformable transforms allows for a good overall alignment
of the represented structures. The established spatial trans-
form is used to normalize coordinates of TMS points from
native subject space into the reference atlas.

Normalized TMS coordinates are distributed over a well
restricted brain region. The mean value and standard devia-
tion are comparable to the results of semi-automatic expert-
based normalizations. The accuracy of the image registration
– and thereby of the TMS points normalization – can be fur-
ther improved by masking regions that do not appear on both
subject MRI and atlas.

The presented non-rigid deformation model is not able to
handle very local structural differences, particularly where
the hypothesis of homologous topology is not strictly valid.
In order to obtain a more precise match of the cortical struc-
tures – gyri and sulci – more flexible deformation models
would possibly improve normalization accuracy, for example
by adding a third registration step consisting of a free-form
voxel-based deformation model.

Since TMS coordinate normalization and denormaliza-
tion only concern points situated on the cortical surface, one

might imagine a registration procedure limited to cortical
surfaces.
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