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ABSTRACT 
In this paper we present a case study of co-training to image 
classification. We consider two scene classification tasks: 
indoors vs. outdoors and animals vs. sports.  The results 
show that co-training with Naïve Bayes using 8-10 labelled 
examples obtained only 1.2-1.5% lower classification accu-
racy than Naïve Bayes trained on the full labelled version of 
the training set (138 examples in task 1 and 827 examples in 
task 2). Co-training was found to be sensitive to the choice 
of base classifier, with Naïve Bayes outperforming Random 
Forest. We also propose a simple co-training modification 
based on the different inductive basis of classification algo-
rithms and show that it is a promising approach. 

1. INTRODUCTION 

Image classification is an important problem in the area of 
content-based image and video retrieval. It involves map-
ping low level features (e.g. colour, edge, texture) to seman-
tic categories (e.g. indoors/outdoors, anchorperson/no an-
chorperson, etc). To build an accurate classifier, a large 
number of examples labelled with their correct category are 
needed. Acquiring labelled examples is costly and time con-
suming as it requires human effort. 
 
The co-training paradigm [1] tries to overcome this problem 
by taking advantage of the more abundant and easily avail-
able unlabeled data. It learns from a small set of labelled and 
a large set of unlabelled examples. The standard co-training 
requires that the data is naturally described by two disjoint 
feature sets, called views. There are two requirements for the 
views; they should be: 1) sufficiently strong, i.e. good accu-
racy can be achieved using each of them individually, and 2) 
conditionally independent given the class. Under these as-
sumptions it was proven that a task that is learnable with 
random noise is learnable with co-training [1].   
 
Co-training has been successfully applied in the area of text 
categorization. Blum and Mitchell [1] classified web pages 
as course and non-course home pages using the following 
two views: the words in the web page and the words in the 
hyperlinks pointing to the web page. Nigam and Ghani [2] 
investigated the effect of the dependence between the views. 
As most datasets do not come with natural split of features, 
which limits the applicability of co-training, a random split 
was tested. Co-training was found to work better on truly 
independent views than on random views. It was shown that 
if there is sufficient redundancy in data, the performance of 
co-training with random split is comparable to natural split. 

The experimental domain was classification of postings into 
newsgroups. Co-training was also applied for filling e-mails 
into folders [3] and noun phrase identification [4].  

 
In this paper we present a case study of co-training to two 
image classification tasks. Previous research mainly concen-
trated on applying co-training for classification of text 
documents. Text categorization tasks are in fact less suitable 
for co-training because of the following reasons. First, most 
often they do not come with a natural split of the words into 
two sets which motivated the study of random split [2]. Sec-
ond, even if a natural split exists (e.g. subject and body in e-
mail classification), the words in the two sets are hardly in-
dependent, and most often one of the feature sets is not 
strong enough (e.g. the subject view due to its smaller vo-
cabulary). Image classification, on the other hand, comes 
with natural split of features; for example, the two feature 
sets can be colour and edge, or local and global features. 
These feature sets are reasonably independent, and most 
often strong enough. This makes co-training particularly 
suitable for image classification.  
 
We also propose a modification of the standard co-training 
algorithm motivated by the fact that different algorithms 
have different inductive bias. Finally, we study the learning 
behaviour of a new and powerful classifier: Random Forest. 
Previous research on co-training has mainly concentrated on 
using Naïve Bayes as base classifier. 
 

2. CO-TRAINING 

The co-training algorithm proposed by Blum and 
Mitchell [1] is given in Table 1. The co-training paradigm 
assumes that the features can be split into two disjoint sets 
(views) V1 and V2. For example, consider the task of clas-
sifying e-mails as spam and non-spam. Each e-mail can be 
described by the words in the subject (V1) and the words in 
the body (V2). The two classifiers C1 and C2 are trained 
using one view of the small labelled data L which results in 
two weak classifiers. Then each of them assigns labels to all 
unlabelled examples U, selects the most confidently pre-
dicted and moves them from the unlabelled to the labelled 
set. Both classifiers are re-trained on the enlarged labelled 
set. The loop is repeated for a pre-defined number of itera-
tions. When training is completed, the label of new in-
stances is predicted by multiplying the probabilities output 
by C1 and C2 and choosing the most probable class.  
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In essence, the two algorithms train each other. For example, 
suppose that C1 can confidently and correctly predict the 
class of an unlabelled example in V1, for which C2 is unsure 
in V2. By adding this example to the training set, C2 ex-
tends its knowledge and is able to learn better in future. For 
our example, suppose that C1 confidently classifies e-mails 
with the word “free” in the subject as spams, while C2 is not 
sure based on the information in the body. By transferring 
this example in the labelled set, C2 will learn that the words 
in the body indicate class “spam”. 

 
Given: 
- a small set L of labelled examples 
- a large set U of unlabelled examples 
- two feature sets (views) V1 and V2 describing the examples 
 
Training: 
Loop for k iterations:  
    Learn classifier C1 from L based on V1 
    Learn classifier C2 from L based on V2 
    C1 labels examples from U based on V1 and chooses the most 
confidently predicted p positive and n negative examples E1  
    C2 labels examples from U based on V2 and chooses the most 
confidently predicted p positive and n negative examples E2  
    E1 and E2 are removed from U and added with their labels to L 
End 
 
Classification of new examples: 
Multiply the probabilities that are output by C1 and C2 

Table 1- Co-training algorithm 
 

3. BASE CLASSIFIERS 

As base classifiers for the co-training algorithm we chose 
Naïve Bayes (NB) and Random Forest (RF). NB is the clas-
sifier predominantly used in a co-training setting and we 
chose it as a benchmark. RF is a new, less popular but very 
efficient algorithm in terms of both predictive power and 
running time. To the best of our knowledge it hasn’t been 
applied for image classification or in a co-training setting. 
  
3.1. Random Forest 
RF [5] is a recently introduced ensemble approach that 
combines decision trees [6]. Diverse trees, forming the RF, 
are generated by both altering the data set using bagging and 
selecting random input features. If n is the number of train-
ing examples and m is the number of features in the original 
training data, the training data for each of the t ensemble 
members is first generated by randomly selecting n in-
stances from the training data with replacement. Then, for 
each data sample, a decision tree is grown. When growing a 
typical decision tree, splits on all available attributes for a 
given node are considered and the best one is selected based 
on performance indexes such as Information Gain or Gini 
[6]. In RF, only a small number k (k<<m) of randomly se-
lected features, available at the node, are searched. Their 
number k is kept fixed but for each split a new random set of 
features of size k is selected. Each tree is fully grown and 
not pruned as opposite to the standard decision tree which is 

typically pruned. To classify a new example, it is propagated 
through all t trees and the decision is taken by a majority 
vote.  
 
The predictive power of RF depends on the strength of the 
individual trees and their correlation with each other. A tree 
with high strength has a low classification error. Ideally we 
would like the trees to be less correlated and highly accu-
rate. As the trees become less accurate or correlated, the 
RF’s performance decays. The low level of correlation is 
achieved by using bagging and random feature selection 
which inject randomness and generate dissimilar, and thus, 
low-correlated, trees. The strength and correlation also de-
pend on the number of features k. As k increases, both the 
correlation among the trees and their accuracy tend to in-
crease. As a trade-off, the value of k is typically set to 

1log2 += mk  [5]. 
 
RF has been shown to run much faster and give comparable 
accuracy results to the highly successful AdaBoost ensemble 
algorithm [5]. It was also proved that RF does not overfit. 
The ability to run efficiently on large data sets and produce 
accurate results makes RF a very attractive algorithm for 
image classification. In our experiments we used RF of 10 
trees. The number of random features was set using the heu-
ristic discussed above, resulting in 7-9 features. 

 
3.2. Naïve Bayes 
Naïve Bayes (NB) [6] is a very popular, simple and highly 
effective Bayesian learner. It uses the training data to esti-
mate the probability that an example belongs to a particular 
class. It assumes that feature values are independent given 
the class. Although this assumption clearly has no basis in 
most learning situations, NB can produce very good results.  
 
3.3. Using Different Base Classifiers 
The standard co-training algorithm involves the use of two 
classifiers of the same type, e.g. two NBs. Different classifi-
cation algorithms have different inductive bias, i.e. they use 
different representations for their hypothesis, search differ-
ently the space of all possible hypotheses and avoid overfit-
ting in different ways [6]. There is a group of ensembles that 
exploit this diversity between algorithms by combining dif-
ferent classifiers to create an effective ensemble. The same 
idea can be used in a co-training setting. Two different algo-
rithms as base classifiers may be more capable of helping 
each other by focusing on different aspects of the data, and 
not making the same mistakes. This also may help to im-
prove the task coverage problem [4]. The classifiers label 
most confidently examples from the task space most famil-
iar to them. Different types of classifiers are likely to be 
familiar with different parts of the task and, hence, to select 
more useful examples.  
 
This idea is similar to the work of Goldman and Zhou [7] 
who also used different classifiers but one of the classifiers 
is labelling examples for the other while in our case the la-
belled examples are used by both classifiers. Their algorithm 
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also requires that the classifiers partition the example space 
into a set of equivalence classes and uses confidence inter-
vals to decide when one of the classifiers should label for 
the other, and also to combine the decisions of the two clas-
sifiers. We stick to the standard co-training setting and in-
vestigate if the use of two different classifiers is beneficial. 

 

4. DATASETS 

4.1. Task 1: Indoor-Outdoor Scene Classification 
We used the ISB dataset [8]. It consists of 153 photos taken 
during and after the construction of the Information Services 
building of the University of Otago. It is a diverse data con-
taining images of the construction site, the completed build-
ing with outdoor background, indoor scenes of close-ups of 
library users, and close-ups of indoor and outdoor architec-
tural structures. As Figure 1 shows, some of the indoor and 
outdoor images have similar colour and components, espe-
cially architectural elements, which makes the classification 
difficult. The images were manually labelled as indoors and 
outdoors, resulting in 60 indoors and 93 outdoors images. 
 

 
a) indoors 

 

 
b) outdoors 

Figure 1- Sample images from the ISB dataset 
 

The first view for co-training was formed from the colour 
histogram features, the second one from the luminance edge 
histogram features. The colour histogram was computed in 
the LUV space, quantizing each channel into 5 bins which 
resulted in a 125 dimensional feature vector. For the edge 
histogram we used the MPEG-7 edge histogram descriptor 
[9]. Edge filters are first applied to detect the edges of the 
2x2 pixel blocks (vertical, horizontal, 45°, 135° diagonal 
edges, non-directed edges and no edges). Grouping the edge 
information of all blocks generates an edge histogram with 6 
bins. An image is partitioned into 4x4 sub-images, each gen-
erating a sub-image histogram. Concatenating these histo-
grams results in a 96-dimensional global edge histogram. 
 
4.2. Task 2: Animals-Sports Scene Classification 
We used a subset of the Swedish University Network (SU-
NET) dataset [10]. We chose two categories: animals and 
sports. There are 511 images in animals and 415 in sports. 

Figure 2 shows some sample images. The images are very 
different in terms of objects and background. The first view 
for co-training was formed using the MPEG- 7 colour layout 
descriptor  [9] which captures the spatial colour distribution 
in an image. This standard descriptor is computed by obtain-
ing the representative colours in the YCrCb space on an 8x8 
grid, DCT transforming and quantizing them into integers. 
To keep better precision, we used the raw average colours in 
YCrCb without the DCT transform and quantization. This 
resulted in a feature vector of 64x3=192 dimensions. The 
second view was formed using the global edge histogram 
(96 features) as described in task 1. 

 

 
a) animals 

 

 
b) sports 

Figure 2- Sample images from the SUNET dataset 
 

5. EXPERIMENTAL SETUP 

5.1. Evaluation methodology 
For the evaluation of the co-training results we used a pro-
cedure that resembles 10-fold cross validation. The 10-fold 
cross validation uses 90% of the data for training and 10% 
for testing. The co-training, on the other hand, uses only a 
small number of labelled and unlabelled training examples. 
Therefore, if 10-fold cross validation is applied in a co-
training setting, many examples will not be used neither for 
training nor for testing. A better utilization of the available 
data is to increase the size of the test set which will improve 
the evaluation of the classifier without significantly reducing 
the quality of the classifier.  
 
We generate 10 disjoint stratified folds. Each time 40% of 
the data is used for testing and the remaining 60% for train-
ing. The required amount of initially labelled examples are 
randomly selected from the first fold of the training data, 
and the remaining examples from this fold and the next 5 
folds are used as unlabelled examples. The experiments are 
repeated 10 times and the results averaged, each time using 
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different fold to select the labelled examples, and creating 
different unlabeled and test sets by sliding 1 fold to the right.  

 
5.2. Co-training Parameters 
In task 1, the labelled set consisted of 4 indoors and 4 out-
doors examples, and 1 newly labelled example from each 
class was added at a co-training iteration. For the bigger 
dataset in task 2, the labelled set consisted of 5 examples 
from each class, and 5 examples per class were added. For 
both tasks the number of co-training iterations was set to 20.  
 
The number of examples from each class added at a co-
training iteration is typically chosen following the class dis-
tribution. In our case it is balanced for both tasks (50-60%), 
so we add equal number of examples from the two classes. 

 

6. RESULTS AND DISCUSSION 

6.1. View strength 
We first evaluate the strength of the individual feature sets 
(views). A view is said to be sufficiently strong if when 
taken on its own, is sufficient for accurate classification [2]. 
This property can be measured as the accuracy of the classi-
fier trained on the fully labelled version of the training set 
for each data view. In our experiments we report the results 
on the test set using 10-fold cross validation.  

 
 V1 (col-

our) V2 (edge) 

Task 1: indoors vs outdoors 
RF 81.2  84.6 
NB 80.0 90.3 

Task 2: animals vs sports 
RF 77.4 80.0 
NB 73.6 80.5 

Table 2- Classification accuracy [%] on the full labelled version of 
the training set for each data view 

 
The strength of the two views is shown in the first two col-
umns of Table 2. The baseline accuracy1 is determined by 
the class distribution and it is 60.8% for task 1 and 55.2% 
for task 2. Thus, the two views on both tasks are reasonably 
strong. For RF the two views are of similar strength, while 
for NB V2 is stronger than V1 with 10-17%.  
 
6.2. Co-training evaluation 
The co-training results are given in Table 3. The column it0 
shows the accuracy of the combined classifier trained on the 
initial set of 10 labelled examples before the co-training 
(iteration 0). The column it20 shows the accuracy at the end 
of co-training, i.e. after iteration 20, where the number of 
training examples is 48 for task 1 (8 initially labelled +20x2 
self-labelled) and 210 for task 2 (10 initially labelled 
+20x10 self-labelled). The column increase presents the 
difference between iteration 20 and 0; thus, positive num-
                                                           
1 The so called ZeroR accuracy is calculated by assigning each test 
example to the majority class in the training data. 

bers indicate improvement over the base classifier trained on 
the initial set of labelled examples, and negative numbers 
indicate decline in performance. The column gap indicates 
the difference between the goal accuracy and it20’s accu-
racy. As a goal accuracy we consider the accuracy of a clas-
sifier trained on the labelled version of all training data (both 
views), using 10-fold cross validation (i.e. trained on 138 
examples with 221 features in task 1, and 827 examples with 
288 features in task 2). Figures 3 and 4 present the co-
training learning curves, together with the goal accuracies. 
For the mixed classifier RF-NB, the goal accuracy is the 
highest of NB goal and RF goal.  

 
 it0 

 
it20 

 
increase 
(it20-it0) 

gap 
(goal-it20) 

Task 1: indoors vs outdoors 
RF-RF 79.1  78.4 -0.7 11.9 
NB-NB 82.4  87.7 5.3 1.5 
RF-NB 82.9  84.3 1.4 7.4 

Task 2: animals vs sports 
RF-RF 70.0 78.2 8.2 3 
NB-NB 73.5 76.4 2.9 1.2 
RF-NB 76.9 79.7 2.8 1.5 

Table 3 - Co-training results: accuracy [%] of combined classifier 
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Figure 3 - Co-training on task 1 

 
Task 2: animals vs sports
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Figure 4 - Co-training on task 2 

On task 1 NB-NB was the most successful classifier: it im-
proved over the initial classifier achieving the highest accu-
racy value and smallest gap. The mixed classifier RF-NB 
came second and also benefited from co-training. RF-RF 
achieved an improvement over the initial classifier in itera-
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tion 12 but was not able to sustain it and by iteration 20 de-
creased the performance of the initial classifier with 0.7%.  
 
On task 2, all classifiers were successful in a co-training 
environment, improving the accuracy of the initial classifier. 
The mixed classifier obtained the highest accuracy value, 
followed by RF-RF and NB-NB. The smallest gap was ob-
tained by NB-NB and the highest improvement by RF-RF.  
 
Overall, NB-NB was the most successful classifier in reduc-
ing the gap. Co-training with NB using 8-10 labelled exam-
ples and trained for 20 iterations achieved an accuracy rate 
of only 1.2-1.5% lower that NB trained on the labelled ver-
sion of the training set (138 examples in task 1 and 827 in 
task 2).  
 
The mixed classifier RF-NB was overall the best classifier 
in terms of accuracy value, coming second in task 1 and first 
in task 2. Recall that on task 2 both RF and NB performed 
very well individually, labelling correctly the most confident 
examples. Given this, the mixed co-training classifier was 
able to additionally benefit from the different inductive bi-
ases of the two algorithms and improve performance. On 
task 1 there was a big difference in the individual perform-
ance of NB and RF, and RF-NB was able to improve over 
the weaker of them but not to outperform the stronger. 
 
To summarise, the results show that co-training can be suc-
cessfully used for image classification. However, it is sensi-
tive to the base classifier used, which confirms the observa-
tion of Kiritchenko and Matwin [3]. On the task of e-mail 
filing into folders they found that support vector machines 
benefited from co-training while the performance deterio-
rated when using NB. Despite this sensitivity to the classifi-
ers used, our results show that co-training can benefit from 
using different base classifiers. When the two base classifi-
ers worked well in a co-training setting, the mixed classifier 
outperformed both of them. When one of the base classifiers 
worked well but the other did not, the mixed classifier out-
performed the unsuccessful base classifier. 
  
In a practical application of co-training there are important 
questions that need to be answered: Given a small set of 
labelled examples, how do we know if co-training will be 
successful? How do we select the number of examples to be 
transferred to the labelled set at each iteration? How long 
should we run the co-training algorithm before the labelling 
accuracy deteriorates? Which is the best choice for base 
classifiers? All these are open research questions. The good 
news is that we may be able to learn these parameters in 
image classification tasks. In image classification very often 
we use the same feature sets to solve different problems; 
even in this study we use the same feature sets (colour and 
edge) for two different image classification tasks (indoors vs 
outdoors and animals vs sports). Given enough examples of 
successful and unsuccessful co-training, we can learn to 
predict if co-training with these views will be useful in a 
new task, and what the parameters should be. For example, 
as meta-features one can use the accuracy of the classifier 

trained on the small labelled set, the agreement between 
these classifiers on the unlabelled data, dataset characteris-
tics such as number and type of attributes, and more com-
plex statistical measures. Thus, the task can be cast as meta-
learning. Muslea et al. [11] described an approach that at-
tempts to learn if two views are sufficiently compatible in 
multi-view learning for the tasks of wrapper induction and 
text classification. In the area of algorithm selection, we 
have developed an approach which, for a given task, selects 
the best classifier from a set of classifiers, given their previ-
ous performance on other problems [12]. We plan to extend 
these approaches to predict if a task is suitable for co-
training, and what the co-training parameters should be. 
 

7. CONCLUSIONS 

We present a case study of co-training in the area of image 
classification. The results show that co-training with NB, 
using 8-10 labelled examples and trained for 20 iterations, is 
able to obtain accuracy only 1.2-1.5% lower that NB trained 
on the full labelled version of the training set (138 examples 
in task 1 and 827 examples in task 2). RF was shown to 
benefit from co-training in one of the tasks and slightly to 
decrease the performance of the initial classifier in the other 
task. Thus, co-training is sensitive to the choice of base clas-
sifier. The proposed modification of the co-training algo-
rithm, motivated by the different inductive basis of classifi-
ers, was shown to be a promising approach and needs fur-
ther investigation. Another avenue for future work is to ap-
ply meta-learning to learn to predict if co-training is suitable 
for a new task, and what its parameters should be. Image 
classification is particularly suitable for this task as there are 
different tasks characterised by the same views. 
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