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ABSTRACT

Coupling GPS with Inertial Navigation Systems (INS) is an inter-
esting way of improving navigation performance in terms of ac-
curacy and continuity of service. This coupling is generally per-
formed by using GPS pseudorange measurements to estimate INS
estimation errors and sensor biases. Particle filtering techniques
are good candidates to solve the corresponding estimation prob-
lem due to the nonlinear measurement equation. However, classi-
cal particle filter algorithms tends to degenerate for this application
because of the small state noise. Regularized particle filters allow
to overcome this limitation at the expense of noisy state estimates.
A recent regularized particle filter was proposed to control the reg-
ularization process by a Metropolis-Hasting step. The method was
shown to increase particle filter robustness while decreasing the
variance of the estimates. This paper goes further by introduc-
ing an appropriate criterion which measures the degeneracy of the
particle cloud. This criterion is used to control the regularization
which is not applied systematically reducing the algorithm compu-
tational cost. The main idea of the proposed strategy is to monitor
on line the mean jumps of the predicted measurement likelihood
by means of a CUSUM algorithm. Simulation results are proposed
to validate the relevance of the criterion and the performance of the
overall algorithm.

1. INTRODUCTION

Inertial Navigation Systems (INS) have become standard equip-
ment on planes, ships or submarines due to their reliability and
short-term accuracy. INS are based on accelerometers that directly
measure the motion of the vehicle in a frame whose orientation
is defined by a set of gyrometers. These measurements are inte-
grated to yield the navigation solution, i.e. the position and veloc-
ity of the vehicle. This principle makes INS inherently robust to
external perturbations but very sensitive to sensor inaccuracies. In-
deed, small measurement errors result in unbounded position and
velocity errors. External aiding is an efficient way of correcting
INS drifts while taking advantage of inertial navigation accuracy.
INS are classically coupled with GPS because of GPS availability
and world-wide coverage. This paper considers a tight integration
whereby GPS measurements are used to calibrate INS sensors and
compensate for INS estimation errors.
Particle filters (PFs) are good candidates to solve the estimation
problem associated to INS/GPS hybridization, because of the non-
linear measurement equation. PFs belong to the class of sequential
Monte Carlo methods, which provide a set of powerful algorithms
allowing to handle nonlinear and non Gaussian state space mod-
els. These algorithms approximate the posterior distribution of the
unknown parameters by a swarm of weighted samples called par-
ticles. However, the instability of INS states combined with the

small dynamic noise tend to make classical PFs diverge. Regu-
larized Particle filters (RPFs), first introduced in [1], have proved
efficient to prevent sample depletion. However, they are known to
artificially increase the variance of the estimates. This study pro-
poses some extensions to RPFs which overcome this limitation.
First, an efficient degeneracy measurement is introduced to prevent
systematic regularization. Second, a Metropolis-Hastings step al-
lows to select relevant particles from the regularization process.
The paper is organized as follows. Section2 briefly recalls the
principles of GPS and INS navigation as well as the associated hy-
bridization state space model. Section3 introduces RPFs which
allow to solve the navigation problem due to the INS/GPS state
space model characteristics. The main limitations of RPFs are
also outlined. Section4 presents an improved RPF decomposed
in two steps controlling regularization and preserving the particle
distribution. Simulation results illustrating the interest of the pro-
posed strategy are shown in Section5. Conclusions are reported
in Section6.

2. GPS/INS INTEGRATION

GPS/INS integration is motivated by the complementary charac-
teristics of the two systems: INS slow drifts are compensated by
GPS long term accuracy whereas INS can coast during GPS out-
ages. The coupling between GPS and INS is classically performed
by means of an hybridization filter that fuses information from
both navigation systems to compute the mobile dynamics. The
preferred embodiment consists of processing GPS measurements
to estimate slowly varying INS errors. The state model then de-
scribes INS error dynamic behavior while the observation equation
relates GPS measurements to the components of the state vector.

2.1. State model

The idea of INS is to integrate acceleration signals to determine
velocity and position in a desired frame of reference. A set of
onboard sensors are used to achieve this goal:

• 3 accelerometers measure the non gravitational inertial ac-
celeration along their axes,

• 3 gyrometers provide the angular velocity of the vehicle,
hence the orientation of the sensor frame.

Denotext and ut the vectors of the unknown motion parame-
ters and the sensor outputs, respectively. These vectors are related
through the following differential equation (1):

ẋt = f(ut, xt), (1)

which is solved online by the INS computer. The navigation solu-
tion is expressed in a convenient frame of reference on the basis of



the gyrometer outputs. Due to the successive integrations, estima-
tion errors due to sensor biases or misalignments grow unbounded.
The equation describing the error dynamics is obtained by lineariz-
ing the differential equation (1) around the INS states as follows:

δẋt =
∂f

∂xt
(xt,ins, ut,ins) δxt +

∂f

∂ut
(xt,ins, uins) δut, (2)

δxt = xt − xt,ins, (3)

δut = ut − ut,ins, (4)

where the subscript”ins” refers to the quantities sensed or mea-
sured by the INS. The hybridization state vector is composed of
the estimation and instrumentation errors, denoted asδxt andδut,
respectively. A convenient model for INS sensor biases is required
to make the state model complete. They are typically represented
as first-order Gauss Markov models defined as:

δu̇t = Aδut + vu,t,

wherevu is a white Gaussian noise sequence andA is a diago-
nal matrix whose elements depends on the correlation time of the
sensor biases [2, p. 81].

2.2. Measurement model

GPS navigation is based on distance measurements directly re-
lated to the unknown mobile position, i.e., to the INS position-
ing error. These measurements are obtained from radio-frequency
satellite signals processed by an onboard receiver. They are called
pseudoranges to account for various degradations ranging from at-
mospheric delays to non-synchronization of satellite and GPS re-
ceiver clocks. The following mathematical model holds for GPS
measurements:

Y t,i = ht,i (x) + bt + wt,i, i = 1, . . . , ns, (5)

wherens is the number of in-view satellites at timet, wt,i is a
white Gaussian noise sequence,bt is the GPS clock offset, and

ht,i (x) =
p

(xt,i − xt)2 + (yt,i − yt)2 + (zt,i − zt)2,

where the vectors(xt,i, yt,i, zt,i) and(xt, yt, zt) denote the posi-
tions of the vehicle and of theith satellite at timet (expressed in
rectangular coordinates). The dependance of the measurements on
the state parameters can be made explicit by rewriting the mobile
position as:

xt = xt,ins + δxt,

yt = yt,ins + δyt,

zt = zt,ins + δzt,

where(δxt, δyt, δzt) is the vector of INS positioning errors. The
GPS clock offset is considered as an additional unknown and is
consequently appended to the hybridization state vector.

2.3. State model analysis

The overall state space model takes the form:

˙0� δxt

δut

bt

1A=

0� ∂f
∂x |xins

∂f
∂x |u ins

[0]

[0] A [0]
[0] [0] B

1A0� δx
u

bt

1A+

0� 0

vu

vb

1A ,

Y t = ht (xt) + bt + wt,

wherebt =
�
bt, ḃt

�
. The elements of the state matrix are not

detailed herein, for simplicity. However, they can be found in
many textbooks dealing with inertial navigation such as [2, p. 152]
for the receiver clock bias dynamic model and [2, p. 204] for
the nominal INS error block. We denote the state vectorX t =
(δxt, δut, bt) afterwards. The characteristics of the discrete-time
equivalent state space model [3] arise many difficulties, causing
classical PF algorithms to be inefficient. First, INS positioning er-
rors are in first approximation exponentially unstable. Second, the
kinematic components of the dynamical system are nearly noise-
free.

3. PARTICLE FILTERING TECHNIQUES

The Bayesian approach to solving estimation problems consists of
computing the posterior distributionp (X t|Y 1:t) of the unknown
state vectorX t given the measurementsY 1:t. As an alterna-
tive to the classical Kalman filter, sequential Monte Carlo methods
(SMC) have gained increasing interest for nonlinear systems. The
main idea of SMCs is to approximate the posterior distribution of
interest by a set of weighted samples called particles as follows:bp (X t|Y 1:t) =

NX
i=1

w
(i)
t δ
�
X t − X

(i)
t

�
.

The particle system evolves according to an importance-sampling
rule and is made to interact through repeated resampling steps.
More precisely, the particles are simulated sequentially according
to a proposal distribution:

X
(i)
t ∼ q

�
X t|X

(i)
1:t−1, Y 1:t

�
, for i = 1, . . . , N.

They are then assigned importance weights to correct for the dis-
crepancy between the proposal and the target distribution:

wt = w̃
(i)
t /

NX
k=1

w̃
(k)
t where, (6)

w̃
(i)
t =

w
(i)
t−1p

�
Y t|X

(i)
1:t, Y 1:t−1

�
p
�
X

(i)
t |X

(i)
1:t−1

�
q (X t|X1:t−1, Y 1:t)

.(7)

According to (7), the most likely particles yield high importance
weights. A selection step is finally introduced to prevent degener-
acy. This selection is performed by resampling the set of particles
according to the obtained approximation of the posterior distri-
bution. Thus, low-weighted particles are discarded whereas the
surviving particles are ensured to contribute efficiently to the es-
timation. However, systematic resampling is known to result in a
loss of sample diversity. A measure of degeneracy, called effective
sample size and denotedNeff, has been introduced inLiu to decide
whether resampling is useful or not:

Neff =
1PN

k=1

�
w

(k)
t

�2 .

The selection procedure is carried out wheneverNeff is below a
given threshold.
The earliest contribution in the field of particle filtering was the
seminal paper of [4] which introduced ”the bootstrap filter”. This
algorithm has appealing properties and is straightforward to imple-
ment due to a simple proposal distribution defined as thea priori



dynamic model of the unknown parameters. However, the algo-
rithm has shown deficiencies in some applications, including for
instance the cases where the dynamic noise is small. This prob-
lem has received much attention in the literature. Improvements to
the classical PF have been proposed including efficient sampling
strategies and techniques introducing sample diversity.
A special care should be taken to design efficient PFs to cope with
INS error estimation. Indeed, the system instability tend to make
samples move away from each other until few particles are likely
regarding the current measurement. Consequently, the resampling
step results in an impoverishment of the particle system. More-
over, diversity cannot be reintroduced at the simulation step due
to the small noise affecting the INS error states. The regions of
the state space corresponding to high values of theposteriordis-
tribution p (X t|Y 1:t) are gradually depleted of particles and the
PF fails to track properly the unknown parameters. Although more
appropriate proposal distributions allow to slow down the degener-
acy, they turn out to be inefficient to prevent it. The most promising
solutions allowing to reduce degeneracy are probably the regular-
ized particle filters (RPFs). This section ends with a brief presen-
tation of these filters and a discussion of their shortcomings.
Regularization consists of resampling the particles according to a
continuous approximation of the target distribution so that all the
particles obtained have different locations. The smoothing is per-
formed by convoluting the discrete PF approximation with a kernel
whose properties are provided by the density estimation theory [5].
The resulting continuous approximation takes the following form:bpc(X t|Y 1:t) =Kh ∗

NX
i=1

w
(i)
t δ
�
X t − X t

(i)
�

, (8)

=
NX

i=1

w
(i)
t Kh(X t − X t

(i)). (9)

The rescaled kernelKh appearing in the estimated posterior dis-
tribution (8) is defined as:

Kh =
(detS)−1/2

h

nx

K

�
1

h
A−1

x

�
,

whereh is the kernel bandwidth,nx is the dimension of the state
vector andS = AAT is the covariance matrix of the particle sys-
tem. It is important to note that the convergence ofbpc(X t|Y 1:t) to
p(X t|Y 1:t) as the number of particles tends to infinity is ensured
when the kernel densityK satisfies the following conditions:

- K is a symmetric probability density function,

-
R

K(X)dX = 1,

-
R
‖X‖2K(X)dX < ∞.

The parameterh and the kernelK are usually chosen to mini-
mize the mean integrated square error between the target posterior
pdf and the regularized approximation [5]. In the case of equally
weighted samples, the optimal kernel is known to be the Epanech-
nikov Kernel. However, a Gaussian kernel can be used instead,
by simplicity. This approach can be seen as introducing additional
noise to compensate for the small dynamic noise that the model
really exhibits. In this way, sample depletion is avoided at the cost
of an increased variance of the estimates.

4. IMPROVED RPF

This study proposes two improvements to the classical RPF which
yield tighter state estimates without impairing the algorithm sta-
bility. First, a detection criterion is introduced indicating whether
regularization should be applied. Second, we propose to introduce
a Metropolis-Hastings (MH) step to accept/reject the particles re-
sulting from the regularization. This second step ensures that the
simulated samples are distributed according to the target posterior
distributionp(X t|Y 1:t). The MH step was detailed in [3]. Con-
sequently, this paper focuses on the detection criterion used before
regularization.

4.1. Controlling Degeneracy

A way of mitigating regularization shortcomings consists of ap-
plying regularization only in cases where an abnormal behavior of
the PF has been detected. A measure of degeneracy similar to the
effective sample size may not be appropriate for that purpose. In-
deed,Neff is related to the variance of the particle set but does not
provide any relevance regarding the current measurement. Instead,
we propose to control regularization by means of a similarity mea-
sure between the predictive distributionbp (X t|Y 1:t−1) and the
likelihood functionp (Y t|X t, Y 1:t−1). The choice of this crite-
rion is motivated by the analysis of PF degeneracy conducted in
section3. The similarity measure used in this paper is:

Lt =

Z
p (Y t|X t, Y 1:t−1) bp (X t|Y 1:t−1) dX t, (10)

where:bp (X t|Y 1:t−1) =
NX

i=1

w
(i)

t|t−1δ
�
X t − X

(i)
t

�
, (11)

w
(i)

t|t−1 ∝ w
(i)
t

p
�
X t|X

(i)
0:t−1, Y 1:t−1

�
q
�
X t|X

(i)
0:t−1, Y 1:t−1

� . (12)

Eqs. (10) and (11) yield the following expression forLt:

Lt =
NX

i=1

p
�
Y t|X

(i)
t , Y 1:t−1

�
w

(i)

t|t−1.

Note that in the case where the particles are propagated directly
according to the state model,Lt reduces to the sum of the impor-
tance weights previous to normalization:

Lt =
NX

i=1

w̃
(i)
t ,

which makes sense. The parameterLt represents the overall rele-
vance of the set of particles.
This paper argues that the processLt undergoes a gradual mean
value change when the predictive distribution and the likelihood
function significantly differ. As a consequence, we propose an
on-line detection of this drift to control regularization. The pro-
posed test statistics, inspired by the CUSUM algorithm [6], is the
difference between the current value ofLt and its estimated mean
〈Lt〉. This test statistic behaves as a random walk in the absence of
mean value change and starts to grow significantly otherwise. An
alarm is set when the test statistics exceeds an appropriate thresh-
old. More precisely, a two-sided test is performed to deal with both



increase and decrease of the mean value ofLt. The algorithm is
summarized in Table (1). It requires to tune the parametersh and
ν which have a strong impact on the probability of false alarm and
the probability of non-detection. From a practical point of view,
non detection is prejudicial to the PF performance and should be
avoided, resulting in small values ofh andν.

Initialization: t0, T
1
0 , T 2

0 = 0.

tth iteration:
〈Lt〉 =

1

t − t0

tX
k=t0+1

Lk,

rt = Lt − 〈Lt〉,

T 1
t = max

�
T 1

t−1 + rt − ν, 0
�
,

T 2
t = max

�
T 2

t−1 − rt − ν, 0
�
,

If (T 1
t > h) ot (T 2

t > h),
• set the alarm,
• T 1

t = 0 andT 2
t = 0,

• t0 = t.

Table 1. Two-sided CUSUM.

4.2. Metropolis-Hastings step

Regularization prevents sample impoverishment but results in noisy
estimates. Contrary to classical PF, RPF particles are indeed no
longer distributed according to the target distribution. A possible
remedy consists of propagating only the relevant particles accord-
ing to a Metropolis-Hastings scheme. As a consequence, the regu-
larization kernel is considered as the proposal distribution of a MH
algorithm whose invariant distribution is the posterior distribution
p (X0:t|Y 1:t). Particle candidates are generated according to the
regularization kernel

X
′(i)
t ∼ Kh

�
X

′(i)
t − X

(i)
t

�
.

These candidates are accepted with the usual acceptance probabil-
ity αt = min(1, rt), where

rt =
p
�
X

(i)
0:t−1, X

′(i)
t |Y 1:t

�
Kh

�
X

(i)
t − X

′(i)
t

�
p
�
X

(i)
0:t|Y 1:t

�
Kh

�
X

′(i)
t − X

(i)
t

� , (13)

otherwiseX
(i)
t is left unchanged. The acceptance procedure ie

repeated several times to improve convergence. However, few it-
erations are required since the particles already form a point-mass
approximation of the posterior distribution. A closer analysis of
the acceptance ratio yields:

rt =
p
�
X

′(i)
t |X

(i)
t−1

�
p
�
Y t|X

′(i)
t

�
Kh

�
X

(i)
t − X

′(i)
t

�
p
�
X

(i)
t |X

(i)
t−1

�
p
�
Y t|X

(i)
t

�
Kh

�
X

′(i)
t − X

(i)
t

� .

The probability for the particleX
′(i)
t to be an offspring of the

parent particleX (i)
t−1 is negligible due to the small process noise.

Consequently,p
�
X

′(i)
t |X

(i)
t−1

�
is very low, leading to a low ac-

ceptance probabilityαt. The renewal of the set of particles is
therefore expected to be insufficient. A solution was proposed in
a previous paper [3] that consists of moving a block of consecu-

tive particlesX
′(i)
t−L:t−1 (with L > 0) originated from the can-

didateX
′(i)
t . The algorithm then decide betweenX

′(i)
t−L:t−1 and

X
(i)
t−L:t−1 by applying the MH rule.

5. SIMULATION RESULTS

The performance of the algorithm has been tested from several
simulated data. To make the simulations realistic, the following
INS platform has been implemented:

• computation of the IRS sensor outputs for a given vehicle
trajectory depending on the class of sensors,

• on-line solution to the IRS navigation problem on the basis
of these measurements.

A slowly maneuvring vehicle is studied, which makes the estima-
tion problem more difficult. Indeed, such trajectories only allow a
partial correction of INS errors. In particular, the angles defining
the orientation of the mobile cannot be recovered properly. The as-
sociated GPS pseudoranges have been generated according to (5)
from real GPS satellite orbital parameters. Low-cost IRS sensors
have been considered, yielding important drift of IRS positioning
estimates.
The good behavior of the proposed RPF is emphasized by compar-
ing different PF strategies. The vertical INS channel is well known
to be the most critical due to gravitational effects. Therefore, the
analysis focuses on vertical INS errors. All tested PFs operate with
2000 particles. The following set of parameters has been used for
the controlled RPF :h = 10−10, ν = 10−11 andL = 6. Figures
(1), (2), (3) show typical INS drifts and the corresponding esti-
mates obtained respectively from a classical PF, the RPF and the
improved RPF. Note that the standard PF has been implemented
by using an approximation of the optimal proposal distribution in
the sense that it minimizes the variance of the importance weights
[7]. However, this algorithm loses track of the vertical IRS error
whereas RPFs recover the correct trajectory. Although both RPFs
track successfully the vehicle dynamics, the proposed approach
clearly yield less noisy estimates.

To better evaluate the performance of the algorithms, the follow-
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Fig. 1. INS vertical drift estimation-standard PF.
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Fig. 2. INS vertical drift estimation-standard RPF.
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Fig. 3. INS vertical drift estimation-improved RPF.

ing results have been averaged from100 Monte Carlo runs. The
root mean square estimation error (RMSE) for the jth component
of the state vectorXt can then be computed as follows:s

E

��
X t [j] −
X t [j]

�2
�

≃

vuut 1

M

MX
k=1

�
X t [j] −
Xk

t [j]
�2

,

where
Xk

t stands for the kth run estimate. The obtained RMSE
are compared to the lower limit provided by the Posterior Cramer
Rao Bound, which is the Bayesian version of the classical Cramer
Rao Bound. Theoretical background as well as recursive formula
to compute the PCRB can be found for instance in [8]. The re-
sults are presented on figures (4) and (5). The proposed approach
enhances estimation accuracy, especially for the velocity parame-
ters. The estimation error of the standard PF grows unbounded due
to degeneracy, contrary to RPFs demonstrating good convergence
properties. However, the improved RPF achieves smaller RMSEs
than all other filters by decreasing the variance of the estimates.

6. CONCLUSION

INS cannot be used as sole-means of navigation due to their inher-
ent instability. They are therefore integrated with ancillary sensors
such as GPS by means of an hybridization filter. Among different
existing PF strategies studied, the RPF was selected as the most ro-
bust algorithm regarding a small variance of the state noise. How-
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Fig. 4. RMSE-vertical position.
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ever, this approach is known to artificially increase the variance of
the estimates. This paper proposed two extensions to benefit from
RPF stability while improving the estimation accuracy. Thus, reg-
ularization was controlled by means of a MH step which guaran-
teed that the set of particles was distributed according to the target
distribution. In addition, an efficient criterion was introduced to
decide whether to regularize. The performance of the resulting
algorithm was illustrated through simulation results.
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