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ABSTRACT small dynamic noise tend to make classical PFs diverge. Regu-

Coupling GPS with Inertial Navigation Systems (INS) is an inter- Iar_iz_ed Particle filters (RPFs), firs_t introduced in [1], have proved
esting way of improving navigation performance in terms of ac- efficient to prevent sample depletion. However, they are known to

curacy and continuity of service. This coupling is generally per- artificially increase the variance of thg estimates. Thi§ st.ud.y pro-
formed by using GPS pseudorange measurements to estimate IN§0S€S some extensions to RPFs which overcome this limitation.
estimation errors and sensor biases. Particle filtering techniques 'St @n efficient degeneracy measurementis introduced to prevent

are good candidates to solve the corresponding estimation prob_systematic regularization. Second, a Metropolis-Hastings step al-

lem due to the nonlinear measurement equation. However, classilows to select relevant particles from the regularization process.

cal particle filter algorithms tends to degenerate for this application 1€ Paper is organized as follows. Sectibiriefly recalls the
because of the small state noise. Regularized particle filters allowPrinciples of GPS and INS navigation as well as the associated hy-
to overcome this limitation at the expense of noisy state estimates.Pridization state space model. Sectidimtroduces RPFs which

A recent regularized particle filter was proposed to control the reg- &/l0W to solve the navigation problem due to the INS/GPS state
ularization process by a Metropolis-Hasting step. The method wasSPace model characteristics. The main limitations of RPFs are
shown to increase particle filter robustness while decreasing the2!SC outlined. Sectiod presents an improved RPF decomposed

variance of the estimates. This paper goes further by introduc-!

in two steps controlling regularization and preserving the particle
ing an appropriate criterion which measures the degeneracy of thedistribution. Simulation results illustrating the interest of the pro-

particle cloud. This criterion is used to control the regularization PoSed strategy are shown in SectianConclusions are reported

which is not applied systematically reducing the algorithm compu- N Section6.

tational cost. The main idea of the proposed strategy is to monitor

on line the mean jumps of the predicted measurement likelihood 2. GPS/INSINTEGRATION

by means of a CUSUM algorithm. Simulation results are proposed

to validate the relevance of the criterion and the performance of the GPS/INS integration is motivated by the complementary charac-

overall algorithm. teristics of the two systems: INS slow drifts are compensated by

GPS long term accuracy whereas INS can coast during GPS out-
ages. The coupling between GPS and INS is classically performed
by means of an hybridization filter that fuses information from

Inertial Navigation Systems (INS) have become standard equip-P0th navigation systems to compute the mobile dynamics. The
ment on planes, ships or submarines due to their reliability and preferred embodiment consists of processing GPS measurements

short-term accuracy. INS are based on accelerometers that directly©® €Stimate slowly varying INS errors. The state model then de-
measure the motion of the vehicle in a frame whose orientation SCbes INS error dynamic behavior while the observation equation
is defined by a set of gyrometers. These measurements are interelates GPS measurements to the components of the state vector.

grated to yield the navigation solution, i.e. the position and veloc-
ity of the vehicle. This principle makes INS inherently robust to 2.1. State model
external perturbations but very sensitive Fo SEnsor inaccuractes. In The idea of INS is to integrate acceleration signals to determine
deed, small measurement errors result in unbounded position and : o i
! S - ) velocity and position in a desired frame of reference. A set of
velocity errors. External aiding is an efficient way of correcting - ) i
; ; . - L0 onboard sensors are used to achieve this goal:
INS drifts while taking advantage of inertial navigation accuracy. - o
INS are classically coupled with GPS because of GPS availability =~ ® 3 accelerometers measure the non gravitational inertial ac-

1. INTRODUCTION

and world-wide coverage. This paper considers a tight integration celeration along their axes,
whereby GPS measurements are used to calibrate INS sensors and o 3 gyrometers provide the angular velocity of the vehicle,
compensate for INS estimation errors. hence the orientation of the sensor frame.

Paréilcle filters (PFZ) are g;)gdsc?lngid;tes to stg)lve the efSthationDenotemt and u; the vectors of the unknown motion parame-
problem associated to INS/GPS hybridization, because of the non- .

linear measurement equation. PFs belong to the class of sequentieiﬁrs anlgitrefSﬁnsc_)r Olét_?futs, rtt_aslpectlvte_zly. Tlht.ase vectors are related
Monte Carlo methods, which provide a set of powerful algorithms rough the following differential equation (1):
allowing to handle nonlinear and non Gaussian state space mod- @ = flus, x0), 1)

els. These algorithms approximate the posterior distribution of the

unknown parameters by a swarm of weighted samples called par-which is solved online by the INS computer. The navigation solu-

ticles. However, the instability of INS states combined with the tion is expressed in a convenient frame of reference on the basis of



the gyrometer outputs. Due to the successive integrations, estimawhereb, = (b:,b:). The elements of the state matrix are not
tion errors due to sensor biases or misalignments grow unboundedgetajled herein, for simplicity. However, they can be found in
The equation describing the error dynamics is obtained by lineariz- many textbooks dealing with inertial navigation such as [2, p. 152]
ing the differential equation (1) around the INS states as follows: for the receiver clock bias dynamic model and [2, p. 204] for

. of of the nominal INS error block. We denote the state vecXor =
0x: = D (+,ins, Us,ins) O+ + Dl (2+,ins, Uins) Uz, (2) (6x:, duy, by) afterwards. The characteristics of the discrete-time
5 _ t_ _ ¢ 3 equivalent state space model [3] arise many difficulties, causing
e = T = Toins, ®) classical PF algorithms to be inefficient. First, INS positioning er-
dur = U — Ut,ins, (4) rors are in first approximation exponentially unstable. Second, the

kinematic components of the dynamical system are nearly noise-

where the subscrigtins” refers to the quantities sensed or mea- free

sured by the INS. The hybridization state vector is composed of
the estimation and instrumentation errors, denotedcagndow,,
respectively. A convenient model for INS sensor biases is required 3. PARTICLE FILTERING TECHNIQUES

to make the state model complete. They are typically represented . . L .
as first-order Gauss Markov models defined as: The Bayesian approach to solving estimation problems consists of

computing the posterior distributign(X :|Y 1.¢) of the unknown

Sty = Adus + Vuy, state vectorX,; given the measuremen®,... As an alterna-

' tive to the classical Kalman filter, sequential Monte Carlo methods
wherewv,, is a white Gaussian noise sequence ahis a diago- (SMC) have gained increasing interest for nonlinear systems. The
nal matrix whose elements depends on the correlation time of themain idea of SMCs is to approximate the posterior distribution of
sensor biases [2, p. 81]. interest by a set of weighted samples called particles as follows:

N
2.2. Measurement model B(X Y 1) = ng% (Xt _ Xil)) ‘
GPS navigation is based on distance measurements directly re- i=1

lated to the unknown mobile position, i.e., to the INS position- The particle system evolves according to an importance-sampling
ing error. These measurements are obtained from radio-frequency,je and is made to interact through repeated resampling steps.

satellite signals processed by an onboard receiver. They are calleq;ore precisely, the particles are simulated sequentially according
pseudoranges to account for various degradations ranging from aty, 5 proposal distribution:

mospheric delays to non-synchronization of satellite and GPS re-

ceiver clocks. The following mathematical model holds for GPS Xii) ~g (Xt|X§Z:Z’,1,Y1:t)  fori=1,...,N.
measurements: :
. L They are then assigned importance weights to correct for the dis-
Yii=hei(@)+betwei, i=1,...,ns ®) crepancy between the proposal and the target distribution:
wheren, is the number of in-view satellites at timew, ; is a N
white Gaussian noise sequengegis the GPS clock offset, and - w,ﬁi)/ Z ﬁ)gk) where (6)
k=1
hyi(x)= \/(th — )2+ (Yo —Ye)? + (20,0 — 2¢)?, ) ) ) )
, wi\p (YAX&?L let,l) p (XEZ)\X%LJ
. e : :
where the vectorér: i, y:.:, z:,:) and(z:, yt, z;) denote the posi- e (7)
tions of the vehicle and of thah satellite at timeg (expressed in q (X[ X1:-1, Y1)

rectangular coordinates). The dependance of the measurements oRccording to (7), the most likely particles yield high importance

the state parameters can be made explicit by rewriting the mobileyeights. A selection step is finally introduced to prevent degener-
position as: acy. This selection is performed by resampling the set of particles
according to the obtained approximation of the posterior distri-

Te = e+ O, bution. Thus, low-weighted particles are discarded whereas the
Yo = Yeins+ 0yt surviving particles are ensured to contribute efficiently to the es-
2t = Ztins+ 0z, timation. However, systematic resampling is known to result in a

loss of sample diversity. A measure of degeneracy, called effective

where(dz, 6yt 02:) is the vector of INS positioning errors. The  sample size and denotéé, has been introduced Lriu to decide
GPS clock offset is considered as an additional unknown and iswhether resampling is useful or not:

consequently appended to the hybridization state vector. )
Neff == -, N2
2.3. Statemodel analysis >N, (wﬁ’“))

The overall state space model takes the form: The selection procedure is carried out wheneWef is below a

5 of of 0] 5 o given threshold.

5”“ _ 0T |zins 0T |uins T The earliest contribution in the field of particle filtering was the
i [0] (0] uw Tl % | seminal paper of [4] which introduced "the bootstrap filter”. This
by [0] 0] B b, v

algorithm has appealing properties and is straightforward to imple-
Y: = hi(xe)+be + wy, ment due to a simple proposal distribution defined asatpeiori



dynamic model of the unknown parameters. However, the algo- 4. IMPROVED RPF

rithm has shown deficiencies in some applications, including for

instance the cases where the dynamic noise is small. This prob-This study proposes two improvements to the classical RPF which
lem has received much attention in the literature. Improvements toyield tighter state estimates without impairing the algorithm sta-
the classical PF have been proposed including efficient samplingbility. First, a detection criterion is introduced indicating whether
strategies and techniques introducing sample diversity. regularization should be applied. Second, we propose to introduce
A special care should be taken to design efficient PFs to cope witha Metropolis-Hastings (MH) step to accept/reject the particles re-
INS error estimation. Indeed, the system instability tend to make sulting from the regularization. This second step ensures that the
samples move away from each other until few particles are likely simulated samples are distributed according to the target posterior
regarding the current measurement. Consequently, the resamplinglistributionp(X:|Y'1.:). The MH step was detailed in [3]. Con-
step results in an impoverishment of the particle system. More- sequently, this paper focuses on the detection criterion used before
over, diversity cannot be reintroduced at the simulation step dueregularization.

to the small noise affecting the INS error states. The regions of

the state space corresponding to high values optigterior dis- 4.1. Controlling Degeneracy

tribution p (X |Y 1.¢) are gradually depleted of particles and the o o . )

PF fails to track properly the unknown parameters. Although more A Way of mitigating regularization shortcomings consists of ap-
appropriate proposal distributions allow to slow down the degener- PIYing regularization only in cases where an abnormal behavior of
acy, they turn out to be inefficient to prevent it. The most promising the PF has been detected. A measure of degeneracy similar to the
solutions allowing to reduce degeneracy are probably the regular-€fféctive sample size may not be appropriate for that purpose. In-
ized particle filters (RPFs). This section ends with a brief presen- d€€d.Net is related to the variance of the particle set but does not
tation of these filters and a discussion of their shortcomings. provide any relevance regarding the current measurement. Instead
Regularization consists of resampling the particles according to aWe Propose to control regularization by means of a similarity mea-
continuous approximation of the target distribution so that all the Suré between the predictive distributigi{ X';|Y 1..-1) and the
particles obtained have different locations. The smoothing is per- likelihood functionp (Y| X+, Y'1..—1). The choice of this crite-
formed by convoluting the discrete PF approximation with a kernel 1ion is motivated by the analysis of PF degeneracy conducted in
whose properties are provided by the density estimation theory [5]. S€Ction3. The similarity measure used in this paper is:

The resulting continuous approximation takes the following form:
Ly :/p(Yt‘XhYl:t—l)ﬁ(Xt|Y1:t—1)dXt, (10)

N
(XY 1) =Kn « > w6 (X - X)), ()  where:
i=1

N
N = _ (%) (4)
; ; D(X¢|Y 1:4-1) g w,, 0 (X —X , (1)
= E wi)Kh(Xt*Xt())- (9) i=1 e ( ‘ )
i=1

P (Xt|X((f3:_1, cht—l)

q (Xt|X(<)3_1aY1:t—1)

(%)
t)t—1

w . (12)

The rescaled kerndk;, appearing in the estimated posterior dis-
tribution (8) is defined as:

n Egs. (10) and (11) yield the following expression for.
(detS)—1/2™

_ I,
Kh— A K(hA w)7

whereh is the kernel bandwidthy,. is the dimension of the state

vector andS = AA” is the covariance matrix of the particle sys- Note that in the case where the particles are propagated directly
tem. Itis important to note that the convergencg4fX +|Y 1.;) to according to the state modél; reduces to the sum of the impor-
p(X,|Y 1..) as the number of particles tends to infinity is ensured tance weights previous to normalization:

when the kernel densiti satisfies the following conditions:

N
Lo=Yp (VX ¥ )l

i=1

N

_ =~ (%)

- K is a symmetric probability density function, L= Z We s
i=1

- JE(X)dX =1, which makes sense. The paramdigerepresents the overall rele-
- [IXI?PK(X)dX < oo. vance of the set of particles.

This paper argues that the procdssundergoes a gradual mean
The parametefh and the kernelK are usually chosen to mini-  value change when the predictive distribution and the likelihood
mize the mean integrated square error between the target posteriofunction significantly differ. As a consequence, we propose an
pdf and the regularized approximation [5]. In the case of equally on-line detection of this drift to control regularization. The pro-
weighted samples, the optimal kernel is known to be the Epanech-posed test statistics, inspired by the CUSUM algorithm [6], is the
nikov Kernel. However, a Gaussian kernel can be used instead,difference between the current valuelofand its estimated mean
by simplicity. This approach can be seen as introducing additional (L.). This test statistic behaves as a random walk in the absence of
noise to compensate for the small dynamic noise that the modelmean value change and starts to grow significantly otherwise. An
really exhibits. In this way, sample depletion is avoided at the cost alarm is set when the test statistics exceeds an appropriate thresh-
of an increased variance of the estimates. old. More precisely, a two-sided test is performed to deal with both



increase and decrease of the mean valug.ofThe algorithm is Consequentlyp (X;“>|X§i)l) is very low, leading to a low ac-
summarized in Table (1). It requires to tune the paramét@sd  ceptance probability,. The renewal of the set of particles is
v which have a strong impact on the probability of false alarm and therefore expected to be insufficient. A solution was proposed in

the probability of non-detection. From a practical point of view, g previous paper [3] that consists of moving a block of consecu-
non detection is prejudicial to the PF performance and should betive particlesX;@L:t,l ith > 0) originated from the can-

avoided, resulting in small values bfandv. . '
didateXt(”. The algorithm then decide betweeﬁt(_l)m_1 and
Xi’;)mfl by applying the MH rule.

Initialization: o, Ty, T¢ = 0.

tth iteration: 1 t 5. SSMULATION RESULTS
(L) = > Ly,

t—to el The performance of the algorithm has been tested from several
re = Li— (L) simulated data. To make the simulations realistic, the following
L o INS platform has been implemented:
T, = T — . . .
tz max ( t;l +re=1,0), e computation of the IRS sensor outputs for a given vehicle
T; = max(T7, —r —1,0), trajectory depending on the class of sensors,

e on-line solution to the IRS navigation problem on the basis

1 2
If (T > h) Ot (T¢" > h), of these measurements.

e set the alarm,

o T} = 0andT? =0, A slowly maneuvring vehicle is studied, which makes the estima-

oty =1 tion problem more difficult. Indeed, such trajectories only allow a
partial correction of INS errors. In particular, the angles defining
the orientation of the mobile cannot be recovered properly. The as-
sociated GPS pseudoranges have been generated according to (5)

Table 1. Two-sided CUSUM. from real GPS satellite orbital parameters. Low-cost IRS sensors
have been considered, yielding important drift of IRS positioning
estimates.

4.2. Metropolis-Hastings step The good behavior of the proposed RPF is emphasized by compar-

ing different PF strategies. The vertical INS channel is well known
Regularization prevents sample impoverishment but results in noisyto be the most critical due to gravitational effects. Therefore, the
estimates. Contrary to classical PF, RPF particles are indeed naanalysis focuses on vertical INS errors. All tested PFs operate with
longer distributed according to the target distribution. A possible 2000 particles. The following set of parameters has been used for
remedy consists of propagating only the relevant particles accord-the controlled RPF 4 = 107°, v = 107! andL = 6. Figures
ing to a Metropolis-Hastings scheme. As a consequence, the regu{1), (2), (3) show typical INS drifts and the corresponding esti-
larization kernel is considered as the proposal distribution of a MH mates obtained respectively from a classical PF, the RPF and the
algorithm whose invariant distribution is the posterior distribution improved RPF. Note that the standard PF has been implemented
p(Xo:¢|Y 1.¢). Particle candidates are generated according to the by using an approximation of the optimal proposal distribution in

regularization kernel the sense that it minimizes the variance of the importance weights
. . _ [7]. However, this algorithm loses track of the vertical IRS error
XY~ K, (Xt“) _ X,(f)) ) whereas RPFs recover the correct trajectory. Although both RPFs
track successfully the vehicle dynamics, the proposed approach
These candidates are accepted with the usual acceptance probabiflearly yield less noisy estimates. _
ity o, = min(1,;), where To better evaluate the performance of the algorithms, the follow-
P X Op ) R (- x0) e TR
t — N (5 R ’ /)
» (X0v ) 7o (X0 x0) )

w
o
o
~
B

otherwiseXE” is left unchanged. The acceptance procedure ie
repeated several times to improve convergence. However, few it-
erations are required since the particles already form a point-mass
approximation of the posterior distribution. A closer analysis of
the acceptance ratio yields:

INS altitude error (m)
N
o
(=]

=
o
o

P (Xt(”\XEi)l) » (YtIXt(")) K, (Xi“ _ Xt(i))
Tt = i i i G ) 0 ) ; ;
P (Xg )‘XQI) P (Yt|X£ )) K (Xt( ) _ X}(5 )) 0 100 200, (5)300 400 500
The probability for the particleX ,” to be an offspring of the Fig. 1. INS vertical drift estimation-standard PF.

parent particleXﬁ?1 is negligible due to the small process noise.
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Fig. 3. INS vertical drift estimation-improved RPF. Fig. 5. RMSE-vertical velocity.

ing results have been averaged fra60 Monte Carlo runs. The ever, this approach is known to artificially increase the variance of
root mean square estimation error (RMSE) for tiegomponent the estimates. This paper proposed two extensions to benefit from

. RPF stability while improving the estimation accuracy. Thus, reg-
of the state vectok’ can then be computed as follows: ularization was controlled by means of a MH step which guaran-

teed that the set of particles was distributed according to the target
— 2 1 X —k 2 distribution. In addition, an efficient criterion was introduced to
E ((Xt 7] — X+ [j}) ) ~ | = Z (Xt ] — X [j}) , decide whether to regularize. The performance of the resulting
M b1 algorithm was illustrated through simulation results.

=k . .
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