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ABSTRACT

This paper presents a simplified, low-complexity check node
processor for a decoder of LDPC codes. This is conceived
as the combination of the modified Min-Sum decoding with
the reduction of the number of computed messages to only
P + 1 different values. The simulations with a random code
used as a case study show that this technique performs ex-
cellently even when only two different values are propagated
(P = 1). This result is assumed as the basement to the design
of an optimised serial architecture. The logic synthesis on
0.18 µm CMOS technology shows that our design outper-
forms in complexity similar state–of–the–art solutions and
makes the check node operations no longer critical to the
complexity of the whole decoder.

1. INTRODUCTION

In the ‘post-turbo-codes’ era of forward error correction
history, low-density parity-check (LDPC) codes, first intro-
duced by Gallager in 1963 [1], have gained a big momentum
from academia and industry. Thus, LDPC codes have started
to play a crucial role in modern communication systems,
which are highly demanding for both performance close to
the Shannon limit and very-high data rate services.

After their rediscovery in 1995 [2], several research activ-
ities have aimed at implementing low-complexity and high-
throughput decoders [3]. Indeed, despite the recent advances
in microelectronics technology, the main issue in the de-
coder design is still to keep the circuit complexity under
control; this trouble especially arises in the design of de-
coders for long block codes, as those of DVB-S2 [4], or for
high data rate applications, as WLAN (802.11n) and WMAN
(802.16e). High-speed decoding is usually achieved by hard-
ware replication, paid at the cost of an increased complexity
and chip routing congestion.

One route followed to solve the problem has been the
“decoder–first” [5] or “architecture–aware” design [6], [7],
in which the decoder architecture is first conceived in such
a way to simplify the parallel processing at high data rate.
Then, the error correction performance of the so-defined
code is somehow assessed a posteriori. However, the need
of very low complexity elaborations is still an appealing is-
sue. To this extent, several approximations of the original
Belief Propagation (BP) algorithm have been proposed in the
past [8], [9], which are very helpful to define optimised VLSI
architectures [10].

Neglecting the contribution of the communications be-
tween check and variable node processors (CNP, VNP),
which basically consists in routing congestion and influences
the data management in the extrinsic memory, the decoder
complexity has always been concentrated on CNPs rather

than VNPs, either in serial [10], [11] or in parallel implemen-
tations [12]. In [13] a simplified CN update is described, in
which only two magnitudes are output by the processor, inde-
pendently of the node degree. As a result, noticeable savings
in memory (less locations need to be stored) and chip area
(simpler operations are performed) are achieved.

Starting from this observation, this paper combines the 2-
output algorithm [13] with the modified Min-Sum decoding
(mod-MS) described in [9] to push the CNP complexity at its
minimum. To this aim, the 2-output rule is first generalised to
P + 1 outputs. A similar strategy is adopted by [14], where
only the P = λ less reliable input magnitudes are used to
simplify the operations on check nodes, the remaining ones
being ignored. However, it is shown in [14] that λ = 3 must
be used at least for optimal performances.

After the analysis of the error correction performance, a
very low complexity implementation of the CNP is detailed.
The proposed architecture allows savings in area so high to
make the VNP, and no longer the CNP, dominate the overall
decoder complexity.

2. LOW–COMPLEXITY LDPC DECODING

Decoding of LDPC codes is carried on as an iterative ex-
change of messages along the Tanner graph underlying the
LDPC code, aiming at refining the MAP estimation of the
transmitted bits.

To favour an efficient implementation, signs and magni-
tudes are separately updated on check nodes (CN). If εi j de-
notes the message from CN i to VN j, and µi j the message in
the opposite direction, the CN update on signs is performed
according to the exact rule:

−sign(εi j) = ∏
k∈N (i)\ j

−sign(µik) (1)

with N (i) the set of VNs connected to CN i.
On the contrary, for the lowest implementation complex-

ity, magnitudes update may resort to the mod-MS [9] algo-
rithm, based on the binary operator M-min*. This is defined
as M-min* (|a|, |b|) .= min(|a|, |b|) − log

(
ed/1+ ed

)
, with

d = ||a|− |b||. This operator was already proven to perform
excellently from the implementation loss point of view [15].
As a further simplification, messages are updated according
to a genaralisation of the strategy described in [13]. The re-
sulting update rule of magnitudes is:

|εi j| =
{

M-min*
k∈{N (i)\ j}

(|µik|
)
, j ∈ NP(i)

M-min*
k∈N (i)

(|µik|
)
, j /∈ NP(i)

(2)

where NP(i) is the subset with cardinality P = |NP(i)| of the
input messages in N (i) with smallest reliability.
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Equation (2) means that only P+1 different magnitudes
are output by the processor: a dedicated, exact value in re-
sponse to any message in NP(i), plus a generic value com-
mon to all input messages not in NP(i) and computed on the
whole set of inputs. When P = |N (i)|, exact mod-MS takes
place, while for P = 1 we get the M-min* version of the al-
gorithm described in [13].

A similar approach is used in [14], which restricts to the
messages in {NP(i)\ j} for the computation of the λ = P
dedicated magnitudes, j ∈ NP(i). Accordingly, the remain-
ing messages not in NP(i) are updated with a common mag-
nitude computed on the same NP(i) instead of N (i) as
in (2). Moreover, no approximations of the binary operator,
but exact log-BP is considered in [14].

On VNs, check–to–variable messages are combined to-
gether and summed to the so-called channel intrinsic infor-
mation, as usual. The latter is also referred to as a priori
information, which stems from the channel demodulator in
the form of a Log-Likelihood Ratios (LLR), denoted as λ .

µi j = λ j + ∑
k∈M ( j)\i

εk j (3)

In (3), M ( j) is the set of CNs connected to VN j. The
algorithm is initialised with µi j = λ j for any j = 0,1, ...,N−
1, and proceeds iteratively until all parity checks are verified
or a maximum number of iterations is reached.

3. CHECK NODE PROCESSOR ARCHITECTURE

The CNP has been designed for a serial I/O (input/output)
data stream. Compared with a parallel architecture, the se-
rial solution offers an inherent lower complexity, as only a
single M-min* operator is enough, in principle1; easier re-
configurability is achieved by dimensioning the processor on
the maximum degree (worst case) and properly driving nodes
with smaller degree; hardware resources are not wasted with
irregular codes; last but not least, it is a compulsory choice
for the lowest-complexity implementations of (1) and (2). In-
deed, on the one hand a parallel CN processor would need a
tree of binary operators M-min*, on the other hand it would
make the re-ordering of the input messages impractical.

The principle architecture of a CNP computing P+1 dif-
ferent magnitudes is sketched in Fig. 1. Here, signs are up-
dated in the CN Sign Processor while magnitudes are up-
dated in a dedicated section. The former, implementing (1),
is detailed in Fig. 2. The latter basically composes of an
Input Forming stage, which reorders the incoming stream
of magnitudes in such a way to put on the last positions
those P values with the lowest reliability; then, a M-min*

accumulator designed as detailed in [10] is used to com-
pute the outputs of the processor; eventually, a multiplexer
assigns one of the P + 1 magnitudes to each edge accord-
ing to (2). Here, output magnitudes are labelled with ϑi,
i = 0,1, ...,P, index P denoting the un-marginalised value,
i.e., ϑP = M-min*

k∈N (i){|µ jk|}.
The Control Unit (CU) of Fig. 1 is in charge of supervis-

ing the whole data-flow of operations. Indeed, the CU itself
is controlled by a 1-bit synchronisation strobe, which signals
the first message of a new elaboration. The use of a single-bit

1Despite this borderline case, serial implementations usually rely on
more than one operator, which would be detrimental to the decoding
throughput. In [16] three operators are proposed for better performance.

Figure 1: Check node processor: top level serial architecture.

control signal prevents risks of crowding in the chip routing,
and does not add any significant hardware overhead, at the
same time.

Figure 2: Check node: sign processor architecture.

The output multiplexer in Fig. 1 performs kind of de-
compression of the internal metrics onto the output extrinsic
messages, by passing from P + 1 to dCN values. The elim-
ination of such a component would be highly desirable, as
messages could be stored in the compressed form and de-
compressed on–the–fly on use, thus saving memory loca-
tions. In practice, such a solution is only viable in layered
decoders [17], or whenever the VN phase is skipped [18].
In this case, the only drawback is that routing is roughly P
times more congested, especially in a replicated design, as
processors must handle a compressed input that roughly span
P+1 regular messages. On the contrary, the presence of the
VN phase as in a flooding decoder, would change the com-
pressed vector retrieved from memory into an uncompressed
one, thus making the memory compression inefficient.

Note that for a given P, the 1-bit delay line used for signs
in Fig. 2 is the only element growing linearly in size with the
CN degree. All the other elements, if not constant, vary as
the logarithm of the degree.

The proposed architecture becomes inefficient for P >
3 and, in this case, alternative architectures such as the
forward–backward recursion are preferable [10].

3.1 The 2-magnitude Architecture

The general architecture of Fig. 1 can be optimised to achieve
the highest efficiency in terms of both gate complexity and
latency for P = 1. In this case, the two magnitudes can be
computed with the architecture of Fig. 3.

Let dCN be the CN degree and let χi, i = 0,1, ...,dCN −1
be the input sequence after input forming, i.e. such that
χdCN−1 ≤ χk ∀k = 0,1, ...,dCN − 2 is the less reliable mag-
nitude. Then, the CNP would first calculate ϑ0 through
repeated applications of the M-min* operator on inputs
χ0, ...,χdCN−2, in sequence; next, ϑ1 is computed as ϑ1 =
M-min*

(
ϑ0,χdCN−1

)
. To this extent, the Input Forming stage

is simply made up of a two-way multiplexer plus the MIN
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register which contains the less reliable input χdCN−1. The
M-min* accumulator is composed of a single operator prop-
erly controlled by the CU. Also the output selector simplifies
into a two-way multiplexer, whose inputs are ϑ0 in corre-
spondence of the less reliable input, or ϑ1 otherwise.

Figure 3: Check node: detailed architecture for P=1.

Once CNs have been ordered for increasing degrees to
minimise the overall latency, the architecture of Fig. 3 and
more generally of Fig. 1 allow the continuous, pipelined,
elaboration of the input message stream.

4. RESULTS

4.1 Error Correction Performance

The performance of the technique presented in Section 2 has
been assessed by simulation with a 4-cycle free random code,
drawn from the D. MacKay’s on-line database [19]. The
code is labelled 4095.738.4.102, is quasi-regular with rate
0.82 and codeword size N = 4095.
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Figure 4: Floating point performance (4095.738.4.102, rate
0.82, BPSK, AWGN channel).

As discussed in Sections 2 and 3, higher values of P
yield better performance, but also higher complexity. Tak-
ing the reduction of the decoder complexity as a priority,
we tailored our simulations toward low values of P. To
this extent, Fig. 4 reports the BER and FER performance
over AWGN channel with BPSK modulation, of the exact
message-passing algorithm (or belief-propagation, BP) and
of the low-complexity approximation described in Section 2
for P = 1 (2-output M-min*) and P = 2 (3-output M-min*).

Full precision, floating point, decoding is run in both cases.
While the M-min* operator alone has already been proved to
work excellently, no appreciable losses arise in performance
down to FER = 10−7 or BER = 10−9 even with the lowest
complexity approximation (P = 1).

The impact of finite-precision decoding has been investi-
gated with the adoption of a quantisation scheme as detailed
in [15]. Fig. 5 compares the BER curves of mod-MS de-
coding2 (full markers) and of the 2-output M-min* approx-
imation (empty marks) for two quantisation cases: a high-
precision configuration with input LLR quantised on 6 bits
and extrinsic messages on 7 bits, and a low-complexity solu-
tion with both signals on 5 bits. While no significant dif-
ferences are observable with messages on 7 bits, surpris-
ingly, the proposed 2-output M-min* approximation com-
pares favourably when messages are on 5 bits. In this case,
mod-MS decoding roughly pays 0.25 dB to the curve with
infinite precision, but this gap shrinks to about 0.2 dB for our
technique.
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Figure 5: Bit-true performance (4095.738.4.102, rate 0.82,
BPSK, AWGN channel).

4.2 VLSI Implementation

The architecture detailed in Section 3 has been synthesized
for P = 1 with high–speed standard cells library on 0.18 µm
CMOS technology and operating conditions 1.55 V and 85 C.
The related complexity of the CNP, measured in equivalent
gates3, is shown in Fig. 6 as a function of the maximum node
degree of the code, dCN,max and with the extrinsic message
width Nm as a parameter.

As far as complexity is concerned, hardware resources
are employed very efficiently compared with the forward–
backward architecture of [16] (labelled α-β in Fig. 6); for
a given Nm, the latter is about 2 to 6.5 times more complex
than the proposed solution. In addition, while complexity
increases linearly with dCN in [16], in the new technique it

2We use here mod-MS as a proxy of exact belief-propagation, as it is
proven to perform excellently but with higher stability in fixed point domain.

3The reference unit for gate counting is the 2-input NAND gate with area
12.88 µm2 on 0.18 µm CMOS technology.
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Figure 6: Complexity in equivalent gates of the proposed
CNP architecture compared with [16] and the serial VNP
with the message width as a parameter.

grows with the logarithm of dCN : an increment of three times
of dCN,max (from 7 to 21), only increases the gates count of
about 40%.

Concerning the timing, the latency of the proposed archi-
tecture is dCN + 2 clock cycles, while the synthesis reveals
a maximum clock frequency always greater than 200 MHz,
even in the worst case of dCN = 34 and Nm = 7.

Along with the synthesis results of the CNP, Fig. 6 also
reports the complexity of a serial VNP for the same message
widths. Surprisingly, depending on the code, the VNP can
even dominate the whole complexity!

The design of a decoder for DVB-S2 is described in
in [11]. Here, serial functional units encompassing VNP
and CNP are used, which feature 10.8 mm2 overall or 4957
gates each4. In the same conditions we registered 865 gates
for the CNP (dCN,max = 30) plus 1150 gates for the VNP
(dVN,max = 13) with messages on 6 bits. This leads to consid-
erable savings in complexity, about 59% of the area declared
in [11].

5. CONCLUSION

This paper has proposed a low-complexity approximation of
the elaborations performed on the check node of a decoder
for LDPC codes. The offered solution combines the modi-
fied Min-Sum algorithm with the reduction of the messages
computed by the CN processor to only P+1 different values.
The two approximations have been demonstrated to coexist
excellently, with no appreciable loss in performance com-
pared to the exact message passing algorithm, even when
P = 1 and only two different magnitudes are delivered by
the processor. Surprisingly, the quantisation of messages on
few bits (5) even improves the error correction performance
of our solution.

This is in line with the results of [13] where 2-output, not-
approximated decoding is considered and outperforms [14],
where the restriction of the messages used for update to only
a subset of the whole, results into the need of λ = P = 3 dif-
ferent values, at least, to get negligible losses. However, the
enlargement to the whole set of input messages required by

4In [11], 360 functional units are synthesised on 0.13 µm CMOS tech-
nology. For gate counting, we used 6.052 µm2 for the area of the 2-input
NAND.

our technique does not add any complexity overhead, neither
increase the computation latency of [14].

Along with the formal description of the elaborations, a
generic architecture of the CN processor for use with small
values of P has been discussed and optimised for the low-
est complexity solution with P = 1. The logic synthesis on
0.18 µm CMOS technology showed that the proposed archi-
tecture compares favourably with other state–of–the–art im-
plementations. Remarkably, the design is so excellent that,
depending on the code in use, the VNP can even dominate
the complexity of the whole decoder. For instance, this is
the case of a decoder for DVB-S2, where the adoption of the
approximation described here would save about 59% of the
complexity of the node processors (VN and CN, together)
declared by similar works.
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