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ABSTRACT 
In this paper, we evaluate an implicit approach for the auto-
matic detection of broad phonemic class boundaries of con-
tinuous speech signals. The reported method is consisted of  
the prior segmentation of speech signal into pitch-
synchronous segments, using pitchmarks location, for the 
computation of adjacent broad phonemic class boundaries. 
The approach’s validity was tested on a phonetically rich 
speech corpus of Greek language as well as on the DARPA-
TIMIT American-English language corpus. Our framework’s 
results were very promising since by this method we 
achieved 25 msec accuracy of 76% and 74,9% respectively, 
without presenting over-segmentation on the speech signal. 

1. INTRODUCTION 

The segmentation of continuous speech into linguistically 
defined segments, such as narrow or broad phonemic seg-
ments is considered as a key issue in several speech process-
ing areas. Speech signals that are annotated on phoneme, 
diphone or syllable-like level are essential for tasks such as 
the training of a speech recognizer [18], the building of a 
language identification model [20], the construction of data-
bases, or even in various speech synthesis techniques such 
as formant and unit selection approaches [4]. Due to the fact 
that, segmentation is a time-consuming and tedious task 
which can be carried out only by expert phoneticians, sev-
eral automated procedures have been proposed. Those ap-
proaches are roughly divided into two major categories de-
pending on whether we possess or not knowledge of the 
uttered message. Those categories are known as explicit and 
implicit segmentation methods [15], respectively. In explicit 
approaches, the speech waveform is aligned with the corre-
sponding phonetic transcription. On the other hand, in im-
plicit approaches the phoneme boundary locations are de-
tected without any textual knowledge of the uttered message. 
Although explicit approaches achieve better accuracy than 
implicit, the requirement of prior phoneme sequence knowl-
edge makes them inappropriate for real life applications, such 
as language identification tasks.  

Over the past years, several procedures for automatic 
segmentation of speech have proposed in the literature. In 
[2], Aversano et al., proposed a segmentation method which 
was based on the critical-band perceptual analysis of pre-
processed speech that fed a decision function and reported an 

accuracy of 73,58% within a range of ±20 msec on DARPA-
TIMIT [7]. Suh and Lee [12], proposed a structure, based on 
multi-layer perceptron and reported a 15msec phoneme seg-
mentation performance of 87% with 3,4% insertion rate in 
speaker dependent mode. Svendsen and Kvale [13], proposed 
a two-stage boundary detection approach consisted of an 
acoustic segmentation of speech followed by an HMM based 
phonemic segmentation, and reported an accuracy of 80-85% 
for four languages and a range of 20 msec. Svendsen and 
Soong [14] presented an accuracy of 73% within three 
frames, based on a constrained-clustering vector quantization 
approach. Grayden and Scordilis [6], proposed a Bayesian 
decision surface for dividing speech into distinct obstruent 
and sonorant regions and applied to each of them specific 
rules; an 80% of accuracy was reported with an insertion rate 
of 12%. In conclusion, an approach similar to our method 
was proposed in [5], which was taking advantage of the vis-
ual clues at each pitch period for the detection of the voiced 
phoneme boundaries. 

In this work we evaluate an implicit method for the auto-
matic detection of boundaries of broad phonemic classes, 
using pitchmarks [11] locations. In particular, we segment the 
speech signal into voiced phoneme segments and unvoiced 
intervals. With regard to voiced segments, they were chunked 
pitch-synchronously from the pitchmark locations into frag-
ments. Subsequently, we compare the frame contours using 
the well established, dynamic time warping (DTW) [3] algo-
rithm to compute the distance path between adjacent frames. 
Finally, the local maximums of the resulted distance path 
contour correspond to broad phoneme class boundaries. In 
contrast to [5] explicit approach, our implicit method does 
not use geometrical features to detect signal changes related 
to co-articulation. Contrarily, we utilize DTW on a smoothed 
transformation of the speech waveform for the task of ex-
tracting broad phonemic class sequences.  

2. METHOD DESCRIPTION 

Our method depends on the hypothesis that the voiced parts 
of a speech signal are composed of periodic fragments pro-
duced by the glottis during vocal-fold vibration [11]. By this 
hypothesis and as the articulation characteristics are almost 
constant in the middle of a voiced segment, each of these 
fragments will differ from its adjacent ones at the co-
articulation regions, where the candidate voiced-phoneme 
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boundaries reside. The above contemplation leads to segmen-
tation of the speech waveform to voiced phoneme segments 
and unvoiced interval segments. Apparently, since an un-
voiced phoneme is between two voiced its boundaries are 
detected. Otherwise, the algorithm detects the boundaries of 
the interval that contains an unvoiced phoneme sequence.  

For this purpose, we initially segment the speech signal 
into fragments determined by the pitchmarks location. Sub-
sequently, a moving average smoothing is applied to each 
fragment for the task of abrupt local irregularities reduction.  

Ultimately, we utilize an evaluation algorithm for the 
measurement of the distance between adjacent smoothed 
fragments. In that way we were able to detect the co-
articulation points, which correspond to the voiced phoneme 
boundaries. A general diagram of the method outline is illus-
trated in figure 1. 

 
Figure 1 - Block diagram of the proposed procedure. 

2.1 Pitchmark extraction algorithm 

For the extraction of pitchmarks we used the point process 
algorithm of Praat [9]. The voiced intervals are determined 
on the basis of the voiced/unvoiced decisions extracted from 
the corresponding F0 contour. For every voiced interval, a 
number of points (glottal pulses) are found. The first point, t1, 
is the absolute extremum of the amplitude of the sound  

1 0max - / 2,  / 2mid midt t T t T⎡⎣= 0 ⎤⎦+  (1)

where tmid is the midpoint of the interval, and T0 is the period 
at tmid, as can be interpolated from the pitch contour. Starting 
from time instant t1, we recursively search for points ti to left 
until we reach the left edge of the interval. These points must 
be located between ti-1 - 1.2T0(ti -1) and ti-1-0.8T0(ti-1), and the 
cross-correlation of the amplitude of the environment of the 
existing point ti-1 must be maximal. Between the samples of 
the correlation function parabolic interpolation has been ap-
plied. The same procedure is followed and for the right of t1 
part of the particular voiced segment.  

Though the voiced/unvoiced decision is initially taken 
by the pitch contour, points are removed if the correlation 
value is less than 0.3. Furthermore, one extra point may be 
added at the edge of the voiced interval if its correlation 
value is greater than 0.7. An example  of the detection  of  the  

 
Figure 2 - Pitch-mark extraction from speech signal 

first two pitchmarks t1 and t2 of a voiced speech interval is 
illustrated in figure 2. 

2.2 Broad Phoneme Class Boundary Detection 

Voiced phoneme boundaries are observed into speech regions 
that are marked with heavy co-articulation phenomena. Since 
the manner of articulation is almost constant during each 
specific phoneme, fragments lying in the same phoneme and 
away from the co-articulation regions have similar amplitude 
evolution. In contrast to that, frames that are located in such 
regions will have different contours while the articulation 
behaviour changes. 

For the task of calculating the difference between the 
amplitude contour of each fragment and its adjacent ones, we 
employed the dynamic time warping (DTW) algorithm [3], 
which computes the distance path between each pair of fol-
lowing fragments of speech that are determined by the pitch-
marks. As a consequence a cost function is computed for 
each pair of adjacent fragments. 

( ) ( ( ), ( 1))CostFunction i DTW fragment i fragment i= +  (2)

Consequently, equation 2 provides a measure of similarity 
between adjacent fragments of the speech waveform. In other 
words, the local maxima of the function are equivalent to the 
phoneme boundaries of the utterance, since the warping path 
between the adjacent fragments is longer. A typical contour 
of the computed cost function is illustrated in figure 3. 

As a final step, peaks of the cost function are detected. 
To decide which of the peaks correspond to candidate seg-
ment boundaries a threshold operational parameter, Thr, is 
introduced. For each peak we calculate the magnitude dis-
tances from its side local minimums. The minimum of the 
two resulted magnitude distances is compared to Thr. For 
values higher to Thr the corresponding fragment is consid-
ered to contain a detected boundary. For values lower than 
Thr the related peak is ignored. Finally, each detected bound-
ary is assumed to be located on the middle sample of the 
prior chosen fragment.  
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Figure 3 - Cost function for the identification of the boundaries 

3. SPEECH CORPORA 

The validation of the proposed technique for implicit voiced-
phoneme segmentation was carried out with the exploitation 
of two databases: DARPA-TIMIT and WCL-1 [19]. 

As regards DARPA-TIMIT, it is considered as an 
acoustic-phonetic continuous speech corpus that contains 
broadband recordings of 630 speakers of 8 major dialects of 
American English, each reading 10 phonetically rich sen-
tences. It includes time-aligned orthographic, phonetic and 
word transcriptions as well as a 16-bit, 16kHz speech wave-
form file for each utterance. The DARPA-TIMIT corpus 
transcriptions have been hand verified. Test and training sub-
sets are balanced for phonetic and dialectal coverage. 

Concerning the WCL-1, is regarded as a phonetically 
and prosodically balanced corpus of Greek speech annotated 
on phonemic level. It is consisted of 5.500 words, distributed 
in 500 paragraphs, each one of which may be a single word 
utterance, a short sentence, a long sentence, or a sequence of 
sentences. Newspaper articles, paragraphs of literature and 
sentences were used, in order to cover most of the contextual 
segmental variants. Furthermore, the data was processed so 
as targeted phenomena could be obtained in a real communi-
cative way and appropriate text was composed by linguist 
where was need. The database was phonetically annotated by 
expert phonetician. For the high quality narrow phonetic 
transcriptions, the SAMPA alphabet adapted for Greek was 
employed. 

4. EVALUATION 

For the task of evaluating our broad phonemic class segmen-
tation framework we have conducted experiments with both 
databases practicing different thresholds. A detected segmen-
tation point is defined as correctly-detected only if its dis-
tance from the true segmentation point is less than t msec. In 
order to compute the performance of the method we intro-
duce accuracy and over-segmentation. Accuracy is defined as 
the percentage of the number of the correctly-detected seg-
mentation points Pc to the total number of the real-boundary 
points Pt,  

100%PcAccuracy
Pt

= ⋅  (3) 

where the real boundary points are the boundaries of the 
voiced phonemes and the boundaries of the unvoiced inter-
vals. 

As regards explicit approaches, the number of detected 
segmentation points is equal to the number of the true seg-
mentation points. In contrast, regarding implicit approaches, 
where our method falls, detected segmentation points are not 
equal to the true ones. An effective way of measuring the 
reliability of a segmentation method regarding the estimated 
and actual number of boundary location is over-segmentation 
measure. Over-segmentation is defined as the ratio of the 
number of the detected segmentation points Pd to the total 
number of the true segmentation points Pt,

PdOver Segmentation
Pt

− =  (4) 

It is clear from equation 4 that over-segmentation near to one 
denotes that the number of the estimated boundaries is close 
to the actual number of boundaries. 

4.1 Results 

For the evaluation of the proposed technique several experi-
ments were carried out. Our main purpose was the accuracy 
improvement while keeping the over-segmentation factor 
close to the value of one. As a result, a vast variety of thresh-
old values were tested for several smoothing factors. In addi-
tion, we investigated the accuracy of our procedure for 
t=25msec. Results regarding the achieved accuracy for the 
DARPA-TIMIT American-English corpus are illustrated in 
figure 4. 
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Figure 4 – Broad phonemic segmentation accuracy with respect to 
over-segmentation for different smoothing factors S (S1=70, 
S2=100, S3=140, S4=1) on DARPA-TIMIT. 

Furthermore, figure 4 presents an empirical way for selecting 
practically optimal values for free parameters such as 
smoothing factor and threshold. In that way, the accuracy of 
the method could be optimized.  

The best result obtained through the optimization proce-
dure was 74,9%, without presenting over-segmentation, for a 
smoothing factor equal to 100 and Thr=1,25·10-6, (Over-
Segmentation<1,05).  Accuracy of the method could be fur-
ther elevated if higher values of over-segmentation are ac-
cepted. In previous research [10] has been demonstrated that 
over-segmentation control is a tedious task with values 
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higher than 1. For over-segmentation of 1,6 our method 
achieved about 85% accuracy, as shown in figure 4. 

Regarding WCL-1 Greek speech corpus, figure 5 depicts 
the segmentation performance that was achieved. In particu-
lar, the best obtained accuracy was 76% with over-
segmentation less than 1,05, a smoothing factor equal to 80 
and a Thr value of 2,5·10-4. For an over-segmentation equal 
to 1,6 the method achieved an accuracy of more than 90%, as 
illustrated in figure 5. 
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Figure 5 – Broad phonemic segmentation accuracy with respect to 
over-segmentation for different smoothing factors S (S1=1, S2=50, 
S3=80, S4=130) on WCL-1. 

5. CONCLUSIONS 

In this work, we have implemented and evaluated a speaker 
independent method for automatic broad phoneme class seg-
mentation of speech signals using the knowledge of pitch-
mark locations. For the approach’s validity, experiments were 
conducted on a phonetically rich speech corpus of Greek 
language as well as on DARPA-TIMIT American-English 
database. Specifically, segmentation experiments on 
DARPA-TIMIT showed an accuracy of 74,9%. On the other 
hand, WCL-1 database accuracy was 76%. Due to the fact 
that the textual message of the speech utterance in not neces-
sary for the extraction of the boundary locations makes it 
appropriate for applications that require automatic broad an-
notation of speech. 

Future research will focus on the utilization of the de-
scribed approach for online segmentation of continuous 
speech for tasks such as language identification, emotion 
recognition and the rapid development of resources speech 
synthesis tasks. 
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