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ABSTRACT

In this paper, a computationally efficient algorithm is pre-

sented for tracing phase noise with linear drift and blind data

detection jointly, based on a sequential Monte Carlo(SMC)

method. Tracing of phase noise is achieved by Kalman fil-

ter and the nonlinearity of the observation process is taken

care of by unscented filter rather that using extended Kalman

technique. On the other hand,SMC method treats the trans-

mitted symbols as “ missing data” and draw samples sequen-

tially of them based on the observed signal samples up to

time t. This way, the Bayesian estimates of the phase noise

and the incoming data are obtained through these samples,

sequentially drawn, together with their importance weights.

The proposed receiver structure is seen to be ideally suited for

high-speed parallel implementation using VLSI technology.

1. INTRODUCTION

The problem of carrier phase synchronization is of great im-

portance in coherent digital communication systems. A con-

siderable amount of research has been carried out for data

detection in the presence of the time-varying phase noise as

well as the fixed phase offset [1]. Estimating the phase off-

set and detecting the data jointly by maximum likelihood

(ML) technique does not seem to be analytically tractable.

Even if the likelihood function can be evaluated offline, how-

ever, it is invariably a nonlinear function of the parameter

to be estimated, which makes the maximization step (which

must be performed in real-time) computationally infeasible.

A number of suboptimal algorithms have thus been proposed,

most of which employ a two-stage receiver structure with a

phase noise estimation stage followed by the data detection

[2]. Phase synchronization is typically implemented by a deci-

sion directed(or data aided) or non-decision directed (or non-

data aided). Decision directed schemes depend on availability

of reliably detected symbol for obtaining the phase estimate,

and therefore, they usually require transmission of pilot or

training data. However, in applications where bandwidth is

the most precious resource, training data can significantly

This research has been conducted within the NEWCOM Net-

work of Excellence in Wireless Communications funded through

the EC 6th Framework Programme. This work was also supported

in part by the Turkish Scientific and Technical Research Insti-

tute(TUBITAK) under Grant 104E166 and the Research Fund of

the University of Istanbul under Project: UDP-732/05052006.

reduce the overall system capacity. Thus blind or non-data

aided techniques become an attractive alternative [3, 4].

Unlike data-aided techniques, non-data-aided methods do

not require knowledge of the transmitted data, and instead,

they exploit statistics of digital transmitted signal. ML esti-

mation techniques can also be used in non-decision-directed

methods if the symbols transmitted are treated as random

variables with known statistics so that the likelihood function

can be averaged over the data sequence received. Unfortu-

nately, except for few simple cases, this averaging process is

mathematically impracticable and it can be obtained only by

some approximations which are valid only either at high or

low SNR values [5].

On the other hand, in order to provide an implementable

solution, recently there have been a substantial amount of

work on iterative formulation of the parameter estimation

problem based on the Expectation-Maximization (EM) tech-

nique [6]. It is known that the EM algorithm derives itera-

tively and converges to the true ML estimation of these un-

known parameters. The main drawbacks of this approach are

that the algorithm is sensitive to the initial starting values

chosen for the parameters, it does not necessarily converge to

the global extremum and the convergence can be slow. Fur-

thermore, in situation where the posterior distribution must

be constantly updated with arrival of the new data with miss-

ing parts, EM algorithm can be highly inefficient, because the

whole iteration process must be redone with additional data.

The sequential Monte Carlo(SMC) methodology [7] that has

emerged in the field of statistics and engineering has shown

great promise to solve such problems. This technique can

approximate the optimal solution directly without compro-

mising the system model. Additionally, the decision made at

time t does not depend on any decisions made previously, and

thus, no error is propagated in their implementation. More

importantly, the SMC yields a fully blind algorithm and al-

lows for both Gaussian and non-Gaussian ambient noise as

well as high-speed parallel implementations. Furthermore,

the tracking the time-varying phase noise and the data detec-

tion are naturally integrated. The algorithm is self-adaptive

and no training/pilot symbols or decision feedback are needed

[8].

The main objective of this paper is to investigate the use

of the SMC method to the problem of jointly detecting the

data and tracking the phase noise with linear drift in the

presence of white Gaussian noise. The algorithm is based on
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a Bayesian formulation. The tracking of phase noise is imple-

mented by a Kalman filter algorithm. Rather than applying

the extended Kalman algorithm, an unscented filter technique

is employed to handle nonlinearity of the observation process.

On the other hand, the basic idea SMC method is to treat the

transmitted symbols as “missing data” and to sequentially

draw samples of them based on the current observation and

computing appropriate importance sampling weights. The

technique does not require iterations and updating with new

data can be done cheaply.

2. SYSTEM DESCRIPTION

We consider a digital communication system in the pres-

ence of random phase noise and the additive Gaussian noise.

The input binary information bit dt are encoded using some

channel code, resulting in a code bit stream bt. The code

bits are passed to a symbol mapper, yielding complex data

symbols st, which take values from a finite alphabet set

A = {a1, a2, · · · , a|A|}, where |A| represents the cardinality

of the set A. Each data symbol is then transmitted through

a channel whose input-output relationship is given by

yt = ste
iθt + nt, t = 0, 1, · · · (1)

where yt, st, θt, are the received signal, the transmitted sym-

bols and the phase noise, respectively, and nt the additive

complex Gaussian noise with mean zero and the variance

σ2
n = E[|nt|2]. The phase noise process θt at tth sampling

instant is defined as a Wiener process determined as

θt = θt−1 + ut, t = 1, 2, · · · (2)

θ0 ∼ uniform(−π, +π)

where {ut} is a sequence of independent and identically dis-

tributed (i.i.d.) zero-mean random variables with variance

equal to σ2
u. Note that as Wiener phase noise is the accumu-

lation of white noise, its variance increase linearly with t. It

is assumed that ut and nt are independent.

Our main objective is to solve the problem of online de-

tection of the symbols st and estimation of the phase noise

θt, completely blindly, based on the received signals up to

time t, {yi}t
i=0. Defining the vectors, St = [s0, s1, · · · , st]

T ,

Y t = [y0, y1, · · · yt]
T , θt = [θ0, θ1, · · · , θt]

T , the the problem

may be formulated by making Bayesian inference with respect

to the posterior distribution

p(θt, St|Y t) ∝ p(θ0)p(St)p(y0|θ0, s0)

t∏
j=1

p(θj |θj−1)p(yj |θj , sj)

∝ p(θ0)p(St) exp
(
− 1

σ2
|y0 − s0e

jθ0 |2
)

×
t∏

j=1

exp
(
− 1

σ2
u
(θj − θj−1)

2 − 1

σ2
|yj − sje

jθj |2
)

.

Although this joint distribution can be written out explic-

itly up to a normalizing constant, the computation of the

corresponding marginal joint distributions p(st, θt|Y t), nec-

essary for online joint symbol detection and phase noise es-

timation involve very high dimensional integration. There-

fore, the task is mathematically infeasible in practice. The

Gibbs samples [9] is a Monte Carlo method for overcoming

this difficulty. However it is not an adaptive procedure and

has difficulty dealing with sequentially observed data. With

new data coming the whole computation must be repeated

to incorporate new information. we now present an adaptive

blind algorithm for the joint symbol detection and the phase

noise estimation which is based on a Bayesian formulation

of the problem called Sequential Monte Carlo(SMC) method

first developed by [9].

Consider the case of uncoded system, where the symbols

are assumed to independent and identically distributed, i.e.,

P (st = ai|St−1) = P (st = ai), ai ∈ A . (3)

For simplicity the symbols are chosen from a QPSK con-

stellation.When no prior information about the symbols is

available, the symbols are assumed to take each possible value

in A with equal probability, i.e., P (st = ai) = 1/|A|. Since

we are interested in jointly estimating the symbol st and the

phase noise θt, at time t based on the observation Y t, the

Bayes solution requires the posterior distribution

p(st, θt|Y t) =

∫
p(θt|Y t, St)p(St|Y t)dSt−1. (4)

Note that with a given St, the nonlinear (Kalman filter)

model (1), (2) can be solved using the extended Kalman filter

(EKF) technique [10] by linearizing the observation equation

(1) [8]. The EKF is the most widely used estimation algo-

rithm for nonlinear systems. However, the long past experi-

ence has shown that it is difficult to implement, difficult to

tune, and only reliable for systems that are almost linear on

the time scale of the updates. Many of these difficulties are

mainly due to the linearization process inherent in the EKF

technique. To overcome this limitation, the unscented filter-

ing (UF) technique was developed as a method of propagate

mean and covariance information through nonlinear trans-

formation. It was shown that it is more accurate, easier to

implement and uses the same order of calculation as lineariza-

tion. Therefore, we apply in this paper the UF technique for

solving the Kalman filtering part of our problem. However,

before the details of the Kalman algorithm is given, the UF

technique is explained briefly in the following section.

3. THE UNSCENTED FILTERING

The Unscented Filtering is a technique for calculating the

mean and covariance of a random variable which undergoes

a nonlinear transformation. The details of technique can be

found in [14] and is summarized as follows: Suppose that x

is an n × 1 dimensional random vector with mean µx and

covariance Pxx. A second random variable , y is related to

x through the nonlinear function

y = ψ(x).

The mean µy and covariance Pyy of y can be calculated as

follows: The n-dimensional random vector x with mean µx
and covariance Pxx is approximated by 2n + 1 points χi,

called the sigma-points, and the weights Wi given by

χ0 = µx, W0 = κ/(n + κ)
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χi = µx + (
√

(n + κ)Pxx)
i
, Wi = 1/2(n + κ)

χi+n = µx − (
√

(n + κ)Pxx)
i
, Wi+n = 1/2(n + κ)

where κ ∈ < and (
√

(n + κ)Pxx)i represents the ith row

or column of the matrix square root of (n + κ)Pxx and Wi

is the weight which is associated with the ith point. The

transformation procedure is as follows:

1. Obtain the set of transformed sigma-points,

Yi = ψ(χi), i = 0, 1, · · · , 2n

2. Compute the mean given by the weighted average of the

transformed points

µy =

2n∑
i=0

WiYi

3. Compute the covariance by the weighted outer product of

the transform points,

Pyy =

2n∑
i=0

Wi(Yi − µy)(Yi − µy)†

The detailed properties of the algorithms can be found in

[14]. Note that κ in the algorithm provides an extra degree

of freedom to adjust the higher order moments of the approx-

imation and can be used to to reduce the overall prediction

errors. It was shown in [14] that when x is Gaussian, a useful

choice of the κ is κ = n− 3.

4. KALMAN FILTERING BASED ON

UNSCENTED TRANSFORMATION

The phase noise process (1) is a Gaussian process. Hence,

p(θt|St, Y t) ∼ N(µθt(St), σ
2
θt

(St)), (5)

where the mean µθt(St) and the variance σ2
θt

(St) can be ob-

tained as follows. Denoting θ̂t|t−1 as the estimator of θt based

on the observations Y t−1 = (y0, y1 · · · , yt−1) and

µθt(St)
4
= θ̂t|t and σ2

θt
(St)

4
= Mt|t, (6)

θ̂t|t and Mt|t can be calculated recursively by using the

Kalman Technique [10, page 449-452] along with the un-

scented transformation, given St as:

θ̂t|t = θ̂t|t−1 + Ktν (7)

Mt|t = Mt|t−1 −KtM
νν
t|t−1K

∗
t (8)

ν = yt − ŷt|t−1 (9)

Kt = Mθν
t|t−1(M

νν
t|t−1)

−1, (10)

where

Mνν
t|t−1 = E

[
(yt − ŷt|t−1)(yt − ŷt|t−1)

∗|Y t−1

]

Mθν
t|t−1 = E

[
(θt − θ̂t|t−1)(yt − ŷt|t−1)

∗|Y t−1.
]

In order to implement the Kalman filter algorithm given

above, one needs to compute

• Prediction of the new state of the phase noise θ̂t|t−1 and

its variance Mt|t−1

• Prediction of the expected observation ŷt|t−1 and the in-

novation variance Mνν
t|t−1

• Prediction of the cross correlation Mθν
t|t−1.

Note that, since the state equation (2) is linear we can easily

obtain θ̂t|t−1 and Mt|t−1 as follows:

θ̂t|t−1 = θ̂t−1|t−1 (11)

Mt|t−1 = Mt|t−1 + σ2
u. (12)

Furthermore, it can be easily shown from (1) and (2) that

ŷt|t−1 = E{exp (jθt)|Y t−1} (13)

Mνν
t|t−1 = 1 + σ2

w − |ŷt|t−1|2 (14)

Mθν
t|t−1 = E{θt exp (−jθt)|Y t−1} − ŷ∗t|t−1θ̂t|t−1. (15)

The expectations above can be computed by the unscented fil-

tering technique as follows: Since the θt’s are one-dimensional

and Gaussian, three sigma-points would be sufficient to im-

plement the algorithm. The three sigma points and the cor-

responding weights are chosen according to the general for-

mulation explained in Section 3 as

Θ
(0)

t|t−1 = θ̂t|t−1, W0 = κ/(1 + κ)

Θ
(1)

t|t−1 = θ̂t|t−1 +
√

(1 + κ)Mt|t−1, W1 = 1/2(1 + κ)

Θ
(2)

t|t−1 = θ̂t|t−1 −
√

(1 + κ)Mt|t−1, W2 = 1/2(1 + κ).

Note that since θt is Gaussian, and n = 3, the value of κ = 0

as pointed out in Section 3. Therefore W0 = 0 and the only

following two sigma-points are sufficient to implement the

algorithm.

Θ
(1)

t|t−1 = θ̂t|t−1 +
√

Mt|t−1, W1 = 1/2 (16)

Θ
(2)

t|t−1 = θ̂t|t−1 −
√

Mt|t−1, W2 = 1/2 (17)

We now summarize the algorithm to compute the expec-

tations (13) and (15).

1. Select the two sigma points Θ
(0)

t|t−1
, Θ

(1)

t|t−1
according to

(16) and (17).

2. for i = 1, 2, compute the transform sets

Ŷ(i) = exp(jΘ
(i)

t|t−1)

Ẑ(i) = Θ
(i)

t|t−1 exp(−jΘ
(i)

t|t−1)

3. Compute

ŷt|t−1 =

2∑
i=1

WiŶ(i)

Mθν
t|t−1 =

2∑
i=1

WiẐ(i) − ŷ∗t|t−1θ̂t|t−1

Mνν
t|t−1 = 1 + σ2

w − |ŷt|t−1|2.
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5. SMC TECHNIQUE FOR BLIND DETECTION

AND ESTIMATION

We can now make timely estimates of θt and detection of st

based on the currently available observation Y t, up to time t,

blindly, as follows. With the Bayes theorem, we realize that

the optimal solution to this problem is

θ̂t = E{θt|Y t} =

∫
θtp(θt|Y t)dθt (18)

=

∫

St

[∫

θt

θtp(θt|St, Y t)dθt

]

︸ ︷︷ ︸
µθt

(St)

p(St|Y t), dSt.

It then follows that

θ̂t = E{θt|Y t} =

∫

St

µθt(St)p(St|Y t)dSt . (19)

Similarly, the data can be detected by the hard decisions on

the symbol st by

ŝt = arg max
ai∈A

P (st = ai|Y t) (20)

where

P (st = ai|Y t) = E{1(st = ai)|Y t} . (21)

1{.} in (21) is an indicator function defined as

1(st = ai)

{
1 if st = ai

0 otherwise.

In most cases, an exact evaluations of the expectations (19)

and (21) are analytically intractable. SMC technique can

provide us an alternative way for the required computation.

Specifically, following the notation adopted in [11], if we can

draw m independent random samples {S(j)
t }m

j=1 from the dis-

tribution p(St|Y t), then we can approximate the quantities

of interest E{θ|Y t} and E{1(st = ai)|Y t} in (11) and (13),

respectively, by

E{θ|Y t} ∼= 1

m

m∑
j=1

µθt(S
(j)
t ) (22)

E{1(st = ai)|Y t} ∼= 1

m

m∑
j=1

1(s
(j)
t = ai) (23)

But, usually drawing samples from p(St|Y t) directly is usu-

ally difficult. Instead, sample generation from some trial

distribution may be easier. In this case, the idea of impor-

tance sampling can be used. Suppose a set of random sam-

ples {S(j)
t }m

j=1 is generated from a trial distribution q(St|Y t),

which

• is strictly positive, q(.|.) > 0, and

• has the domain as p(.|.).
By associating the weight

w
(j)
t =

p(S
(j)
t |Y t)

q(S
(j)
t |Y t)

(24)

to the samples, the quantities of interest, E{1(st = ai)|Y t}
and E{θt|St} can be approximated as follows.

E{θ|yt} ∼= 1

Wt

m∑
j=1

µt(S
(j)
t )w

(j)
t (25)

E{1(st = ai)|Y t} ∼= 1

Wt

m∑
j=1

1(s
(j)
t = ai)w

(j)
t , i = 1, 2, .., |A|

with Wt =
∑

w
(j)
t . The pair (S

(j)
t , w

(j)
t ), j = 1, 2, · · · , m is

called a properly weighted sample with respect to distribution

p(St|Y t). Note that the samples S
(j)
t can be drawn from the

distribution q(St|Y t) sequentially as follows. We can choose

q(.) to satisfy

q(St−1|Y t) = q(St−1|Y t−1).

Then, it can be easily shown that

q(St|Y t) = q(st|Y t, St−1)q(St−1|Y t−1),

and one can draw samples s
(j)
t from a trial distribution

q(st|Y t, S
(j)
t−1) and let S

(j)
t = (s

(j)
t , S

(j)
t−1) for t = 0, 1, · · ·.

Specifically, it was shown in [11] that a suitable choice for the

trial distribution is of the form:

q(st|Y t, S
(j)
t−1) = p(st|Y t, S

(j)
t−1) . (26)

For this trial distribution, it is shown in [11] that the impor-

tance weight is updated according to

w
(j)
t = w

(j)
t−1p(yt|Y t−1, S

(j)
t−1), t = 0, 1, · · · (27)

The predictive distribution in (27) is given by

p(yt|Y t−1, S
(j)
t−1) =

∑
ai∈A

p(yt|Y t−1, S
(j)
t−1, st = ai)P (st = ai|Y t−1, S

(j)
t−1)

=
∑
ai∈A

p(yt|Y t−1, S
(j)
t−1, st = ai)P (st = ai) (28)

where (28) holds because st is independent of St−1 and Y t−1.

Furthermore, it can be shown from the state and observation

equations in (1) and (2),respectively, that

p(yt|Y t−1, S
(j)
t−1, st = ai) ∼ N(µ(j)

yt
(i), σ2(j)

yt
(i)) (29)

with mean and variance given by

µ(j)
yt

(i) = E{yt|Y t−1, S
(j)
t−1, st = ai}

= ai(Htµ
(j)
θt−1

+ Qt) (30)

σ2(j)
yt

(i) = Var{yt|Y t−1, S
(j)
t−1, st = ai}

= σ
2(j)
θt−1

+ σ2
n + σ2

p (31)

where the quantities µ
θ
(j)
t

and σ
θ
2(j)
t

in (30)and (31) can

be computed recursively for the Extended Kalman equations

given in (7-8). The trial distribution in (30) can be computed

as follows:

p(st = ai|Y t, S
(j)
t−1) = p(yt|Y t−1, S

(j)
t−1, st = ai)

×P (st = ai|Y t−1, S
(j)
t−1)

4
= ξ

(j)
t,i (32)
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where it follows from (2) that

ξ
(j)
t,i =

1

πσ
2(j)
yt (i)

exp

(
−||yt − µ

(j)
yt (i)||2

σ
2(j)
yt (i)

)
P (st = ai). (33)

We now summarize the SMC blind data detection and

phase noise estimation algorithm as follows:

Step 1- Initialization:

• Initialize the Kalman filter: Choose the initial mean and

the variance of the estimated θt as the mean and the vari-

ance of a uniform distribution defined on −π, +π) as

µ
(j)
θ0

= θ̂
(j)

0|0 = 0

σ
2(j)
θ0

= M
(j)

0|0 = π2/12, j = 1, 2, · · · , m. (34)

• Initialize the importance weights: All importance weights

are initialized as w
(j)
0 = 1, j = 1, 2, · · · , m. Since the data

symbols are are assumed to be independent, initial sym-

bols are not needed be generated.

Step 2- Compute ξ
(j)
t,i :

For each ai ∈ A compute the µ
(j)
yt (i), σ

2(j)
yt (i) and ξ

(j)
t,i from

(30), (31) and (33),respectively.

Step 3- Draw samples sj
t , j = 1, 2, · · · , m

Draw s
(j)
t from the set A with probabilities

P (s
(j)
t = ai) ∝ ξ

(j)
t,i , ai ∈ A. (35)

Append s
(j)
t to S

(j)
t−1 to obtain S

(j)
t .

Step 4- Compute the importance weights:

w
(j)
t = w

(j)
t−1

∑
ai∈A

ξ
(j)
t,i .

Step 5-Detect the symbol st:

Detect the symbol st from (23).

Step 6-Update the a posteriori mean and variance of the

phase noise:

If the samples drawn up to time t is St in Step 2, set

µθt(S
(j)
t )

∆
= µ

(j)
θt

= θ̂
(j)

t|t

σ
2(j)
θt

(S
(j)
t )

∆
= σ

2(j)
θt

= M
(j)

t|t j = 1, 2, · · · , m.

and update according to the Kalman equations (7), (8).

Step 7- Do the restamping as described in Section 6.

6. RESAMPLING METHOD

A major problem in the practical implementation of the

SMC method described so far is that after a few iteration

most of the importance weights have negligible values that

is w
(j)
t ≈ 0. A relatively small weight implies that the sam-

ple is drawn far from the main body of the posterior distri-

bution and has a small contribution in the final estimation.

Such sample is said to be ineffective. The SMC algorithm

becomes ineffective if there are too many ineffective sam-

ples. The common solution to this problem is resampling.

Restampling is a an algorithmic step that stochastically elim-

inates those samples with small weights. Basically, the re-

sampling method takes the samples, to be generated sequen-

tially Ξt = {S(j)
t , µ

(j)
θt

, σ
2(j)
θt

}m
j=1 with corresponding weights

{w(j)
t }m

j=1 as an input and generates a new set of samples Ξ̃t =

{S̃(j)

t , µ̃
(j)
θt

, σ̃
2(j)
θt

}m
j=1 with equal weights, i.e {w(j)

t = 1/m}m
j=1,

assuming they are normalized to
∑m

j=1
w

(j)
t = 1. A simple

procedure to achieve this goal is, for each j = 1, 2, · · · , m, to

choose (S̃
(j)

t , µ̃
(j)
θt

, σ̃
2(j)
θt

) = (S
(j)
t , µ

(i)
θt

, σ
2(i)
θt

) with probability

w
(i)
t .

In this paper, a resampling technique suggested by [12]

is employed. This technique forms a new set of weighted

samples Ξ̃t = {S̃(j)

t , µ̃
(j)
θt

, σ̃
2(j)
θt

}m
j=1 according to the following

algorithm. (assume that
∑m

j=1
wj

t = m)

1. For j = 1, 2, · · · , m, retain `j = wj
t copies of the samples

(S
(j)
t , µ

(i)
θt

, σ
2(i)
θt

). Denote Lr = m−∑m

j=1
`j .

2. Obtain Lr i.i.d. draws from the original sample set

{(S(j)
t , µ

(i)
θt

, σ
2(i)
θt

)}m
j=1, with probabilities proportional to

(wj
t − `j), j = 1, 2, · · · , m.

3. Assign equal weights, that is, set wj
t = 1, for each new

sample.

It is shown in [12] that the samples drawn by the above

procedure are properly weighted with respect to p(St|Y t),

provided that m is sufficiently large. Note that resampling

at every time step is not needed in general. In one way the

resampling can be done every k0 recursions where k0 is a

prefixed resampling interval. On the other hand, the resam-

pling can be carried out whenever the effective sample size,

approximated as

N̂eff =
1∑m

j=1
(wj

t )
2
≤ m (36)

goes below a certain threshold, typically a fraction of m. In-

tuitively, N̂eff reflects the equivalent size of i.i.d samples

from the true posterior densities of interest for the set of m

weighted ones. It is suggested in [13] that resampling should

be performed when N̂eff < m/10. Alternatively, one can con-

duct the first approach to conduct resampling at every fixed-

length time interval say every five steps.

7. SIMULATION RESULTS

In this section, we provide some computer simulation exam-

ples to demonstrate the performance of the proposed SMC

and UF approach for joint blind phase noise estimation and

data detection. The phase process is modelled by AR pro-

cess driven by a white Gaussian noise with σ2
u = 0.0314. It is

assumed BPSK modulation is employed. In order to demon-

strate the performance of the adaptive SMC approach, we

first present the performance (in terms of the phase error

φ(k) = θt− θ̂t ) during one simulation run for different initial

phase errors φ(k) = 0, π/4, π/2, 3π/4, π. The phase error for

several values of φ(0) at SNR = 10dB is shown in Fig. 1.

The performance of the proposed algorithm is further ex-

ploited by the evaluation of average BER over observed block

for different SNRs and different intial phase errors. The un-
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coded average BER performance of this adaptive approach is

plotted in Fig. 2.

Our simulations indicate that

• as the initial phase error φ(0) approaches π, the probabil-

ity that the phase error converges to the dual equilibrium

point becomes very high

• as the initial phase error φ(0) approaches π, the BER

increases, for φ(0) = π/2, the BER is almost equal to 1

(due to ambiguity).

8. CONCLUSIONS

We have developed a new adaptive Bayesian approach for

blind phase noise estimation and data detection based on

sequential Monte Carlo methodology. The optimal solutions

to joint symbol detection and phase noise tracking problem

is computationally prohibitive to implement by conventional

methods. Thus the proposed sequential approach offers an

novel and powerful approach to tackling this problem at a

reasonable computational cost.
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Figure 1: Tracking performance for different initializations at

SNR=10dB
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