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ABSTRACT
In this article we prove that a computable tree-like intercon-
nection of parallel/series Wave Digital adaptors with mem-
ory (which are characterized by reflection filters instead of
reflection coefficients) is equivalent to a standard (instanta-
neous) multi-port adaptor whose ports are connected to muta-
tors (2-port adaptors with memory). We prove this by provid-
ing a methodology for extracting the memory from a macro-
adaptor, which simplifies the implementation of WD struc-
tures.

1. INTRODUCTION

A Wave Digital (WD) structure [1] can be generally seen as
a set of WD elements connected with each other through a
tree-like network of elementary (series or parallel) Dynamic
Scattering Junctions (DSJ). In order for this multiport DSJ
to be computable, non-adapted ports can only be connected
to adapted ports, thereforeM−1 of theM elementary DSJs
need, in fact, to be dynamic adaptors [1]. When allM DSJs
are dynamic adaptors, the multiport DSJ turns out to be a
multi-port adaptor, and the adapted port can be used for ac-
commodating a nonlinear element in the structure. This is
very useful for modeling systems that embed a lumped non-
linearity.

Although we can assume with no loss of generality that
the DSJs are 2-port or 3-port elements, the potential variety
of building blocks for such WD structures is, in fact, formi-
dable. This is a disadvantage with respect to traditional Wave
Digital Filters [2], which are based on a limited collection
of junctions. In order to overcome this problem, we would
like to define some structural transformation that can be used
for significantly reducing the number of potential building
blocks. One way to do so is to construct a WD structure that
is functionally equivalent to a multi-port DSJ but is made of
an interconnection of standard (memoryless) 2-port and/or
3-port adaptors [2] whose peripheral ports can be connected
to WD mutators [1] (2-port scattering cells with memory).
In this paper we will see that thismemory extractionoper-
ation is, in fact rather simple to perform (from a procedural
standpoint). This result turns out to play a key role in the
automatic implementation of WD structures in a wide range
of applications, from nonlinear circuit simulation to musical
acoustics.

2. MEMORY EXTRACTION FROM ADAPTORS

In this section we show that any dynamic 3-port series (par-
allel) adaptor can always be implemented as a standard series
(parallel) WDF adaptor, whose adapted ports is connected to
a DSC, as shown in Fig. 1, whereΓ̃3(z) is obtained from the

reflection filter of the adapted port by removing the instanta-
neous I/O connection.
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Figure 1: Any 3-port parallel (series) adaptor can always
be implemented as a standard parallel (series) WDF adaptor,
whose adapted port is connected to 2-port scattering cell.

2.1 The dynamic series adaptor

Let us consider a 3-port dynamic series adaptor with the fol-
lowing rational, causal and stable Reference Transfer Func-
tions (RTF)
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k = 1,2,3 being the port index. The right-hand side of this
equation is obtained by computing one step of the long divi-
sion, whererk is the result of the division and∑Nk

i=1 r ikz−i is
the reminder. The reflection transfer functions are

Γk(z) =
2Rk(z)

∑Ri(z)
= γk + Γ̃k(z) , (1)

from which we can extract a constantγk, while the rest can
be written as̃Γk(z) = z−1Γ̂k(z), whereΓ̂k(z) is assumed as
causal and stable. From (1) we can thus derive

Γ1(z)+Γ2(z)+Γ3(z) = 2⇒

{
γ1 + γ2 + γ3 = 2

Γ̃1(z)+ Γ̃2(z)+ Γ̃3(z) = 0
.

(2)
Also the scattering matrix of this adaptor can be decom-

posed into the sum of a constant and a filtered term1

B =

[
1−Γ1 −Γ1 −Γ1
−Γ2 1−Γ2 −Γ2
−Γ3 −Γ3 1−Γ3

]
A =

1All the variables denoted with a capital letter depend onz. As always,
vectors and matrices are denoted with bold letters, capital for matrices and
lowercase for vectors. The only exceptions are the wavesA e B, which are
also vectors that depend onz, and yet they are denoted in capital bold letters
for reasons of compliance with the literature.
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The first term represents the classical series junction, whose
reflected waves are to be added the contribution of the second
term, as we can see in Fig. 2.
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Figure 2: Direct implementation of eq. (2.1).

This structure, however, cannot be used for construct-
ing wave digital structures, as it is not made of cells that
are connected to each other through ports. If we could ex-
press−(A1 + A2 + A3) (the input of the three filters̃Γk(z))
as a linear function of just the incident and reflected waves
at each one of the adaptor ports,A1 +A2 +A3 = αAk +βBk,
we would obtain an implementation of thẽΓk(z) as two-port
cells. We notice that each reflected wave ends up depend-
ing on just one of the three reflection coefficients and for the
instantaneous term we have




B1
B2
B3


 =

[
A1
A2
A3

]
−

[ γ1(A1 +A2 +A3)
γ2(A1 +A2 +A3)
γ3(A1 +A2 +A3)

]
. (3)

For each row we can thus write

−(A1 +A2 +A3) =
1
γk

(Bk−Ak) , k = 1,2,3, (4)

which yields
[

B1
B2
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=
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.

If we rewrite this relationship while keeping the adaptation
into account,γ3 = 1, γ1 + γ2 = 1, we obtain

[
B1
B2
B3

]
=

[
1− γ1 −γ1 −γ1
γ1−1 γ1 γ1−1
−1 −1 0

]
A

+

[
−

Γ̃1

γ1
(B1−A1) −

Γ̃2

1− γ1
(B2−A2) −Γ̃3(B3−A3)

]T

whose implementation is shown in Fig. 3.
We have thus obtained a structure made of an instanta-

neous series adaptor and three junctions that account for the
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Figure 3: An intermediate step of the memory extraction
process from an adaptor. Notice that each filter accounts for
just half of the scattering junction.

whole dynamics of the initial adaptor. Yet, such junctions are
not scattering cells as we might have expected, instead they
form only half of a scattering cell (see Fig.3). By redrawing
the three filter as shown in Fig. 2, where they all have the
same inputx = −(A1 +A2 +A3), it can be easily shown that
the filterΓ̃3(z) (whose output is summed to the waveB3) can
now be moved to the inputs of the other two ports, as long as
we multiply it by the correspondingγk, after a sign change.

At each one of the two non-adapted ports we now have
two filters having the same input signalx. The output of the
first one,Γ̃m(z), m = 1,2, is summed to the reflected wave
Bm, while the output of the second,γmΓ̃3(z), obtained by
moving the filter that was at the adapted port, is summed to
the incident waveAm. In order for such filters to become a
scattering junction, they need to be equal to each other, i.e.

Γ̃1(z) = −γ1Γ̃3(z) , Γ̃2(z) = −γ2Γ̃3(z). (5)

Eqs. (2) and the conditions of instantaneous adaptation

Γ̃1(z)+ Γ̃2(z)+ Γ̃3(z) = 0,

{
γ1 + γ2 = 1
γ3 = 1 ,

are satisfied by (5)

Γ̃1(z)+ Γ̃2(z)+ Γ̃3(z) = −γ1Γ̃3(z)− γ2Γ̃3(z)+ Γ̃3(z)

= (−γ1− γ2 +1)Γ̃3(z) = 0.

In conclusion, by moving the filter that was connected
to the adapted port, we obtained a structure made of a static
adaptor and two dynamic scattering junctions placed at the
non-adapted ports. As we can see from Fig.??, if that filter
had been moved at the input of port 3, then we would have
obtained an equivalent structure with two filters at the outputs
of the adapted ports, whose transfer functions are once again
multiplied by the respective value ofγ after a sign change.

Notice that if we had two filters of the form−γ1K(z) and
−γ2K(z) at the outputsB1 andB2, respectively, then we could
move such filters at the inputa3 to form a single filterK(z).
As a matter of fact, this is exactly our situation, as we have
−γmK(z) = −γmΓ̃3(z) at the non adapted ports. This can be
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Figure 4: Equivalence between a dynamic series adaptor and
a static series adaptor with two dynamic scattering junctions.

easily verified by replacing̃Γm with −γmΓ̃3. If we move such
filters at the input port 3 then, together with the filterΓ̃3 that
we extracted before, we obtain a single scattering cell that
accounts for the whole dynamics of the adaptor.

A dynamic series adaptor is equivalent to its instanta-
neous counterpart whose adapted port is connected to a
DSC. The reflection filter of the DSC is that of the adapted
port of the initial adaptor, up to the constant term

It is important to notice that the scattering cells that we
obtain with this procedure turn out to be always computable,
as from each filter̃Γk(z) we can always extract a delay, as
defined in (1):

Γ̃k(z) = z−1Γ̂k(z) .

A first consequence of this result is that, in the case of to-
tal adaptation on a dynamic series adaptor, we end up with a
memoryless cell. In fact,Γ3(z) = 1 impliesΓ̃3(z) = 0, there-
fore the scattering cell becomes a direct input/output connec-
tion.

2.2 The dynamic parallel adaptor

As far as the parallel adaptor is concerned, reaching the same
conclusions as before is not as immediate. This is due to
the fact that the rows of the scattering matrix do not contain
just one reflection coefficient like in the series case, but all
three of them, which makes it impossible to write the sum
of incident waves(A1 + A2 + A3) as a function of just the
incident and reflected waves at each port

[
B1
B2
B3

]
=

[ ∆1−1 ∆2 ∆3
∆1 ∆2−1 ∆3
∆1 ∆2 ∆3−1

][
A1
A2
A3

]
.

The above difficulty can be overcome by exploiting the prop-
erty of the gyrator to transform a parallel adaptor into its dual,
i.e. a series adaptor. A parallel dynamic adaptor whose RTF

(port admittances) are

Gk(z) =

gk +
Nk

∑
i=1

eikz−i

1+
Mk

∑
i=1

dikz−i

= gk +

Nk

∑
i=1

gikz−i

1+
Mk

∑
i=1

dikz−i

,

is equivalent to a series dynamic adaptor with the same RTFs
as before (which are here to be interpreted as impedances),
whose ports are connected to dynamic gyrators with unit gy-
ration resistance. In the wave domain, a unit-resistance gy-
rator connected to a port with RTFR(z) is implemented as
a block that individually filters the incident wave withR(z),
and the reflected wave with−1/R(z)

B = MpA = −R
−1

MsRA (6)

whereR is the matrix of gyration resistances2. By solving
for the constant part of the scattering matrix and by apply-
ing again to that the equivalence principle, using as gyration
coefficients the constant part of the RTFs, we obtain the in-
stantaneous partMp of the parallel adaptor. We thus obtain
a structure that is similar to that of a series adaptor, therefore
we can extract the dynamics from it. Unlike the series case,
however, in this case we have adynamic transformerat each
port of the adaptor.

3. MEMORY EXTRACTION FROM A
MACRO-ADAPTOR

Using the tools introduced in Section 2, it is now possible to
solve the more general problem of extracting the dynamics
from a Macro-Adaptor (MA) (which is an arbitrary intercon-
nection of elementary dynamic adaptors). Given a MA, we
want to find an equivalent structure that is made of an instan-
taneous MA and a number of DSCs connected to some of (or
all) the ports.

3.1 Structural equivalences

A MA made of the interconnection of a number of memo-
ryless 3-port adaptors and DSCs can always be transformed
into a new structure made of a memoryless MA surrounded
by DSCs as shown in Fig. 5. This can be achieved by having
all dynamic elements “slide through” the inner adaptors ac-
cording to specific rules, until they reach the periphery of the
interaction WD structure.

Our problem is to characterize the “sliding rules” that en-
able the “extraction of the memory” from inside the MA,
which means that we need to find the equivalence that ex-
ists between a 3-port memoryless adaptor that has one port
connected to a DSC, and another 3-port memoryless adaptor
of the same type that has two DSCs connected to the other
two ports. We will first consider the simpler case of a series
adaptor, and we will show later how to adapt the same results
to the parallel adaptor.

Let us consider a memoryless series adaptor whose
adapted port is connected to a DSC whose reflection filter
is K(z).

The first step is to decompose the DSC into two filters
with the same transfer function, driven byX(z) =−(A1(z)+

2We recall thatRm are the RTFs, therefore in the case of a series adaptor,
they represent the port impedances
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Figure 5: Extracting the dynamics from a macro-adaptor.

A2(z)+ A3(z)) = 1
γ3

(B3−A3) = B3−A3. Such filter can be
moved onto the other two ports (see previous Section) pro-
vided that we multiply them by−γ and that we change the
sign of the port’s reflection coefficient. We can now express
the input of these filters as a function of the port waves to
obtain

X(z)K(z) = −γm(−(A1(z)+A2(z)+A3(z)))K(z) =

= −γmK(z)

(
1
γm

(Bm(z)−Am(z))

)
=

= K(z)(Am(z)−Bm(z)) , m= 1, 2.

This corresponds to the same scattering cell that we started
with, in which we swapped the ports3.

In conclusion:a structure made of a memoryless series
adaptor and a DSC connected to the junction’s adapted port
is equivalent to the same adaptor whose ports that are non-
adapted are connected to similar DSCs.

Under appropriate conditions, the above equivalency rule
holds true in the opposite direction: two identical DSCs con-
nected to the two non-adapted ports of an instantaneous se-
ries adaptor make a structure that is equivalent to the same
adaptor connected through its adapted port to the same DSC.
If only one of the two non-adapted ports is connected to a
DSC, we can always connect the other non-adapted port to
the cascade of the same DSC with another having an RTF of
opposite sign. In fact we can show that two DSCs with oppo-
site RTFs (and same initial conditions) cancel each other out.
The pair of DSCs that are connected to the non-adapted ports

3We recall that changing the sign to the RTF of a scattering cell corre-
sponds to swapping the cell’s ports

of the junction can now be moved to the adapted port. As a
result, we end up with a similar result as before:a structure
made of a memoryless series adaptor and a DSC connected
to any of its ports is equivalent to the same adaptor whose
other two ports are connected to similar DSC.This result is
reasonable as the adaptor’s task is to implement continuity
laws and, at the same time, guarantee the structure’s com-
putability.

Finally, it can be shown that the same results hold true
for parallel 3-port junction as well, exploiting once againthe
properties of the gyrators.

3.2 Initial conditions

When we replace a structure that includes a DSC with an
equivalent one having two DSCs, such elements with mem-
ory cannot be independent on one another as this would cor-
respond to increasing the number of state variables (and of
initial conditions). Consequently, the initialization ofboth
DSCs will depend on that of the original one. In order to
derive this dependency we can write the reflected wave rel-
ative to any of the ports for both structures and then we
can equate them. If we express the scattering filter in the
form X(z) = −(A1(z)+ A2(z)+ A3(z)) and take the adapta-
tion conditionK(z) = z−1K̂(z) into account, at the port 3 of
the one-DSC structure we will have

B′
3 = −A1−A2 +K(z)X(z),

while for the two-DSC structure we have

B′′
3 = −{A1 +[−γ1K(z)]X(z)}−{A2 +[−γ2K(z)]X(z)}

= −{A1 +[−K(z)]γ1X(z)}−{A2 +[−K(z)]γ2X(z)} .

B′
3 andB′′

3 are the same, as the sign change of the filterK(z)
in the expression ofB′′

3 depends on the orientation of the DSC
andγ1 + γ2 = 1.

The coefficientsγ1 andγ2 can thus be interpreted as the
weights that decide how to partition the initial conditionsbe-
tween the two DSCs in the equivalent structure.

4. CONCLUSIONS

In this paper we showed that a tree-like network of adaptors
with memory in WD structures can always be replaced with
a like network of memoryless WD adaptors of the same type
(parallel/series) whose peripheral ports can be connected
to two-port junctions with memory (mutators, transformers,
etc.). This process of memory extraction plays a key role
in the automatic implementation of WD structures in a wide
range of applications. The proof that we proposed for this re-
sult is operative, in that it provides a procedure for automatic
the memory extraction process.
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