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ABSTRACT

This paper addresses the compression of multispectral im-
ages which can be viewed, at the encoder side, as a three-
dimensional (3D) data set characterized by a high correlation
through the successive bands. Recently, the celebrated 3D-
SPIHT (Sets Partitioning In Hierarchical Trees) algorithm has
been widely adopted in the literature for the coding of mul-
tispectral images because of its proven state-of-the art per-
formance. In order to exploit the spectral redundancy in the
3D wavelet transform domain, a new scalable SPIHT based
multispectral image compression technique is proposed. The
rational behind this approach is that image components in two
consecutive transformed bands are significantly dependent in
terms of zerotrees locations in the 3D-DWT domain. There-
fore, by joining the trees with the same location into the List
of Insignificant Sets (LIS), a considerable amount of bits can
be reduced in the sorting pass in comparison with the separate
encoding of the transformed bands. Numerical experiments
on two sample multispectral images show a highly better per-
formance of the proposed technique when compared to the
conventional 3D-SPIHT.

1. INTRODUCTION

Multispectral images are normally encountered in a large num-
ber of applications, such as geology, meteorology, manufac-
turing, medicine, and agriculture. However, as the most so-
phisticated remote sensing systems are designed to provide
higher spatial and spectral resolutions, higher radiometric pre-
cision, and larger ground coverage, storage and transmission
of such a type of data become more challenging and may
overwhelm the capacity of the available communication chan-
nels. Therefore, the use of efficient compression schemes is
necessary.

Currently, with the huge advance in the use and distribu-
tion of digital multimedia data, the transmission and delivery
of massively large images over heterogeneous data networks
has turned out to be a real preoccupation for an increasing
number of researchers in the field of image compression. Sat-
isfying the requests in terms of image quality under the con-

straint of the diversity of the traffic on the network is a real
issue. Since the server must satisfy the users having both high
and low bandwidth simultaneously, a straightforward solution
to the problem is to compress and store the encoded version of
the image data at different bit-rates. However, this approach
involves providing the server with a large disk space and a
management system for the stored data. Therefore, scalabil-
ity, the capability of decoding a compressed image at different
bit-rates, provides an attractive solution, allowing only one
encoded image version to be stored in the database thereby
avoiding the overhead of maintaining several versions of the
coded data at various bit rates. In rate scalable coding, all of
the compressed data is embedded in a single bit stream which
can be decoded at different bit-rates. The decompression al-
gorithm receives and decodes the compressed data from the
start of the bit stream until a desired data rate is achieved.

In practical applications on multi-component images, the
simplest and direct extension is to encode the components of a
volumetric image independently as a set of separate grayscale
images. Besides, this strategy was adopted by the latest still
image coding standard JPEG-2000 [1]. Indeed, the extension
of JPEG2000 in Part II to 3D applications was confined to
multi-component transformations [2]. Nevertheless, the sep-
arated coding of different bands would sacrifice the full em-
beddedness of the bit stream. Furthermore, an explicit rate
allocation among the different planes is required, losing pre-
cise rate control in the bit-stream. In application on video
data, Kim etal. [3] proposed an extension of SPIHT to 3D
generating a fully embedded bit-stream. Further, it was modi-
fied and applied to compression of medical volumetric images
[4]. An overview given in [5] showed that 3D-SPIHT yields
the best performance with 9/7 biorthogonal wavelet filters in
comparison with several related works. A variation of 3D-
SPIHT was also adopted in [6] for multispectral image com-
pression. The authors applied the KLT and the DWT in the
spectral and spatial domains respectively.

More recently, it has been revealed that 3D-SPECK (Set
Partitioning Embedded bloCK), used in the 3D-DWT domain,
provides similar lossy and lossless compression performance
to 3D-SPIHT and considerably outperforms the benchmark
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JPEG-2000 multi components [7]. In this paper, our refer-
ence point will be drawn from the 3D-SPIHT coder which
operates in the 3D-wavelet packet transform domain. Readers
who wish to acquaint themselves with the 3D-tree structure
related to the transform are refereed to [3]. In order to ex-
ploit the spectral redundancy in the 3D-DWT domain, a new
scalable SPIHT-based multispectral image compression tech-
nique is proposed. The rational behind this approach is that,
in the 3D-DWT domain, image components in two consec-
utive transformed bands are significantly dependent in terms
of zerotrees locations. Therefore, by joining the trees with
the same location into the List of Insignificant Sets (LIS),
a considerable amount of bits can be reduced in the sorting
pass in comparison with the separate encoding of the trans-
formed bands. Numerical experiments on two sample multi-
spectral images show a highly better performance of the pro-
posed technique when compared to 3D-SPIHT.

2. JOINED SPECTRAL TREES

If one refers to a separate coding of the bands with SPIHT, at
each value of the threshold, a portion of redundant informa-
tion within LIS is sent to the decoder during the sorting pass
since there is a similarity in terms of zero-trees locations be-
tween the consecutive bands. More specifically, if a set corre-
sponding to a given bandk is found insignificant with respect
to the current threshold, a set with the same Spatial Orien-
tation Tree (SOT) in bandk + 1 is more likely to be found
insignificant. It can be shown that the probability to find`
insignificant sets with the same SOT in` consecutive bands
decreases as̀ increases [8]. Therefore, a judicious group-
ing of insignificant sets within spectral components would in-
volve each two consecutive bands in the whole transformed
image. While attempting to exploit the spectral redundancy,
our attention is also focussed on the rate scalability.

In order to join two trees at the same spatial location in
two consecutive bandsk andk + 1, a virtual parent is used
in the testing and partitioning processes related to LIS. As
depicted in Fig. 1, the virtual parent-offspring relationship is
determined in such a way that two children at a given spa-
tial location(i, j) in bandsk andk + 1 share a virtual parent
whose coordinates used in LIS are(i, j) as well. If one refers
to the conventional SPIHT, the partitioning of a grouped set
(i, j) produces four other grouped setsO(i, j) (see Fig. 2).
Thus, from an implementation point of view, for a total num-
ber of bands1 K, the number of initialized virtual parents in
LIS is bK+1

2 c times the number of parent coefficients in the
LL subband of each band. Likewise, those which do not have
children are initially added to LIP.

1In the case where K is odd, which is not considered here, the last band is
separately processed.

Slice k

Virtual parent whose
coordinates are used in LIS

Slice k+1

Fig. 1. Parent-children relationship in LL subband.

Slice k

Virtual
parent (i,j)

Four other virtual
parents O(i,j)

Partitioning

Slice k+1

Fig. 2. Partitioning of a grouped set(i, j) into four other
grouped sets.

3. PROPOSED JST-SPIHT ALGORITHM

Let us denoteCk,k+1 be the maximum value in magnitude of
the wavelet coefficients in two consecutive bands to be joined
k andk + 1; and

nk,k+1 = blog2(|Ck,k+1|)c (1)

n = max
k∈{0,2,4,...,K−1}

{nk,k+1} (2)

Practically, in the first iterations, for most joined bandsk
andk + 1 (k ∈ {0, 2, 4, ...,K − 1}), n > nk,k+1. Thus, a
comparison betweenn andnk,k+1 should be carried out at
each sorting step as long as the above inequality is verified.

While the main contribution here lies in joining spectral
trees in each group of two consecutive bands which involves
a new tree-structure using the virtual parent-descendants re-
lationship discussed above, the algorithmic part introduces an
essential modification regarding the sets used in LIS. That is,
four different types of sets are defined to take into account the
worst cases where one of the direct descendants is not signif-
icant while the other is2. In such cases, once the significant

2Note that there are two direct descendants from different bands.
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child is sorted, the remaining child is kept in LIS and tested
within the corresponding set in the next iterations. The ra-
tional behind this modification is motivated by the fact that
the joined trees which do not exhibit high similarities with
respect to the threshold provide a significance information re-
lated to the most significant tree. Sets of type A include all
descendants of virtual parents within the two joined consec-
utive bandsk andk + 1 (see Fig. 3). As depicted in Fig. 4

Virtual parent

Child in slice kChild in slice k+1

Fig. 3. Sets of type A.

and 5 , sets of type B and C correspond to those which ex-
clude a child ink andk + 1 respectively. Finally, sets of type
D are those excluding both the direct descendants in bandsk
andk + 1 (Fig. 6 ). Let us define the following sets:

Virtual parent

Child in slice kChild in slice k+1

Fig. 4. Sets of type B.

Virtual parent

Child in slice kChild in slice k+1

Fig. 5. Sets of type C.

• O(i, j)|k set of coordinates of all offspring of a parent
coefficient(i, j) in bandk as defined in the conven-
tional SPIHT.

• Ov(i, j)|k,k+1 = {(i, j)|k ; (i, j)|k+1} set of coordinates
of offspring of a virtual parent(i, j) used to join two
trees in consecutive bandsk andk + 1.

• D(i, j)|k set of coordinates of all descendants of a par-
ent coefficient(i, j) in bandk as defined in the conven-
tional SPIHT.

Virtual parent

Child in slice kChild in slice k+1

Fig. 6. Sets of type D.

• Dv(i, j)|k,k+1 set of coordinates of all descendants of a
virtual parent(i, j) used to join two trees in consecutive
bandsk andk + 1.

• H(i, j)|k set of coordinates of all parent coefficients in
LL subband in bandk.

• Hv(i, j)|k,k+1 set of coordinates of all virtual parent co-
efficients in LL subband used to join initial trees in two
consecutive bandsk andk + 1.

• L(i, j)|k = D(i, j)|k −O(i, j)|k .

• Lv(i, j)|k,k+1 = Dv(i, j)|k,k+1 −Ov(i, j)|k,k+1 .

In order to make clear the relationship between magnitude
comparisons and message bits, the functionSn(·) is used to
identify significant coefficients or sets as given in the follow-
ing equation

Sn(Γ) =
{

1, if max(i,j)∈Γ |Ci,j | > 2n

0, otherwise
(3)

To effectively describe the proposed Joined Spectral Trees
SPIHT algorithm, which is referred here to as JST-SPIHT,
let us consider that theK bands to be encoded are of size
M ×N . Therefore, under the assumption thatp levels of spa-
tial wavelet decomposition are performed, LL subbands of
each transformed band is of size

(
M
2p × N

2p

)
. Hence, the num-

ber of initial virtual parents in LIS is34bK+1
2 c (

M
2p × N

2p

)
. In

the following,K is assumed even. The algorithm is detailed
below.

1 Initialization

a) for k′ ∈ {0, 1, · · · , K
2 −1}, Outputn2k′,2k′+1. Set LSP

as an empty list. Add all coordinates(i, j) in LL sub-
band to LIP with band index2k′. Add all coordinates
(i, j) in LL subband to LIP with band index2k′ + 1.
Add the coordinates(i, j) ∈ Hv|2k′,2k′+1 to LIS with
band indexk′ as type A entries.

2 Sorting pass

a) for each entry(i, j) in LIP, outputSn(i, j) in the corre-
sponding band.

b) if Sn(i, j) = 1 then move(i, j) with the corresponding
band index to LSP and output the sign of the coefficient
Ci,j .
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c) for each entry(i, j) in LIS do

c.1) if (i, j) is a set of type A

• EncodesetsA (i, j)

c.2) if (i, j) is a set of type B

• EncodesetsB (i, j)

c.3) if (i, j) is a set of type C

• EncodesetsC (i, j)

c.4) if (i, j) is a set of type D

• EncodesetsD (i, j)

3 Refinement pass

a) for each entry(i, j) in LSP, except those included in the
last sorting pass, output thenth most significant bit of
|Ci,j | corresponding to the band index.

4 Quantization step

a) decrement n by 1 and go to step2.

In the sorting pass, part c) calls four functions, EncodesetsA
(i, j), EncodesetsB (i, j), EncodesetsC (i, j), and EncodesetsD
(i, j), which are described as follows:

EncodesetsA (i, j)

• outputSn(Dv(i, j)|2k′,2k′+1
)

• if Sn(Dv(i, j)|2k′,2k′+1
) = 1 then

– outputSn(i, j)|2k′
– if Sn(i, j)|2k′ = 1 then add(i, j) to LSP with band

index2k′ and output the sign ofCi,j in band2k′.
– outputSn(i, j)|2k′+1

– if Sn(i, j)|2k′+1
= 1 then add(i, j) to LSP with band

index2k′+1 and output the sign ofCi,j in band2k′+1.
– if Sn(i, j)|2k′ = 1 andSn(i, j)|2k′+1

= 1 then move

(i, j) to the end of LIS with band indexk′ as an entry of
type D.

– if Sn(i, j)|2k′ = 1 andSn(i, j)|2k′+1
= 0 then move

(i, j) to the end of LIS with band indexk′ as an entry of
type B.

– if Sn(i, j)|2k′ = 0 andSn(i, j)|2k′+1
= 1 then move

(i, j) to the end of LIS with band indexk′ as an entry of
type C.

– if Sn(i, j)|2k′ = 0 andSn(i, j)|2k′+1
= 0 then add

each(p, q) ∈ O(i, j) to the end of LIS with band index
k′ as an entry of type A and remove(i, j) from LIS.
Add (i, j) to LIP with band index2k′. Add (i, j) to
LIP with band index2k′ + 1.

EncodesetsB (i, j)

• outputSn((i, j)|2k′+1
, Lv(i, j)|2k′,2k′+1

)

• if Sn((i, j)|2k′+1
, Lv(i, j)|2k′,2k′+1

) = 1 then

– outputSn(i, j)|2k′+1

– if Sn(i, j)|2k′+1
= 1 then add(i, j) to LSP with band

index2k′+1 and output the sign ofCi,j in band2k′+1.
Move (i, j) to the end of LIS with band indexk′ as an
entry of type D.

– if Sn(i, j)|2k′+1
= 0 then add(i, j) to LIP with band

index2k′ + 1. Add each(p, q) ∈ O(i, j) to the end of
LIS with band indexk′ as an entry of type A and remove
(i, j) from LIS.

EncodesetsC (i, j)

• outputSn((i, j)|2k′ , Lv(i, j)|2k′,2k′+1
)

• if Sn((i, j)|2k′ , Lv(i, j)|2k′,2k′+1
) = 1 then

– outputSn(i, j)|2k′
– if Sn(i, j)|2k′ = 1 then add(i, j) to LSP with band

index2k′ and output the sign ofCi,j in band2k′. Move
(i, j) to the end of LIS with band indexk′ as an entry of
type D.

– if Sn(i, j)|2k′ = 0 then add(i, j) to LIP with band
index2k′. Add each(p, q) ∈ O(i, j) to the end of LIS
with band indexk′ as an entry of type A and remove
(i, j) from LIS.

EncodesetsD (i, j)

• outputSn(Lv(i, j)|2k′,2k′+1
)

• if Sn(Lv(i, j)|2k′,2k′+1
) = 1 then

– Add each(p, q) ∈ O(i, j) to the end of LIS with band
index k′ as an entry of type A and remove(i, j) from
LIS.

As depicted by steps a) and b), to encode an entry in
LIP during the sorting pass, the JST-SPIHT algorithm follows
closely the methodology used in the conventional SPIHT [9].
The difference lies in step c) where four types of sets in LIS
are considered. Indeed, since they are differently processed
by the JST-SPIHT algorithm, an index is used to identify each
set. A set is partitioned if it is of type D and one of its non
direct descendants is found significant as given by function
EncodesetsD (i, j). Otherwise, the remaining offsprings
of the corresponding virtual parent are sorted jointly with its
non direct descendants using the functionsEncodesetsA
(i, j), EncodesetsB (i, j), andEncodesetsC (i, j). This
depends on the type of entry in LIS to be sorted as described
by the steps c.1), c.2), and c.3). At the decoder side, the same
steps are followed and, as the scalability involves, the recon-
structed image is instantaneously updated subject to the re-
ceived bits during the sorting and refinement passes.

4. IMPLEMENTATION AND NUMERICAL RESULTS

Our experiments were performed on two sample images ’Ter-
rain’ (307 pixels by 500 lines by 210 bands) and ’Urban’ (307
pixels by 307 lines by 210 bands) quantized at non signed 16
bits [10]. For simplicity, we use 32 bands (from 60 to 91)
of a square region of288 × 288 pixels. Also, the wavelet
packet transform has been chosen. For the spectral dimen-
sion, three levels of decomposition were carried out by using
first the 9/7 biorthogonal filters then Haar filters in the last
decomposition3. In the spatial domain, four decomposition

3This is to ensure an accurate wavelet reconstruction since in the third
decomposition level we only have 8-length signals to be decomposed.
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levels were also conducted by using the 9/7 biorthogonal fil-
ters. The quality assessment of the decoded images is based
on rate-distortion results measured by means of the overall
Signal-to-Noise ratio (SNR) given by

SNR = 10 log10

(
P

MSE

)
(dB) (4)

where P and MSE denote the power of the original im-
age and the mean squared error respectively. For the sake of
comparison, we also report the results of 3D-SPECK [7] and
SPIHT and JPEG-2000 [11], carried out separately on each
band. This is referred to as separated SPIHT. Fig. 7 and 8
show that the proposed JST-SPIHT coder provides a signif-
icant improvement over 3D-SPIHT, which in turn consider-
ably outperforms 3D-SPECK at all the bit-rates. In addition
to the loss of the scalability property, the separated SPIHT and
JPEG-2000 coders, which perform closely in terms of SNR,
provide the poorest results for both images. The obtained re-
sults indicate that at all the bit-rates (between 0.1 and 0.5 bpp)
the quality of the reconstructed images with JST-SPIHT is
considerably higher than those obtained with 3D-SPIHT with
a difference increasing up to 4.17 dB for ’Terrain’ at 0.3 bpp
and 5.05 dB for ’Urban’ at 0.4 bpp (Fig. 9).
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Fig. 7. Results for -Urban-.

5. CONCLUSION

In this paper, multispectral image compression based on the
celebrated SPIHT algorithm has been addressed. In order to
exploit the spectral redundancy within multi-band images, an
efficient technique has been proposed. The key idea consists
in joining each two consecutive bands according to a new
tree-structure using a virtual parent-descendant relationship.
Furthermore, to overcome the worst cases where one of the
direct descendants is significant while the other is not, the pro-
posed algorithm, JST-SPIHT, uses four types of insignificant
sets during the sorting pass. Simulation results, conducted at
different bit-rates and carried out on two sample multispectral
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Fig. 8. Results for -Terrain-.
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Fig. 9. Improvement over 3D-SPIHT.

images, have obviously shown that JST-SPIHT significantly
outperforms the state-of-the art 3D-SPIHT.
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