
PDA-BCJR ALGORITHM FOR FACTORIAL HIDDEN MARKOV MODELS WITH
APPLICATION TO MIMO EQUALISATION

Robert J. Piechocki†, Christophe Andrieu∗, Magnus Sandell♠ and Joe McGeehan†♠

† University of Bristol, Centre For Communications Research
Woodland Road, MVB, BS8 1UB, Bristol, UK.

E-mail: r.j.piechocki@bristol.ac.uk, Tel. +44 117 9545203, Fax. +44 117 9545206
∗ School of Mathematics, University of Bristol, BS8 1TW, UK

♠ Toshiba TRL Labs, Bristol, BS1 4ND, UK

ABSTRACT

In this paper we develop an efficient algorithm for infer-
ence in Factorial Hidden Markov Models (FHMM), which
is particularly suitable for turbo equalisation in Multiple In-
put - Multiple Output (MIMO) systems. The proposed PDA-
BCJR algorithm can be viewed as a generalisation of the
PDA algorithm, which in its basic form handles single la-
tent variables only. Our generalisation replaces each of the
single latent variables with a HMM.

1. INTRODUCTION

High speed wireless communications systems require some
form of equalisation to compensate for the dispersive nature
of the wireless channel. The subject of (single transmit an-
tenna) equalisation has been extensively researched and a
plethora of technical papers published. Recently, so called
MIMO wireless systems have gained an enormous interest.
Whereas, the sub-optimal equalisation techniques with good
performance are still sought after, the MIMO sub-optimal
equalisation remains a real challenge. Nonetheless, two so-
lutions are frequently cited as state of the art: sphere de-
coders [1][2] and the probabilistic data association (PDA)
[3]. The PDA algorithm was first introduced in communica-
tions literature as a sub-optimal multi-user detector (MUD)
in CDMA systems. Simultaneously to MIMO, turbo prin-
ciple has reached engineering maturity, even thought some
theoretical description remains to be provided. Turbo equal-
isation can offer significant gains, especially when equalis-
ing ill-posed channels. Turbo equalisation requires all sub-
blocks in the system to exchange so-called soft informa-
tion i.e. full sets of marginal posterior distributions, rather
than point estimates (i.e. hard decisions). Both PDA and
sphere decoders can operate in the soft mode. As aforemen-
tioned, the challenge remains how to efficiently decode wide-
band MIMO signals at a reasonable computational cost. The
MIMO equalisation problem can be formulated as inference
on a Hidden Markov Model, for which an exact and efficient
algorithm is well known: forward-backward (aka BCJR).
Unfortunately, the complexity of BCJR increases exponen-
tially with the number of transmit antennas and the length of
the channel measured in symbol intervals. Reduced com-
plexity solutions based on heuristics [4] and Monte Carlo
approximations [5] have been proposed in the literature to
address this problem.

An interesting line of research was presented in [6],
where a more appropriate Factorial Hidden Markov Model
(FHMM) was used for MIMO equalisation. The authors used

a Structured Variational Inference (SVI) approximation of
[7] to compute marginal probabilities required in turbo equal-
isation. In this contribution we propose a different type of
approximation for inference in FHMM based on the proba-
bilistic data association (PDA) principle. Simulation results
suggest improved results as compared to the SVI.

2. PROBLEM FORMULATION AND ESTIMATION
TASKS

We consider a MIMO system withN;(1≤ n≤ N) transmit
andM;(1≤m≤M) receive antennas. The system signals
over a wideband channel, modelled as an equivalent multidi-
mensional(N×M) FIR filter with L taps:

H =




hT
1,1 · · · hT

1,N
...

. . .
...

hT
M,1 · · · hT

M,N


 (1)

Where:

hm,n =
(

h(τ=0)
m,n ,h(τ=1)

m,n , . . . ,h(τ=L−1)
m,n

)T
(2)

We introduce an additional notation:H:,n - is thenth block
column ofH i.e:

H:,n ≡




hT
1,n
...

hT
M,n




At each time instantt, thenth antenna signals a symbol

x(t)
n , that belongs to a digital modulation withΩ elements:

x(t)
n ∈ {a1, . . . ,aΩ}. A collection of L consecutive symbols

forms a vector:xt
n =

(
x(t)

n ,x(t−1)
n , . . . ,x(t−L+1)

n

)T
. Stacking

N such vectors produces another vector:

x(t) =
((

x(t)
1

)T
,
(
x(t)

2

)T
, . . . ,

(
x(t)

N

)T
)T

. With this no-

tation, the received signal at timet is:

y(t) = Hx(t) +n(t) (3)

Where:n(t) is a Gaussian noise i.e.n(t) ∼N
(
0,σ2

nI
)

We make an assumption that our system operates in a
turbo configuration. This is conventional and not detailed
here. It suffices to point out that in a turbo system the MIMO
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decoder has to supply a full set of marginal posterior proba-
bility mass functions (or an approximation to it):

{
f
(

x(1)
n |y

)
, f

(
x(2)

n |y
)

, . . . , f
(

x(T)
n |y

)}
(4)

The above problem can be elegantly described in terms
of Probabilistic graphical models.

2.1 Probabilistic Graphical Models

Probabilistic graphical models (PGM) have recently emerged
as a universal language describing problems in decision mak-
ing and/or estimation in the presence of uncertainty. PGMs
are used (and were often independently developed) in seem-
ingly unrelated disciplines ranging from: Bio-informatics
(Bio-statistics), Information retrieval, Speech processing and
image processing Communications to Forensic Science and
many more. It has to be emphasised that PGMs themselves
are nothing more than pictorial representations of families of
probability density functions, and as such, they do not offer
any solutions. However, PGMs may provide an insight into
existing models, motivation for new models and algorithms,
and ease of transferring solutions from one discipline to an-
other. There are three types of PGMs [8] that are used most
often: Directed Acyclic Graphs (DAG), Undirected Graphs
(UG) and Factor Graphs (FG). The diversity arises from a
fact that some problems can be accurately described only
by one type of graph. Other problems are well describes by
more than one type of graph. Such example is the problem
considered in this contribution. Reference [6] outlined the
problem using FG, however here we opt for DAG. DAGs are
useful in modelling causal relationships. In communications
the causal relationship is appealingly natural: the received
waveform arises as a response to the transmitted waveform
and realisation of a medium (wireless channel in our case).

A constituent model that will build our overall FHMM
is a factorial model depicted in figure 1. In DAGs the joint
distribution factors in such a way that each factor (of totalD)
represents the conditional distribution of a ”child” given its

”parents”: f (x1 . . . ,xN) =
D
∏
i=1

f (xi |pai )

In our case this becomes:

f (y,x1, . . . ,xN,H) = f (y |x1, . . . ,xN ,H) f (H)
N

∏
i=1

f (xi)

(5)
 

 

1x  2x  Nx  

y  

H  

Figure 1: Directed Acyclic Graph (DAG) of a factorial model
(MIMO and MUD/CDMA problems).

The task is to calculate a set of marginal posterior proba-
bilities for all xi , i ∈ {1,2, . . . ,N}.

f (xi |y ) =
∫
H

∑
x−i

f (xi ,x−i ,H |y )dH =
∫
H

∑
x−i

f (xi |x−i ,H,y ) f (x−i |H,y ) f (H |y )dH (6)

Where ”−i” stands for ”all except theith”. This also
allows to treat the channel as a random variable. As we
do not have access to a particular realisation of the chan-
nel H (H is latent), this variable is integrated out. Unfor-
tunately, such integral is impossible to calculate in a typi-
cal scenario. The first solution (ubiquitous in practice) is
to train the channel using known at the receiver data. This
amounts to approximating the posterior distribution of the
channels with one ”spike” centered perhaps at an ML esti-

mate: f (H |y ) = δ
(
H− ĤML

)

∫
H

∑
x−i

f (xi |x−i ,H,y ) f (x−i |H,y )δ
(
H− ĤML

)
dH =

∑
x−i

f
(

xi

∣∣∣x−i ,ĤML,y
)

f
(

x−i

∣∣∣ĤML,y
)

(7)
A better way to account for the channel uncertainty is via

an EM algorithm as discussed in section 3.2.
Even though training simplifies the problem, another

problem remains to be tackled. This (computational) prob-
lem is brought about by a fact that the jointa posteri-
ori distribution is not separable:f (x1,x2, . . . ,xN |H,y ) 6=
N
∏

n=1
f (xN |H,y ) since all the variables{x1,x2, . . . ,xN} co-

operate in setting the mean of the observationy i.e. E{y}=
h(x1,x2, . . . ,xN), which is a root cause of numerical com-
plexity for this type of problems.

A second component needed for our model is a HMM
model of figure 2. This model is equivalently described by
eq. (8).

f
(
y(1), . . . ,y(T),s(1), . . . ,s(T),H

)
=

f (H)
T
∏
t=1

f
(
y(t)

∣∣∣s(t) ,H
)

f
(

s(t)
∣∣∣s(t−1)

) (8)

where the states s(t) are defined as s(t) ≡{
x(t),x(t−1), . . . ,x(t−L+1)

}
.

 

 
 
 

( )1−ts  

( )1−ty  
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Figure 2: DAG of a Hidden Markov Model.

Both single antenna and MIMO equalisation can be rep-
resented by a HMM. In a case of known channels (pictorially:
if the channel variableH was shaded) the task of marginal-
isation is achieved by a forward-backward algorithm (more
specifically a variant known as BCJR).
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Our overall FHMM model arises by replacing the single
random variables{xn} in figure 1 with HMM in figure 2 - as
depicted in figure 3.

f
(
y(1), . . . ,y(T),s(1)

1 , . . . ,s(T)
1 , . . . ,s(1)

N , . . . ,s(T)
N ,H

)
=

f (H)
T
∏
t=1

[
f
(
y(t)

∣∣∣s(t)
1 , . . .s(t)

N ,H
) N

∏
n=1

f
(

s(t)
n

∣∣∣s(t−1)
n

)]

(9)
In a MIMO system the symbols sent from allN trans-

mit antennas are a priori independent (which is a reasonable
assumption when interleaves are used). However, the a pos-
teriori distribution is again not separable for the very same
reason, which again leads to exuberant complexities.

 

( )1−t
Ns  

( )1−ty  

( )t
Ns  

( )ty  

( )1+t
Ns  

( )1+ty  

( )1
1

−ts  
( )ts1  

( )1
1

+ts  

( )1
2

−ts  
( )ts2  

( )1
2

+ts  

H  

Figure 3: DAG of a Factorial Hidden Markov Model.

3. THE PDA-BCJR ALGORITHM

In this section we detail the PDA-BCJR algorithm. We also
describe modifications to the BCJR algorithm that are re-
quired for the use in PDA-BCJR algorithm.

In each iteration the algorithm updates a set of marginal
posterior distributions

{
f
(

x(1)
n |y

)
, f

(
x(2)

n |y
)

, . . . , f
(

x(T)
n |y

)}

via a modified BCJR algorithm. This set pertains to all
T;(1≤ t ≤ T) symbols sent from thenth transmit antenna. In
doing so, the modified BCJR algorithm exchanges two sets
of moments: input(µn,in,Σn,in) and output(µn,out,Σn,out).
The input moments in each iteration are calculated by sum-
ming all but thenth output moments, as detailed in table 1.

In standard BCJR algorithm as used in MIMO (soft in -
soft out) equalisation, the posterior transition probability is
factored:

f
(
s′,s|y)

∝ f
(

s′,y(1:t−1)
)

︸ ︷︷ ︸
α(t)

f
(
s
∣∣s′ ) f

(
y(t) ∣∣s′,s

)

︸ ︷︷ ︸
γ(t)

f
(
y(t+1:T) |s

)

︸ ︷︷ ︸
β (t)

(10)
and calculated recursively for numerical efficiency as:

α(t) (s) = ∑
s′

α(t−1) (s′
)

γ(t) (s′,s
)

(11)

β (t−1) (s′
)

= ∑
s′

β (t) (s)γ(t) (s′,s
)

(12)

the middle factorγ is calculated as:

γ(t) (s′,s
)

∝ exp

( −1
2σ2

∣∣∣yt − Ĥxi, j

∣∣∣
2
) N

∏
n=1

f
(

x(t)
n

)
(13)

In the modified BCJR (for the use in PDA-BCJR), the
middle factor (to take into account non zero mean and non
diagonal covariance) is calculated as:

γ∗(t)
(
s′,s

)
∝ exp

(
−

(
z(t)

n

)H (
Σ(t)

n,in

)−1(
z(t)

n

))
f (xn)

(14)
Where:

z(t)
n = y(t)− Ĥ(:,n)xn−µ(t)

n,in

The α ’s and theβ ’s are calculated as in the standard
BCJR algorithm eq (11) and (12). Additionally, the modi-
fied BCJR algorithm calculates ”output moments” (i.e. the
mean and the covariance of the received signal in an absence
of the noise and other antennae signals) at each time instant:

µ(t)
n,out = E

{
Ĥ:,nxn

}
=

S

∑
j=1

K

∑
k=1

Ĥ:,nxn f
(
s′,s|y)

(15)

Σ(t)
n,out = E

{(
Ĥ:,nxn−µ(t)

n,out

)(
Ĥ:,nxn−µ(t)

n,out

)H
}

=
S
∑
j=1

K
∑

k=1

(
Ĥ:,nxn−µ(t)

n,out

)(
Ĥ:,nxn−µ(t)

n,out

)H
f (s′,s|y )

(16)
To initialise the algorithm two options are possible: 1)

f (s′,s|y ) = 1
SK, which indeed is the only option in prac-

tice on the first turbo iteration; 2)f (s′,s|y ) = I (s′,s)
f
(

x(t)
n

)

S ,
which becomes an option after the first turbo iteration when

the ”prior” distributions f
(

x(t)
n

)
become available.I (s′,s)

is an indicator function that is 1 ifxn is compatible with
state transition and 0 otherwise. For efficient implementa-
tion of the modified BCJR algorithm, one realises that both
the branch metricŝH:,nxn and the posterior probabilities
f (s′,s|y ) ∝ α(t)β (t)γ(t) are pre-calculated as a part of stan-
dard procedures of BCJR algorithm.

3.1 Connections with Variational approximation

It is interesting to relate the proposed PDA-BCJR algorithm
to the structured variational approximation (SVI) of [7] [6].
The SVI approximation associates a fictitious observation
with each Markov Chain, effectively decupling the chains.
Our PDA-BCJR algorithm does the same, however it calcu-
lates a second moment in addition to the first calculated by
VI. To see this and for simplicity of presentation we come
back to the factorial model of figure 1 (relations in FHMM
are analogous).

In a factorial model a set of variational updates is given
by:

fVI (xi = aω |y)
appox

∝ exp

(−1
σ2 ψThiaω − 1

2σ2 |hiaω |2
)

(17)
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Table 1: The PDA-BCJR algorithm summary
”‘Outer recursions”’
for I = 1 : IPDAmax
”‘PDA recursions”’
for n = 1 : N

µn,in =
N
∑

j=1, j 6=n
µ j,out; Σn,in =

N
∑

j=1, j 6=n
Σ j,out

[
f
(

x(t),t=1:T
n |y

)
,µn,out,Σn,out

]
= BCJR∗

(
y,Ĥ:,n, f

(
x(t),t=1:T

n

)
,µn,in,Σn,in

)

end, end

where:

ψ = y−
N

∑
j=1, j 6=i

h j
〈
x j

〉
x j |y

or equivalently:

fVI (xi = aω |y)
appox

∝ exp

( −1
2σ2 |ψ−hiaω |2

)
(18)

The PDA algorithm updates this distribution via:

fPDA(xi = aω |y)
appox

∝ exp
(
(ψ−hiaω)T M−1 (ψ−hiaω)

)

(19)
where:

M =
σ2

2
I+

N

∑
j=1, j 6=i

hT
j h jVar

{
x j

}
(20)

The relation is:

MPDA = MVI +
N

∑
j=1, j 6=i

hT
j h jVar

{
x j

}
(21)

Hence, variational approximation neglects to update the co-
variance when compared to PDA. Here we mean a ”naive
variational approximation” a.k.a mean field approximation.

3.2 EM algorithms for Semi-blind equalisation

In the previous section we have presented the PDA-BCJR al-
gorithm with an assumption that the channels were known (or
estimated). As aforementioned a better approach to account
for the channel uncertainly is an iterative procedure EM -
Expectation Maximisation. The EM algorithm in our case
can be traced directly to the Baum-Welch procedure known
in speech processing problems [9]. We choose set up the
problem so that the hidden (latent) data are the states (sets
of transmitted symbols). To provide the algorithm with a
reasonable initial estimate, a few known symbols are trans-
mitted at the beginning of each frame. In standard iterative
procedure E step is performed first. In our case this is done
via PDA-BCJR algorithm. M step is identical to that of [7]
and [6].

4. SIMULATIONS RESULTS

A MIMO system has been simulated with 3Tx and 3Rx an-
tennas. The data bust of 768 bits has been encoded by a sin-
gle RCC (7,5) encoder and interleaved prior to transmission.
The BPSK signalling has been used and the channel taps are

modelled ashτ
m,n∼N

(
0,L−

1
2

)
with L = 3 (uniform power

delay profile).
Three turbo MIMO detectors have been investigated. The

decoders differ in soft in - soft out equaliser block. The
first is a full complexity BCJR. This is an optimal decoder
for this case, and it operates over HMM (neglecting FHMM
structure). The two other decoders are reduced complexity
versions. The first reduced complexity decoder is based on
structured variational approximation [7] and [6]. The second
is our PDA-BCJR decoder.

Figure 4 depicts the BER performance of the developed
reduced complexity PDA-BCJR over FHMM, and the per-
formance of the optimal BCJR over HMM. After 5 iterations
the performance is essentially indifferent in both cases. SVI
(not depicted) also performs very well in this case.

Figure 5 shows performances of semi-blind versions
(short training with EM) of the three decoders. M step was
performed on the outputs of the channel decoder i.e. EM
was incorporated into the ”turbo loop”. First 18 symbols
were known to the receiver to initialise EM. In this case
PDA-BCJR clearly outperforms structured variational infer-
ence decoder.

0 2 4 6 8 10 12 14
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−1

10
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B
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PDA−BCJR iter #1
PDA−BCJR iter #2
PDA−BCJR iter #5
BCJR over HMM iter #1
BCJR over HMM iter #2
BCJR over HMM iter #5

Figure 4: Performance comparison of PDA-BCJR over
FHMM and BCJR over HMM.

5. CONCLUSIONS

We have developed a generalisation to a popular PDA algo-
rithm. The algorithm iterates on entire hidden Markov mod-
els, and as such is suitable for MIMO equalisation problems.
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Figure 5: Performance comparison in a semi-blind setting
(all via EM): PDA-BCJR over FHMM, SVI over FHMM and
BCJR over HMM.

For degenerate Markov chainsf
(

s(t)
∣∣∣s(t−1)

)
= f

(
s(t)

)
(i.e.

no time dispersion), the developed PDA-BCJR becomes a
standard PDA [3]. The PDA-BCJR and the FHMM can serve
as a framework for the development of further approximate
algorithms by introducing the next level of approximation
within the BCJR step.
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