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ABSTRACT

We considerdesignof wirelesssensometwork for evert
detectim applicdion. An MMSE basedweighed aggega-
tion schemas proposedfor evert detectiorapplicdion using
wirelesssensomnetwork. Accuragy andthe network lifetime
are the two perfamanceevaluating paranetersconsideed
here We comparethe perfomanceof the proppsedscheme
with the previously knowvn schemes.

1. INTRODUCTION

In this paper we explore the use of wirelesssensornet-
work (WSN)for aneventdetectiom application. Specifically
we extendthe resultsof Steven [2], whereinwe considera
weighted aggreation schemeas oppased a majoity deci-
sion basedaggegation schemeof [2]. Wirelesssensomet-
work [4] is adistributednetwork formedby dedoying sensor
nocesin the applicationareain large number. Eachsensor
nock consistsof the following compmnents(i) multiple sen-
sorsto measue physical parametes, (ii) a micro-contrdler,
(i) smallmemay and(iv) atransceier. Thesetiny sensor
nocesarepowveredwith asmallbatteryhaving limited power.
Basically eachsensomode hasvery smallfootprint. Multi-
hoppraocolis usedto communicatethesensediatabetween
differentsensomnodes via thetranscever.

For event detectionapplication eachsensoris assumed
to sensehelocal informationabou theoccurenceof globd
event correctly with some probability. The information
sensedy all the nocesultimately reaclesthe sink eitherin
true form or after being processedoy the intermediateag-
gregators. Thus,usingall theinformationavailable,the sink
malkesthe final global decisionaboutan event. The perfor-
mane of the network is thusdeternined by how accurately
theeventis detectedy thesink. Theobjediveis to makethe
event detectiormoreaccuatewhile maximizirg thelifetime
of the network. The basicrequrementsof WSN to be scal-
able andself organizalte arealsotakeninto consideratio.
All thisis achiezedunder the constraim of limited power.

Recently the use of WSN for landslidedetectiomn was
proposedin [1]. Distributed detectionalgaithms for WSN
have beentalked of quite oftenin the past(for exampe see
[3, 7,8, 9. In[7] adistributedalgorithmwas proposedto
maximize the lifetime of the WSN. Whereas|8, 9] discuss
fundamentabndadvarceddistributedalgorithns with mul-
tiple sensorwhereobsenation of eachsensoiis onebit. In
[5, 6] optimizationacrossouting, link andMAC layeris pro-
posedo maximizethelifetime of WSN.

[2] considersaventdetectionapplicationfor WSN. Our
work reliesheavily ontheinterestingesultspresentdin [2].
In [2], aggegationschemeM 1 andlink costfor routingC1 is
proposed.It usesBellman-Ford routing algoithm algoiithm

with link costC1 to obtainthespanniig treeoriertedtowards
the sink. C1 for link (i,j) is definedasC1 = Ij/Bi, Wherelj

is the numker of nodeswhich cantransmitto j®'nodeand
B; is the batterylevel of thei'"node. Consideriny lj in the
numeatorandB; in denoninator, it is ensuedthatthereare
not too mary childrenof the samenock. This resultsin a
balancedspaniing tree. AggregationschemeVi1 stateshat
eachnoce makesonebit decisionbasedon majority of the
decisiongeceved from its children This onebit decisionis
thentransmittedto its parentnodewhich againfollows the
sameaggegatin scheme. This proessgoeson until the
sink makesthe final decisionaboutan event. In wasshavn
in [2] thatuseof aggegatin schemeM1 andlink costC1l
enablesmproved accurayg for evert detection. Moreover,
with aggegationschemeM1, we getbetternetwork lifetime
sinceeachnodegransmitsonly onebit to its parert.

[2] also proposes the infinite precision aggegation
schemeM2 which is usedwith spannilg tree obtainedby
Bellman-fad routing usinglink costC2. Link costC2 for
link (i,j) is definedasC2 = Pij/Bi. Where,Pij is the power
required to transmita bit from it" noce to j" nodewnhich
depenls on the path loss of the link (i,j). Infinite preci-
sion aggegation schemeM?2 requires transmissiorof mul-
tiple bits from a nodeto its paren. In M2 evely ith noce
findsoutthenurrberof nodesO; (ore’s) obseving theoccu-
renceof eventH andnumber of nodesZ; (zerds) obseving
non-occurenceof evert H in the subtreeoriginaing from
itself. TheseO, andZ; are compted at every noce based
on its obseration and basedon information received from
its children. O, andZ; arethencomnunicatedto their re-
spectve parentnodeusing multiple bits. Finally sink noce
compues global O andZ basedon the datareceved from
its childrenandmakesa final decisionabou the evert. Ag-
gregation schemeM2 will have poa network lifetime since
it requirestransmissiorof more numter of bits from every
nodeto its paren.

In orderto motivate our weightedaggegatian scheme,
we presentinexanple,whereroutingusinglink costC1 does
not resultsin a balancedree. Figure 1 shavs a spanning
tree obtainel by apgying the Bellman-Ford routing algo-
rithm usinglink costC1 onasensometwork with 100nodes
in a squarearea. We assumea uniform distribution for ran-
domly locatingnodes.Here, differentbrandesof any sub-
treeemeqging from ary noce have differert numkerof noces.
Thusthemajoritydecisiorrulewill notresultin optimum ag-
gregation sinceit givesequalweightsto the decisiors com-
ing from differentchildren However, decisionmadeby ary
child may be basedn dataobsened by differentnumber of
nodes.We proposea minimum meansquareerror (MMSE)
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Figure 1: TheSpanniiy treeasaresultof Bellman-Ford rout-
ing algorithmusinglink costC1

basedveightedaggegation schemgWAS), in whichanode
corsiderthe decisionfrom its childrenasbefae. However
now, it alsousesthe numbe of descendntsof eachof its
child for the purpose of weighirg the decision. Here too,
the decisionof eachnock is onebit and corsequentlybet-
ter network lifetime attribute of the aggreyationschemeM1
is presered. Becauseof the MMSE apprach,we will see
later, WAS givesbetteraccuray evenfor anuntalancedree.

In Section2, we presehthe corstructionof the MMSE
basedwveighted aggegationscheme.n Section3, we shov
how WAS canbe usedin WSN for evert detectionapplica-
tion. In Section4 we carry out extensve simulationcon-
sideringthe proppsedweightedaggegationschemethe ag-
gregationschemeM1 andthe aggegationschemevi2. For
M2 we uselink costC2, while for WASandM1 we uselink
costCl. Fromthe simulationit is seenthat: (a) Theaggre-
gation schemeM1 and weightedaggegation schemeboth
resultsin far betternetwork lifetime ascompaedto the net-
work lifetime of aggegation schemeM2, (b) Network life-
time of WAS andaggegationschemeV 1 is comparableand
(c) WAS outscoes the aggreation schemeM1 in termsof
accungy. Theseresultsshavs advartageof WAS over other
aggegatian schemefor evert detectiorapplication Finally,
Section5 condudesthe pape.

2. THE DEVELOPMENT OF MM SE BASED
WEIGHTED AGGREGATION SCHEME (WAYS)

A localview of thewirelesssensometwork is shavn in Fig-
ure2. It shovs parentnodeS, with its k children S ,---,S,.
In ourwork we conside thenodeasits own descendat along
with otherdescendnts. Let nodeS, have N, nunber of de-
scendats (notonly thechildren), derotedby S;, S, -+, S -

Thesinkis consideedto beatlevel 0, whereaghe level for
ary othernodewill bethenumterof hopsit is awayfromthe
sink node. The nodeS, maybe at ary level in the network.
We assumdransmissiorof onebit from ary sensomodeto
its pareninodeasits local decision.We assumeanodeknowns
thenumkerof descendasits childrenhave. For exanplethe

nodeS, knows the numker of descendntsN; of its child §.
Amongall thedescendas N; of thenoce S, let thenumbe
of nodesdecidirg in favor of the occurenceof the eventbe
n;. Herewe proposea MMSE basedweightedaggegation
schemen which parentnodeS, compuesthe MMSE esti-
maten; of n;. Specifically fi; is the MMSE estimateof the
numker of descendntsof noce S; decidng in favor of the
occurenceof theevent.

For simplifying the analysiswe assumethe decision
madeby ary nodeis the majority decisionof all its descen
dants.Thusif theobsenrationsof thedescedantsof thenode
§ areX! = {X3,X;,--Xin }» thenthe decisionmadeby the

nodes§ is givenby
X = maj{X'} (1)
wherefor a setB of binaly numters,we definemaj{B} =1

if thereare more or equalnumker of onesthanzerosin B,
while maj{B} = 0 othewise. Similarly,

X =maj{X°ux’..uxk} 2)

whereX? = {X,}.
We assumehatthefollowing informationis availableat Sj,.

Figure2: A local view of the network

. Obseration X, of thenoce S itself.
. DecisionX; madeby itsit" child §, fori = 1,2,---, k.
. Numlerof descendas N; of §.

. Theprohability p of correctsensingor accuacy of all the
Sensors.

Theprodemis to getanestimateX of X from theabove
information. Theestimate

A WN -

X = P(X = B|X 3
argﬁg}giﬁ}( B|X) 3)

will have the highest accurag P(X = X) where X =
[X07X17 Xk] )

Recallthatn, is theactualnunberof descendats of node
S obsenring in favor of the hypothesigi.e.,H = 1) andthus
n=ny+n, +---+n, will bethe actualnunber of descen
dantsof the nodeS; obsering in favor of H = 1. Herewe



obtainthe minimummeansquareerra (MMSE) estimaten;
of n, andgetthe MMSE estimateof n as

A= Ny+ A +---+A,. (4)
This estimatecanthenbe usedto getanestimateof X. In the
following, we obtainthe MMSE estimatefi; of n; given X;
andN, for a particdar node S,. Now,

P(ni|X = 1) = P(n|X = L,H = O)P(H = 0[x; = 1)
+P(n|X =LH=1PH=1X =1). (5)

Recallthatp is the prokability of correct sensingoy the sen-
sors.Then

PXi=1H=0) = P(X=0H=1)
IL%?MQHO p) N
=
where"C, = gty and
PX=1H=1) = P(X=0H=0)
= %N Nepa-p™. ()
=141
Now,
PX =1 = P(X=1H=0)P(H=0)
+P(X = 1|H = 1)P(H = 1)
_ ;mxzuH:m+wx:uH=ny

Usingequdion 6, we have

%[P()g =1/H = 0) +P(X = 0|H = 0)]
1

= 3 ™

Notethatthis ensuredransmissiorof maximum averagein-
formationby eachtransmittechit. UsingBayes'rule, we get

P(X = 1|H = h)P(H = h)
P(%=1)
= PG=1H=h) 8

PH=hX=1) =

whereh € {0,1}. Fromequatios (8) and(5) we get

PiIXi=1) = P(n|X=1H=0P(X=1H=0)

+P(n|X = 1,H = 1)P(X, = 1|H = 1)

= P(nia i = 1|H :0)+P(ni= i = 1|H = 1)
NGy PN (L p)"
=y HNGpra-pN Y ifn>3 O
0 otherwise.

0.2
p=0.95
0.18} p=0.5 i

0.16
p=0.65 p=0.9
0.14f :

p=0.55 | p=0.75

p=0.85
p=0.6 |p=0.7\ p=0.8
¥

0.12F

0.1F

P(n/X)

0.08 |-

0.06 |-

0.04F

0.02

Figure3: Conditicnal prabability massundion of n; for X, =
1, N;=100andvariousvaluesof p

Similarly,

NG PN (1= p)"
NGy P (- pNif < Y (10)
0 othewise

P(ni[X =0) = {

Figure 3 shaws the condtional probalility massfunction of
n; given X, = 1, obtainedusing equdion 9. It shavs mul-
tiple plots for different accuacies(p) andfor 100 descen
dants(N,;=100). Here,for easeof visualization the proba
bility massfunctionsof thediscretevarieble n; areshovn as
continwus plots. Similar plots canbe obtainedfor X; = 0
usingequatiam (10), in which the curveswill be nonzeo in

n=0to LNiT_lJ andwill bethe mirror imageof the curves
seenin Figure3.

The MMSE estimateof n; givenX; = 1 is given by the
mean

N
rA‘i|><1.=1 = jP(ny=jIX =1). (19
=41
Similarly,
N.—1
L1 .
rA‘i|><1.=o = % jP(ny = j|X =0). (12
J=

ThenodeS, findsthe estimaten of n as

A= i A 13

andmalesits decisionas

% 1 ifa>N
= = 14
{ 0 otherW|Zse (149

whereN = 145X | N.



3. THE PROPOSED ALGORITHM

Basedon the above formulation we now shav hov WAS
can be effectively usedin WSN for evert detectionappli-
cation At first, we assumehatthe network topdogy does
not charge very often and thus the network is static and
we shav thatimprovemert in accuray is achiered with the

samenetwork lifetime asin the caseof M1. Theassumption

of the staticnetwork topology canbe relaxed with the help
of minimal communicationoverheadwheneer thetopolagy
charges.

3.1 TheWAS Scheme for Static Network

Herewe assumdhat oncethe nodes are deplo/ed, the net-
work topdogy doesnotchang till thenodesstartdying out.
Initially eachnoce is assignedhe samebatterylevel. We
definenetwork lifetime asthe time beforethe first noce in
the network dies. Sincethe network is static,the numter of
descedantsof a noderemainsfixedthroughou the network
lifetime.

Theweightedaggrejationschemevorks asdescribe be-
low.

1. UsingBellmanford routing algorithm, the spannirg tree
is obtainedasshowvn in Figurel.

2. The sink node assignslevel zeroto itself and corveys
its level information to its children. The childrenof the
sink then assignlevel 1 to themseles and corvey this
informationto their children andsoontill theleafnodes.

3. Eachnock is assignedime slot in sucha way that ary
paren nodegetsatime slot afterall its childrennodes.

4. Beforethestartof first sessiorthe processof descedant
updateis initiated. This is doneduiing the initial setup
of a sensometwork. Startingfrom the leaf nodes, each
node§ calculatesthe numbe of its descendas N; as
N; =1+ 3jer N; whereR is the setof children nodes

of §. N/’s thuscalculatedare transmittedto the parern

nodeat lower level usingfew bits. TheseN;’'s remain
fixedtill nodes startsdying. Thusbefae thefirst session
begins, eachnodeknowsthenunberof descedantstheir

childrenhave.

5. Usingequationll and12 eachsensomodeS; calculates
onceandkeepsin memoy the expectednumbe of de-
scendantdecidirg in favor of H=1givenX; = 1 (1; |Xj:1)
andgiven X;=0 (rTj |xj=o) usingthe corresponéhg val-
uesof N;, j € R. If this computationis undesiredthese
valuescanbepreloa@ddin eachsensomsa2 x L matrix,
whereL is the maximum numter of descendas a node
canhave. The (1,k)™" elementof thematrixwill contain
themearvalueri; |Xj:1 for N; = kandthe(2, k)™ elemen

will containthemearvalueri; |y _, for N; = k. After the
J

initial setup,a nodeneed to keeponly the coluimscor
respomlingto thenumker of neighorsof its children and
freemostof thememoy occipiedby thematrixfor other
use.During ary sessionif anodedoesnothearfrom all
its children theremustbe a deadchild node andthusthe
network is assumedo bedead.

6. During every sessiongachnoce S; obtans fi;, the esti-
mateof the numter of its descendntsdecidingin favor

ofH=1as
(19

j€R

7. Now X;, thedecisionmadeby thenodeS,, is obtairedas

x:{l it i, > [

0 otherwise

andis commuricatedby S, to its parer node.

Note that the comnunicationoverheadfor eachnodeS;
in this schemeover M1 is only dueto the transmissiorof
thenumter N;. However theseN;s aretransmittecbnly once
during theinitial setupandsothe overheadincurredateach
nodeis negligible. Hencethelifetime of WAS is almostsame
asthatof theaggegation schemeM1. Simulationresultsin
Section4 show thatthe accurag obtaired by WAS is better
thanthatof M1.

3.2 Relaxing the Assumption of Static Network

After ary noce diesout or getseliminatedform the network,
network topolagy changs. To keeptrack of chargein net-
work topolagy updde of nunmberof descendatsis requred.
It canbedorein ary of thefollowing ways: (i) TheN;’smay
beperiodcally upddedaftereveryfew sessiongasdore dur-
ing theinitial setup.(ii) TheN,’sareupdatedassoonasdeath
of ary nodeis detectedy its parent.In this caseupdateof
thenumter of descendas takesplacefor all theancestersf
adeadnode.

However, to keepthenetwork alive evenaftersomenoce
die, the routing itself need to be redae to make it more
suitablefor thechangdtopology.

4. SIMULATION RESULTS

Simulations have been perfamed for numter of nodes
M=100uniformly degoyedin asquaregrid areaof sizeM 2.
We malke surethattheaveragenumter of neigtborspernoce

is in between7 and9. We corsiderequalprobability of oc-
currerce of theevent H, i.e., P(H = 0) = P(H = 1) = 0.5.

We assumeavely sensorhassameprabability p of correct
sensing. For the following results,we vary the probability

p of correctsensingof all the sensordrom 0.55to0 9, with

incremetts of 0.05. Recallthatthe accurag of the system
is the probability of correctdecisionmadeby the sink noce.

Theaccurag andnetwork lifetime areplottedagairst p for

the aggrgationschemedMl, M2 and WAS. The plots are
the average of 60 differert randan deployments. Herethe
initial batterylevel assignedo eachnodeis 5000 units. For

transmissiorof a single bit from a noce to its parent, the
transmissiorpower requiredis propational to the cube of

the distancebetweerthetwo. In our simulation,this hasan
averagevalue of about150 units. The power required by a

nodefor receving a singlebit is fixedto 100units.

In bothWASandM1 eachnode transmitsa singlebit and
recevveson averag 4 bits during eachsessionThusnetwork
lifetime for themis found to be comprable. However for
the M2 aggegationschemethe nunber of bits transmitted
andrecevedaresignificantlylargeandthey depenl uponthe
total nunber of nodesin the network. Herefor presensim-
ulation network lifetime for M2 is found to be very lessas
compaed to WAS and M1 aggegation schemes.Thus M2
givesvery poorperformarcein termsof network lifetime, as
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Figure 4. Comparisorof lifetime for aggegationschemes
M1-C1, M2-C2andWAS-C1

seenn Figure4, andhencds notsuitablefor wirelesssensor
network.
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Figure 5: Compaison of accurag vs probability of corred
sensingor M1-C1,M2-C2 andWAS-C1

Figure 5 compmresaggegation schemesM1, M2 and
WeightedAggregation SchemgWAS) in termsof accurag.
It hasbeenobsered that aggregation schemeM?2 hasthe
bestaccurag amorg all thethreemethod. Thisis expected
from the fact that the sink hasthe exact information of the
total numbe of obsevationsin favorof H = 1andH =0in
thewholenetwork. But this gainin accuacy for M2 comes
at the significantloss of lifetime sinceeachnodetransmits
more numbe of bits per session.Sincelifetime is the most
critical aspectfor wirelesssensometwork, M2 may not be
the prefered aggrgationschemealthoudn it gives the best
accungy. In cortrast,we have WAS andML1, both of them
having very goad network lifetime sincein theseaggreation
schemegachnodetransmitsa singlebit persessionAlso it
is obsenred that the lifetime of WAS is compaableto that
of M1. Now whenwe compre WAS andM1 in termsof
accuncgy WAS outscoresvil.

5. CONCLUSION

An MMSE basedwveightedaggreyation schemas proposed
for event detectionusing a wirelesssensornetwork. The
schemerequites transmissiornof a single bit by eachsen-
sorfor every sessiorasrequred by the previously praposed
schemeM1in [2]. Sothisschemerovidesthesamenetwork
lifetime asthe schemeM1. This schemeoutscoesaggrea-
tion schemeM1 in termsof accurag and M2 in termsof
network lifetime. Thusthe WAS is themostpreferedaggre
gationschememongthoseknown sofar for evert detection
usingWSN.
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