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ABSTRACT
We considerdesignof wirelesssensornetwork for event

detection application. An MMSE basedweighted aggrega-
tion schemeis proposedfor event detectionapplication using
wirelesssensornetwork. Accuracy andthenetwork lifetime
are the two performanceevaluatingparametersconsidered
here. We comparetheperformanceof theproposedscheme
with thepreviouslyknown schemes.

1. INTRODUCTION

In this paper, we explore the use of wirelesssensornet-
work (WSN) for aneventdetection application. Specifically,
we extendthe resultsof Steven [2], whereinwe considera
weighted aggregation schemeas opposeda majority deci-
sionbasedaggregation schemeof [2]. Wirelesssensornet-
work [4] is adistributednetwork formedby deployingsensor
nodes in the applicationareain large number. Eachsensor
node consistsof the following components(i) multiple sen-
sorsto measure physicalparameters, (ii) a micro-controller,
(iii) smallmemory and(iv) a transceiver. Thesetiny sensor
nodesarepoweredwith asmallbatteryhaving limitedpower.
Basically, eachsensornode hasvery small footprint. Multi-
hopprotocolis usedtocommunicatethesenseddatabetween
differentsensornodes via thetransceiver.

For event detectionapplication, eachsensoris assumed
to sensethelocal informationabout theoccurrenceof global
event correctly with some probability. The information
sensedby all thenodesultimately reachesthesink eitherin
true form or after beingprocessedby the intermediateag-
gregators.Thus,usingall theinformationavailable,thesink
makesthe final global decisionaboutanevent. Theperfor-
mance of thenetwork is thusdeterminedby how accurately
theeventis detectedby thesink. Theobjectiveis to makethe
event detectionmoreaccuratewhile maximizing thelifetime
of thenetwork. Thebasicrequirementsof WSN to bescal-
ableandself organizable arealso taken into consideration.
All this is achievedunder theconstraint of limited power.

Recently, the useof WSN for landslidedetection was
proposedin [1]. Distributeddetectionalgorithms for WSN
have beentalkedof quiteoften in thepast(for example see
[3, 7, 8, 9]. In [7] a distributedalgorithmwasproposedto
maximize the lifetime of theWSN. Whereas,[8, 9] discuss
fundamentalandadvanceddistributedalgorithms with mul-
tiple sensor, whereobservation of eachsensoris onebit. In
[5, 6] optimizationacrossrouting, link andMAC layeris pro-
posedto maximizethelifetime of WSN.

[2] considersevent detectionapplicationfor WSN. Our
work reliesheavily ontheinterestingresultspresented in [2].
In [2], aggregationschemeM1 andlink costfor routingC1 is
proposed.It usesBellman-Ford routing algorithm algorithm

with link costC1 to obtainthespanning treeorientedtowards
thesink. C1 for link (i,j) is definedasC1 � I j � Bi, whereI j

is the number of nodeswhich can transmitto j thnodeand
Bi is the batterylevel of the ithnode. Considering I j in the
numeratorandBi in denominator, it is ensuredthatthereare
not too many childrenof the samenode. This resultsin a
balancedspanning tree. AggregationschemeM1 statesthat
eachnode makesonebit decisionbasedon majority of the
decisionsreceived from its children. This onebit decisionis
thentransmittedto its parentnodewhich againfollows the
sameaggregation scheme. This processgoeson until the
sink makesthefinal decisionaboutanevent. In wasshown
in [2] that useof aggregation schemeM1 andlink costC1
enablesimproved accuracy for event detection. Moreover,
with aggregationschemeM1, we getbetternetwork lifetime
sinceeachnodestransmitsonly onebit to its parent.

[2] also proposes the infinite precision aggregation
schemeM2 which is usedwith spanning tree obtainedby
Bellman-ford routing using link costC2. Link costC2 for
link (i,j) is definedasC2 � Pi j � Bi. Where,Pi j is thepower

required to transmita bit from ith node to jth nodewhich
depends on the path loss of the link (i,j). Infinite preci-
sion aggregation schemeM2 requires transmissionof mul-
tiple bits from a nodeto its parent. In M2 every i th node
findsoutthenumberof nodesO i (one’s)observing theoccur-
renceof eventH andnumber of nodesZ i (zero’s) observing
non-occurrenceof event H in the subtreeoriginating from
itself. TheseOi and Zi are computedat every node based
on its observation andbasedon information received from
its children. Oi andZi are thencommunicatedto their re-
spective parentnodeusingmultiple bits. Finally sink node
computesglobal O andZ basedon the datareceived from
its childrenandmakesa final decisionabout theevent. Ag-
gregationschemeM2 will have poor network lifetime since
it requires transmissionof more number of bits from every
nodeto its parent.

In order to motivate our weightedaggregation scheme,
wepresentanexample,whereroutingusinglink costC1does
not resultsin a balancedtree. Figure 1 shows a spanning
tree obtained by applying the Bellman-Ford routing algo-
rithm usinglink costC1 onasensornetwork with 100nodes
in a squarearea.We assumea uniform distribution for ran-
domly locatingnodes.Here,differentbranchesof any sub-
treeemerging fromany nodehavedifferent numberof nodes.
Thusthemajoritydecisionrulewill notresultin optimumag-
gregationsinceit givesequalweightsto thedecisions com-
ing from differentchildren. However, decisionmadeby any
child maybebasedon dataobserved by differentnumber of
nodes.We proposea minimum meansquareerror(MMSE)
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Figure1: TheSpanning treeasaresultof Bellman-Ford rout-
ing algorithmusinglink costC1

basedweightedaggregation scheme(WAS), in whichanode
considerthe decisionfrom its childrenasbefore. However
now, it alsousesthe number of descendantsof eachof its
child for the purposeof weighing the decision. Here too,
the decisionof eachnode is onebit andconsequentlybet-
ter network lifetime attributeof theaggregationschemeM1
is preserved. Becauseof the MMSE approach,we will see
later, WAS givesbetteraccuracy evenfor anunbalancedtree.

In Section2, we present the constructionof the MMSE
basedweightedaggregationscheme.In Section3, we show
how WAS canbeusedin WSN for event detectionapplica-
tion. In Section4 we carry out extensive simulationcon-
sideringtheproposedweightedaggregationscheme,theag-
gregationschemeM1 andthe aggregationschemeM2. For
M2 we uselink costC2, while for WAS andM1 we uselink
costC1. Fromthesimulationit is seenthat: (a) Theaggre-
gation schemeM1 and weightedaggregationschemeboth
resultsin far betternetwork lifetime ascomparedto thenet-
work lifetime of aggregation schemeM2, (b) Network life-
time of WAS andaggregationschemeM1 is comparableand
(c) WAS outscores the aggregation schemeM1 in termsof
accuracy. Theseresultsshows advantageof WAS over other
aggregation schemesfor event detectionapplication. Finally,
Section5 concludesthepaper.

2. THE DEVELOPMENT OF MMSE BASED
WEIGHTED AGGREGATION SCHEME (WAS)

A localview of thewirelesssensornetwork is shown in Fig-
ure2. It shows parentnodeS0 with its k children S1 ��������� Sk.
In ourworkweconsider thenodeasitsowndescendantalong
with otherdescendants. Let nodeS i have Ni numberof de-
scendants(notonly thechildren), denotedby S i � Si2 ��������� SiNi

.
Thesink is consideredto beat level 0, whereasthelevel for
any othernodewill bethenumberof hopsit is awayfromthe
sink node.ThenodeS0 maybeat any level in thenetwork.
We assumetransmissionof onebit from any sensornodeto
itsparentnodeasits localdecision.Weassumeanodeknows
thenumberof descendants its childrenhave. Forexamplethe

nodeS0 knows thenumber of descendantsNi of its child Si.
Amongall thedescendants Ni of thenode Si, let thenumber
of nodesdeciding in favor of theoccurrenceof theeventbe
ni. Herewe proposea MMSE basedweightedaggregation
schemein which parentnodeS0 computesthe MMSE esti-
maten̂i of ni. Specifically, n̂i is the MMSE estimateof the
number of descendantsof node S i deciding in favor of the
occurrenceof theevent.

For simplifying the analysiswe assumethe decision
madeby any nodeis themajority decisionof all its descen-
dants.Thusif theobservationsof thedescendantsof thenode
Si areX i � � Xi1 � Xi2 ���	� XiNi

� , thenthe decisionmadeby the
nodeSi is givenby

Xi � ma j
�
X i � (1)

wherefor a setB of binary numbers,we definema j
�
B �
� 1

if therearemoreor equalnumber of onesthanzerosin B,
while ma j

�
B �
� 0 otherwise.Similarly,

X � ma j
�
X0 � X1 �	��� � X k � (2)

whereX0 � � X0 � .
We assumethatthefollowing informationis availableatS0.

Figure2: A localview of thenetwork

1. ObservationX0 of thenode S0 itself.

2. DecisionXi madeby its ith child Si, for i � 1 � 2 ��������� k.
3. Number of descendants Ni of Si.
4. Theprobability p of correctsensingor accuracy of all the

sensors.
Theproblem is to getanestimateX̂ of X from theabove

information.Theestimate

X̂ � arg max
β 
�� 0 � 1� P � X � β � ��� (3)

will have the highest accuracy P � X � X̂ � where ����
X0 � X1 ����� Xk � .

Recallthatni is theactualnumberof descendantsof node
Si observing in favor of thehypothesis(i.e.,H � 1) andthus
n � n0 � n1 � ����� � nk will be the actualnumber of descen-
dantsof thenodeS0 observing in favor of H � 1. Herewe



obtaintheminimummeansquareerror (MMSE) estimaten̂ i
of ni andgettheMMSE estimateof n as

n̂ � n̂0 � n̂1 � ����� � n̂k � (4)

Thisestimatecanthenbeusedto getanestimateof X. In the
following, we obtain the MMSE estimaten̂ i of ni given Xi
andNi for a particular node S i. Now,

P � ni �Xi � 1��� P � ni �Xi � 1 � H � 0� P � H � 0 �Xi � 1�� P � ni �Xi � 1 � H � 1� P � H � 1 �Xi � 1� � (5)

Recallthatp is theprobability of correct sensingby thesen-
sors.Then

P � Xi � 1 �H � 0��� P � Xi � 0 �H � 1�
� � Ni � 1

2 �
∑
l  1

NiCl pl � 1 ! p �#" Ni $ l %
wherenCk � n!

k! " n $ k % ! , and

P � Xi � 1 �H � 1��� P � Xi � 0 �H � 0�� Ni

∑
l  '& Ni

2 ( NiCl pl � 1 ! p �#" Ni $ l % � (6)

Now,

P � Xi � 1��� P � Xi � 1 �H � 0� P � H � 0�� P � Xi � 1 �H � 1� P � H � 1�� 1
2

�
P � Xi � 1 �H � 0� � P � Xi � 1 �H � 1� � �

Usingequation 6, we have

P � Xi � 1��� 1
2

�
P � Xi � 1 �H � 0� � P � Xi � 0 �H � 0� �� 1

2 � (7)

Notethatthis ensurestransmissionof maximum averagein-
formationby eachtransmittedbit. UsingBayes’rule,weget

P � H � h �Xi � 1�)� P � Xi � 1 �H � h � P � H � h �
P � Xi � 1�� P � Xi � 1 �H � h � (8)

whereh * � 0 � 1 � . Fromequations (8) and(5) we get

P � ni �Xi � 1��� P � ni �Xi � 1 � H � 0� P � Xi � 1 �H � 0�� P � ni �Xi � 1 � H � 1� P � Xi � 1 �H � 1�
� P � ni � Xi � 1 �H � 0� � P � ni � Xi � 1 �H � 1�

� +, - NiCni
pNi $ ni � 1 ! p � ni� NiCni

pni � 1 ! p � Ni $ ni if ni . Ni
2

0 otherwise.

(9)

0 20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

n
i
 −>

P
(n

i/X
i)

p=0.5

p=0.6 p=0.7 p=0.8

p=0.95

p=0.9

p=0.55

p=0.65

p=0.75 p=0.85

Figure3: Conditionalprobabilitymassfunctionof n i for Xi �
1, Ni=100andvariousvaluesof p

Similarly,

P � ni �Xi � 0��� +, - NiCni
pNi $ ni � 1 ! p � ni� NiCni

pni � 1 ! p � Ni $ ni if ni / Ni
2

0 otherwise

(10)

Figure3 shows theconditional probability massfunction of
ni given Xi � 1, obtainedusingequation 9. It shows mul-
tiple plots for different accuracies(p) and for 100 descen-
dants(Ni=100). Here, for easeof visualization, the proba-
bility massfunctionsof thediscretevariable n i areshown as
continuousplots. Similar plots canbe obtainedfor X i � 0
usingequation (10), in which thecurveswill benonzero in
ni � 0 to 0 Ni $ 1

2 1 andwill be themirror imageof thecurves
seenin Figure3.

The MMSE estimateof ni given Xi � 1 is given by the
mean

n̂i � Xi  1 � Ni

∑
j  '& Ni

2 ( jP � ni � j �Xi � 1� � (11)

Similarly,

n̂i � Xi  0 � � Ni � 1
2 �

∑
j  0

jP � ni � j �Xi � 0� � (12)

ThenodeS0 findstheestimaten̂ of n as

n̂ � k

∑
i  0

n̂i (13)

andmakesits decisionas

X̂ �32 1 if n̂ . N
2

0 otherwise
(14)

whereN � 1 � ∑k
i  1 Ni.



3. THE PROPOSED ALGORITHM

Basedon the above formulation we now show how WAS
can be effectively usedin WSN for event detectionappli-
cation. At first, we assumethat the network topology does
not change very often and thus the network is static and
we show that improvement in accuracy is achieved with the
samenetwork lifetime asin thecaseof M1. Theassumption
of the staticnetwork topology canbe relaxedwith the help
of minimalcommunicationoverheadwhenever thetopology
changes.

3.1 The WAS Scheme for Static Network

Herewe assumethat oncethe nodesaredeployed, the net-
work topology doesnotchange till thenodesstartdyingout.
Initially eachnode is assignedthe samebatterylevel. We
definenetwork lifetime as the time beforethe first node in
thenetwork dies. Sincethenetwork is static,thenumber of
descendantsof a noderemainsfixedthroughout thenetwork
lifetime.

Theweightedaggregationschemeworksasdescribedbe-
low.

1. UsingBellmanford routing algorithm, thespanning tree
is obtainedasshown in Figure1.

2. The sink node assignslevel zero to itself and conveys
its level information to its children. Thechildrenof the
sink then assignlevel 1 to themselves and convey this
informationto theirchildren andsoontill theleafnodes.

3. Eachnode is assignedtime slot in sucha way that any
parent nodegetsa timeslot afterall its childrennodes.

4. Beforethestartof first sessiontheprocessof descendant
updateis initiated. This is doneduring the initial setup
of a sensornetwork. Startingfrom the leaf nodes, each
nodeSi calculatesthe number of its descendants Ni as
Ni � 1 � ∑ j 
 Ri

N j whereRi is the setof children nodes
of Si. Ni’s thuscalculatedaretransmittedto the parent
nodeat lower level using few bits. TheseNi’s remain
fixedtill nodes startsdying. Thusbefore thefirst session
begins,eachnodeknowsthenumberof descendantstheir
childrenhave.

5. Usingequation11 and12 eachsensornodeS i calculates
onceandkeepsin memory the expectednumber of de-
scendantsdeciding in favorof H=1givenX j � 1(n̂ j � X j  1)

andgiven X j � 0 (n̂ j � X j  0) usingthecorresponding val-

uesof N j, j * Ri. If this computationis undesired, these
valuescanbepreloadedin eachsensorasa2 4 L matrix,
whereL is themaximum number of descendants a node
canhave. The � 1 � k � th elementof thematrix will contain
themeanvaluen̂ j � X j  1 for N j � k andthe � 2 � k � th element

will containthemeanvaluen̂ j � X j  0 for N j � k. After the

initial setup,a nodeneeds to keeponly thecolumnscor-
respondingto thenumberof neighborsof its children and
freemostof thememory occupiedby thematrixfor other
use.Duringany session,if a nodedoesnothearfrom all
its children, theremustbeadeadchild node andthusthe
network is assumedto bedead.

6. During every session,eachnode S i obtains n̂i, the esti-
mateof thenumber of its descendantsdecidingin favor

of H � 1 as
n̂i � ∑

j 
 Ri

n̂ j � (15)

7. Now X̂i, thedecisionmadeby thenodeS i, is obtainedas

X̂i �65 1 if n̂i .87 Ni
2 9

0 otherwise

andis communicatedby S i to its parent node.
Note that thecommunicationoverheadfor eachnodeS i

in this schemeover M1 is only due to the transmissionof
thenumber Ni. However theseNis aretransmittedonly once
during theinitial setupandsotheoverheadincurredat each
nodeis negligible. Hencethelifetimeof WAS is almostsame
asthatof theaggregation schemeM1. Simulationresultsin
Section4 show that theaccuracy obtainedby WAS is better
thanthatof M1.

3.2 Relaxing the Assumption of Static Network

After any node diesoutor getseliminatedform thenetwork,
network topology changes. To keeptrackof change in net-
work topology update of numberof descendantsis required.
It canbedone in any of thefollowing ways:(i) TheN i’smay
beperiodically updatedaftereveryfew sessionsasdonedur-
ing theinitial setup.(ii) TheNi’sareupdatedassoonasdeath
of any nodeis detectedby its parent.In this caseupdateof
thenumberof descendants takesplacefor all theancestersof
a deadnode.

However, to keepthenetwork aliveevenaftersomenode
die, the routing itself needs to be redone to make it more
suitablefor thechangedtopology.

4. SIMULATION RESULTS

Simulations have been performed for number of nodes
M=100uniformly deployedin a squaregrid areaof sizeM 2.
Wemakesurethattheaveragenumberof neighborspernode
is in between7 and9. We considerequalprobability of oc-
currence of the event H, i.e., P � H � 0�'� P � H � 1�'� 0 � 5.
We assumeevery sensorhassameprobability p of correct
sensing.For the following results,we vary the probability
p of correctsensingof all the sensorsfrom 0.55to 9, with
increments of 0.05. Recall that the accuracy of the system
is theprobability of correctdecisionmadeby thesink node.
Theaccuracy andnetwork lifetime areplottedagainst p for
the aggregationschemesM1, M2 andWAS. The plots are
the average of 60 different random deployments. Here the
initial batterylevel assignedto eachnodeis 50000 units.For
transmissionof a single bit from a node to its parent, the
transmissionpower requiredis proportional to the cubeof
thedistancebetweenthe two. In our simulation,this hasan
averagevalueof about150 units. The power required by a
nodefor receiving a singlebit is fixedto 100units.

In bothWAS andM1 eachnodetransmitsasinglebit and
receivesonaverage4 bitsduring eachsession.Thusnetwork
lifetime for themis found to be comparable. However for
the M2 aggregationscheme,the number of bits transmitted
andreceivedaresignificantlylargeandthey depend uponthe
total numberof nodesin thenetwork. Herefor present sim-
ulation network lifetime for M2 is found to be very lessas
compared to WAS andM1 aggregation schemes.Thus M2
givesverypoorperformancein termsof network lifetime, as



Figure 4: Comparisonof lifetime for aggregationschemes
M1-C1, M2-C2andWAS-C1

seenin Figure4,andhenceis notsuitablefor wirelesssensor
network.

Figure 5: Comparison of accuracy vs probability of correct
sensingfor M1-C1,M2-C2andWAS-C1

Figure 5 comparesaggregation schemesM1, M2 and
WeightedAggregationScheme(WAS) in termsof accuracy.
It hasbeenobserved that aggregation schemeM2 hasthe
bestaccuracy among all thethreemethods. This is expected
from the fact that the sink hasthe exact informationof the
totalnumber of observationsin favor of H � 1 andH � 0 in
thewholenetwork. But this gain in accuracy for M2 comes
at the significantlossof lifetime sinceeachnodetransmits
more number of bits persession.Sincelifetime is themost
critical aspectfor wirelesssensornetwork, M2 may not be
the preferred aggregationschemealthough it gives the best
accuracy. In contrast,we have WAS andM1, bothof them
having verygood network lifetime sincein theseaggregation
schemeseachnodetransmitsa singlebit persession.Also it
is observed that the lifetime of WAS is comparable to that
of M1. Now whenwe compareWAS andM1 in termsof
accuracy WAS outscoresM1.

5. CONCLUSION

An MMSE basedweightedaggregationschemeis proposed
for event detectionusing a wirelesssensornetwork. The
schemerequires transmissionof a single bit by eachsen-
sorfor every sessionasrequired by thepreviously proposed
schemeM1 in [2]. Sothisschemeprovidesthesamenetwork
lifetime astheschemeM1. This schemeoutscoresaggrega-
tion schemeM1 in termsof accuracy andM2 in termsof
network lifetime. ThustheWAS is themostpreferredaggre-
gationschemeamongthoseknown sofar for event detection
usingWSN.
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