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ABSTRACT

Mid-sagittal plane passes through the border between the two hemi-
spheres of a brain, which are roughly symmetric. Image-based de-
tection of mid-sagittal plane has applications to a number of com-
puter and human tasks, such as image registration and diagnosis.
The problem requires robust methods to inherent asymmetries be-
tween the two hemispheres, pathalogical abnormalities that fur-
ther degrade the hemispheric symmetry, and degradations in im-
age quality. Furthermore, it is desirable to have a computation-
ally feasible method because mid-sagittal plane detection is often
a pre-processing step that is followed by more compute-intensive
algorithms. In this paper, we introduce a novel feature-based mid-
sagittal plane detection algorithm for MR brain images. The pro-
posed method is robust even in the presence of very large abnor-
malities, can cope with outliers in the detected features, and is very
fast. Its robustness to abnormalities stems from its hierarchical op-
eration. A 3-D MR data is first processed as 1-D image lines, then as
2-D slices, and finally 3-D volume. This makes it possible to detect
the mid-sagittal plane as long as two image lines are not affected by
pathalogical abnormality, which is a significant improvement over
the literature. Furthermore, the use of outlier-robust RANSAC al-
gorithm for fitting a mid-sagittal line to the detected feature points
in each slice provides robustness to the inaccuracies in the detected
feature points.

1. INTRODUCTION

The brain of a healthy subject exhibits a rough bilateral symmetry
with respect to the interhemispheric fissure that bisects the brain.
This fissure is commonly referred to as anatomical mid-sagittal
plane (MSP). Figure 1 shows the location of the mid-sagittal plane
for a 2-D slice as a white line. As it can be observed from the fig-
ure, the two hemispheres are not perfectly symmetic. The inherent
deviations from the symmetry are caused by normal morphological
differences between the hemispheres. For example, in most sub-
jects, the right frontal and the left occipital lobes are larger than
their respective counterparts. In addition to the inherent factors that
apply to all, patients with abnormalities, such as tumors and lesions,
will have large asymmetries between two brain hemispheres. In this
paper, we are concerned with robust detection of the mid-sagittal
plane in magnetic resonance (MR) brain images independently from
morphological differences between the brain hemispheres, and the
existence and the severity of pathalogical abnormalities.

The detection of the MSP is essential for both human-based
and automated brain image analysis. The MSP location can be em-
ployed to estimate the head orientation. Because non-optimal head
position during scanning may cause the same brain organ to appear
in different slices for the right and left hemispheres, making a diag-
nosis may be difficult. By computing the MSP, the volumetric data
can be resampled to elucidate the normal and pathalogical asym-
metries. For the automated brain image analysis, both low- and
high-level applications can benefit from the MSP detection. At the
low-level, the computed MSP parameters replace the rotational and
translational parameters in the registration of two volumes; hence,
it makes the registration problem simpler. For the high-level im-
age analysis, because a large amount of asymmetry may indicate a
pathological abnormality, mid-sagittal plane may serve as a refer-

Figure 1: The mid-sagittal plane location for the brain MR slice on
the left is shown as a white line on the right

ence to evaluate the hemisphere symmetry for computer-aided de-
tection (CAD) purposes.

The existing methods for MSP detection follow either a feature-
based or a symmetry-based approach. In the feature-based ap-
proach, the aim is to directly determine the interhemispheric fissure
from its intensity and textural features. In [2], Brummer proposes a
3-D extension of Hough transform by observing that MSP appears
as long lines in the coronal view. His approach involves detection of
lines from the edge maps of 2-D brain image scans, and then fitting
a plane to the detected MSP line candidates. In [6], Marais et al.
use linear snakes to extract fissure lines in each slice, and then fit
a plane to these lines by orthagonal regression. In general, feature-
based methods are robust to abnormalities and morphological in-
terhemispheric differences because they do not assume symmetry.
The existing approaches, however, are sensitive to the outliers in the
extracted features.

In the symmetry-based approach, mid-sagittal plane is defined
as the one that maximizes the similarity between the brain and its
reflection. The methods following this approach [1, 5, 7, 8, 3, 4] first
define a parameter space that describes the MSP, a similarity mea-
sure, such as cross-correlation, to assess the interhemispheric sym-
metry in the selected feature space, such as intensity or edges [5],
and a search method and search criteria to find the parameters that
maximize the similarity measure. The main problems with this type
of approaches are their sensitivity to asymmetries and the compu-
tational cost that results mainly from the search step. Their main
advantage is the generalizability of the methods to other medical
image modalities, such as CT and PET [7].

In this paper, we propose a feature-based MSP detection algo-
rithm that uses RANSAC to find interhemispheric fissure in each
slice and the MSP in the 3-D. Our main contributions are: 1) The
use of RANSAC to estimate MSP lines from feature points provides
robustness to outliers, which the existing feature-based algorithms
lack, 2) we propose a novel model-based feature-point detection
method that results in robust detection of MSP even in the presence
of very large-sized abnormalities, and 3) a significant improvement
in the computational speed of MSP detection compared to even the
feature-based algorithms.
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Figure 2: Interhemispheric fissure appears hypo-intense (dark) in
PD images (arrows point to the fissure)

2. PROPOSED ALGORITHM

Our aim is to detect the MSP of a brain from its volumetric MR
data. This 3-D data corresponds to the axial view of the brain and
are composed of multiple 2-D slices. The proposed algorithm first
analyzes each 2-D slice independently to detect the feature points
that correspond to the interhemispheric fissure. This process in-
volves model-based analysis of the intensity profile along each im-
age line (1-D row-by-row image intensity analysis) to determine
whether the profile includes the fissure, and if it includes, to detect
its position. After that, RANSAC fits a line to the detected feature
points for each slice. As in the first step, each slice is analyzed in-
dependently from the others. Finally, the third stage integrates slice
lines to determine the optimal MSP plane. In the following, we first
explain the model-based feature point detection in each image line.
After that, Section 2.2 introduces RANSAC-based line fitting to the
detected feature points for each slice. Finally, Section 2.3 explains
the detection of the MSP from the slice lines.

2.1 Line-based feature point extraction

Interhemispheric fissure appears hypo-intense (darker) in the pro-
ton density (PD) MR images as shown in Figure 2. Although the
fissure is not visible in all slices, distinguishable intensity patterns
occur along the image rows wherein the fissure appears. Figure 3
shows a typical row-projection of intensity for the rows having the
fissure. The row-projection of intensity shows a peak followed by
a local minimum in both left and right sides. Anatomically, both
peaks (points 1 and 5 in Figure 3) refer to the skull region, and the
minima (points 2 and 4 in Figure 3) correspond to the background
that fills the region between the skull and the intracranial region.
Between the left and the right minimum, brain tissues, e.g., white
matter, gray matter, and cerebrospinal fluid, exist and the PD in-
tensity shows less variation. The fissure location is noticeable as a
local intensity minimum that is located almost equidistant to the left
and the right minimum (point 3 in Figure 3). Because low intensity
projection values may stem from other factors than the existence
of the fissure, the detection of local minima alone would not suf-
fice. In the following, we explain a unified method that not only
detects those points but also verifies whether the row projection fits
the anatomical model or not.

Among the feature points, we first detect the peaks and valleys
on the right and the left sides. These points are detected by first
adaptively defining an intensity level to compensate for the MR in-
tensity variations from one scan to another. This value is defined
as the average intensity value of the processed row. After that, we
identify the regions where positive and negative crossings of this
intensity level occurs. For example, if we compute the average in-
tensity level as 200 for the projection in Figure 3, point 1 can be
defined as the maximum value between the first positive and the
first negative gradients that cross intensity level 200. Point 2, on
the other hand, is defined as the minimum between the location of

Figure 3: Row intensity projection (right) along the highlighted row
(left) shows five landmarks than indicate the existence and the loca-
tion of the fissure

Figure 4: The detected five feature points for each line that fits the
proposed model

the negative gradient found when searching for point 1 and the next
positive gradient that passes through intensity value 200. The peak
and the valley on the right side, i.e., points 5 and 4, respectively,
are defined similarly and detected by scanning the projection from
right to left. We also verify the conformance of the detected points
to the projection model shown in Figure 3. The model indicates
that the points 1 and 2 should be to the left of the points 4 and 5,
i.e., x1

� x2
� x4

� x5 where xn indicates the x-coordinate of the
nth point. This is verified after independently computing these lo-
cations. If this is not the case, it is concluded that the line is not a
valid MSP hypo-intense line.

After the computation of the peaks and valleys, we first define
the search interval for point 3 from the locations of the other points.
Basically, we compute the distance between point 1 and point 5 and
define half of it as the length of the interval, shown as � in Eqn. 1.
The window center, Wc � is assigned as the mean of point 1 and point
5 coordinates. After that, x3 is tentatively assigned according to
Eqn. 6 as the coordinate of the minimum intensity value in the de-
fined interval. As a result, a minimum is located whether or not
the projection fits the model. The projection model, shown in Fig-
ure 3, indicates that point 3 should be roughly equidistant to points
on the left and the right. To impose this constraint, we validate the
tentative x3 value by computing its distance to the window center.
This distance value is compared with a threshold value that is com-
puted in Eqn.6 as the higher of the quarter of the window length
and five (a fixed value of five is used to handle the cases when the
window is very small). This model constraint considerably reduces
the number of outlier feature points (approximately 30-40% of ini-
tial points can be eliminated). In Figure 4, the remaining features
after this step are shown. In some slices, almost all of the resulting
feature points (point 3s) perfectly align with the MSP line. In the
next section, we explain how to robustly fit a line by RANSAC to
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these feature points.

��� � x5 � x1 ��� 0 � 5 (1)

Dthr � max
�
5 � 0 � 25 � � � (2)

Wc � � x1 � x5 ��� 0 � 5 (3)

Wl � Wc � 0 � 5 � � (4)

Wr � Wc � 0 � 5 � � (5)

x3cand � x̃ 	 I � x̃ ��
 I
�
x � � � x 
��Wl � Wr � (6)

x3 ��� x3cand 	 x3cand � xc 	 
 Dthr

� 1 otherwise (7)

2.2 Slice-based mid-sagittal line detection

Given the feature points, we would like to fit a line to point 3s in
each slice. Because the random sampling consensus (RANSAC) al-
gorithm is a robust model-fitting algorithm to a number of points
even in the presence of significant amount of outliers, we use
RANSAC for mid-sagittal line detection. Compared to the Hough
transform, which is used by edge-based mid-sagittal plane detec-
tion methods, RANSAC provides robustness to the outliers in the
feature points and can compute the line parameters in a very speedy
manner. In general, RANSAC can be summarized as follows:

Assume:� The parameters can be estimated from N data items (In our case,
N = 2 for a line)� There are M data items (feature points) in total.
Then, the steps of the algorithm:

1. select two data items (feature points) at random
2. estimate the line parameters: slope and the intersect
3. evaluate the fit of the line to M data items
4. if the current line has a better fit than the best one found so far,

accept the current as the best line
5. repeat L times

We modified steps 1 and 3 in the above general framework.
Step 1 chooses two feature points at random. This is not the optimal
solution because it does not utilize the domain knowledge. In our
case, most of the outlier feature points lie in the upper half of the
image. As a result, we choose two feature points for parameter
estimation only from the lower half of the image.

Step 3 evaluates the fit of the model. We define three measures
for this:� Average distance, Davg � from the line to Wc of each slice� The number of inliers, Ni: the number of feature points that are

close to the computed line (we assign the feature points having
distance less than three pixels as inliers)� The percentage of inliers, Pi: the number of inliers divided by
the total number of feature points in a slice
We only use Davg to measure the fitness value of the current

line. The line with the smallest Davg value is accepted as the best
line for that particular slice. The other two parameters, the number
of inliers Ni and the percentage of inliers Pi, of the best-fitting line
are used in the next section.

2.3 Volume-based mid-sagittal plane (MSP) computation

Up to this stage, we independently computed a line for each slice
having sufficient number of feature points. As explained in the pre-
vious sections, hypo-intense fissure regions do not appear in all
slices. As a result, some slices will have a better line fit than the
others. To select the most accurate lines, we use the parameters Ni
and Pi that are computed in the line computation stage by RANSAC.
We define the best slice line as the one having Ni greater than some
small number, such as ten, and the largest Pi value. The constraint
on Ni is added to make sure that enough number of feature points
have been detected for the slice with the largest Pi value. After the
selection of the best slice, we compute the inliers to this line in each
slice and re-compute the line to fit these feature points in the least-
squares sense.

Figure 5: The detected feature points and the MSP for an oriented
head

Figure 6: The detected feature points and the MSP for an oriented
head

2.4 Analysis of the computational requirement

Compared to the feature-based methods that use edges, we use a
model to select at most a single point for each image row. Because
we also determine whether the row-projection fits the model, our
method is robust to noise and pathological abnormalities. For the
same reason, we detect much less number of feature points than the
edge-based approaches. We only detect the feature points that are
relevant to the problem. This not only increases the speed of the
algorithm but also reduces the inaccuracies in the detection. The
number of feature points can at most be as many as image height
value per slice. In practice, because of the background region and
the disappearance of the hypo-intense region in some regions, the
number of feature points is approximately one quarter of the image
height per slice. This significantly speeds up the algorithm.

3. RESULTS

In the following, we show some results on a data set obtained from
Leiden University Medical Center (LUMC). The dataset consists of
30 subjects with atherosclerotic risk factors (mean age 77.4 � 3.4y).
MRI was performed on a Philips Intera 1.5T whole body scanner at
LUMC. We used dual-spin echo weighted images (TR/TE1/TE2:
3000/27/120 ms, FLIP: 90o) with a FOV 220mm, 3mm slice thick-
ness, no slice gap and 256 � 256 matrix. The proposed algorithm
was able to detect the MSP line accurately in all of the cases. Fig-
ures 5- 8 show several of the results with the detected feature points.
The results demonstrate the robustness of the algorithm to the head
orientation, Figures 5 and 6 , and to the existence of abnormali-
ties, such as white matter lesions in Figures 7 and 8. In addition
to this, we also added artificial lesions and rotated the dataset to
demonstrate the robustness of the proposed method. In Figure 9,
the dataset was rotated 25 degrees for the slice on the left. For the
slice on the right, a large lesion that is visible in two thirds of the
brain has been added. The MSPs were detected accurately in both
cases. Because the proposed method identifies the dark fissure line,
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Figure 7: The detected feature points and the MSP in the presence
of abnormalities

Figure 8: The detected feature points and the MSP in the presence
of abnormalities

we added a large lesion directly on the fissure line to further test the
algorithm. The results of that experiment have been shown in Fig-
ure 10. The MSP was detected accurately by the features detected
correctly in slices that have smaller lesion.

4. CONCLUSIONS

We have introduced a novel feature-based brain mid-sagittal plane
detection algorithm. The hierarchical approach and the explicit
model of the intensity projection make the algorithm robust to ab-
normalities and outliers in the detected feature points. Because
only relevant feature points are detected and processed further by
RANSAC, the algorithm is also very fast. The algorithm also adap-
tively changes the intensity-based thresholds; hence, it should be
robust to the applied MR protocol. One limitation of the proposed
algorithm is that it currently requires the availability of the axial
PD contrast to be able to detect the MSP. Because PD is one of
the common contrasts in a typical brain MR scan, this is not a very
limiting condition. Furthermore, intensity projections for other con-
trasts, such as T1 and T2, can also be modeled to identify the fissure
points. Our initial experiments on this topic indicate that similar
performance values can be obtained with other contrasts as well.
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