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ABSTRACT

In this paper, we propose a multistage source separation
method constructed by combining blind source separa-
tion (BSS) based on independent component analysis
(ICA) and segregation using multiple directivity pat-
terns (SMDP) introduced in our previous paper. We
obtain the directivity patterns needed in SMDP by ICA-
based BSS. In the SMDP, simultaneous equations of am-
plitudes of sound sources are generated by using these
multiple directivities. The solution of these equations
gives good disturbance estimates. We apply spectral
subtraction using these disturbance estimates and the
speech enhancement of the target source is performed.
We conducted experimentation in a real room in the
source-number-given condition where there is no priori
information about the sound sources and the charac-
teristics of room acoustics. The experimental results of
double talk recognition show that the proposed tech-
nique is effective in reducing the error rate by 30% com-
pared to frequency domain BSS.

1. INTRODUCTION

Multi-talk recognition is indispensable to realize various
applications of hands free speech recognition, for exam-
ple, conversation systems of a humanoid robots, confer-
ence dictation systems and car-navigation interfaces.

Recently, blind source separation (BSS) within the
framework of independent component analysis (ICA)
has been studied actively as one of the approaches for
speech segregation or enhancement. However, there is
still room for improvement of BSS in an actual environ-
ment [1]. One of the approaches towards using BSS in
real acoustics is a multistage processing [2] [3].

We propose a method of source separation using mul-
tiple directivity pattern produced by BSS based on ICA.
This method is the integration of BSS and the method of
segregation using multiple directivity patterns (SMDP).

SMDP, which we have proposed, is characterized by
using multiple directivity patterns to estimate the dis-
turbance spectrum [4]. In previous papers, multiple di-
rectivity patterns are obtained by microphone array pro-
cesses such as a beamformer. In this paper, we utilize
the ICA-based BSS in order to produce the directivi-
ties. The directivity patterns are scaled and permuted
versions of the rows of matrix as the solution of ICA.

There are some advantages to utilize ICA instead of
conventional microphone array processing. One of the
advantages is that ICA solutions provide efficient direc-
tivities for the SMDP with a small number of micro-
phones compared to beamformer. Another advantage is

no need of localizing the sound source precisely in order
to obtain directivity [4]

However, the signal filtered by the matrix as the so-
lution of ICA can still be improved significantly. We es-
timate the source spectrum from the information of mul-
tiple filtered signals and the directivity patterns given
by BSS. The separating matrix of ICA solution has the
same property as the directivity pattern in the sense of
having the spatial information. When the source posi-
tions and directivity patterns are estimated, we can cal-
culate the proportion of each source spectrum contained
in the signals filtered by ICA-based BSS. Simultaneous
equations relating the amplitude of sound source spec-
trum are set up considering the proportion as the coef-
ficients. We can consider the solution as the estimates
of the sound source spectra.

To show the effectiveness of the separation algo-
rithm, we carry out the speech recognition experiment
not in simulations but in a real room.

In the following section 2 and 3, ICA-based BSS and
SMDP is reviewed respectively. In section 4, how BSS
and SMDP are integrated is described. In section 5, the
conditions and results of the continuous speech recogni-
tion are described. We give the discussions and conclu-
sions in section 6 and 7.

2. ICA-BASED BSS IN THE FREQUENCY
DOMAIN

In this section, we review ICA-based BSS briefly.

2.1 Formulation of the Sound Field

We assume the environment where S sound sources exist
and the sound field is observed by M microphones. We
define the input vector x(w,t) as STFT of the input
signal.
x(w,t) = [Xi(w,t), -, Xn(w, )T,

Xi(w,t) denotes the STFT coefficient at microphone 4,
discrete frequency w, and frame t. The operator [-]7 rep-
resents the transposition. Using the transfer function,
x(w, t) is written as follows.

w
n(w,

x(w,t) = A(w)s(w,t)+n(w,t) (1)
Aw) = [a1(w), -, as(w)]
s(w, = [s1(w,t),--- ,ss(w,t)]T
[

t)
t) Nl(w,t),~-~ ,N]u(w,t)}T

where, a;(w) denotes the transfer characteristics or
steering vector from j-th source to the microphones at
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discrete frequency w. s;j(w,t) denotes the spectrum of
j-th source. N;(w,t) denotes the spectrum of the back-
ground noise and the reverberation at microphone 1.

2.2 ICA for the Source Separation

The purpose of BSS is to acquire the reconstructed sig-
nals y and the separating matrix W so that the rows of
y are as mutually independent as possible in the follow-
ing equation.

y(w,t) = W(w)x(w,t). (2)

From this, to simplify the expression, we omit the sym-
bol w and t. The output of ICA-based BSS is ob-
tained by transforming the time-frequency-domain sig-
nal y into the time-domain signal.

However, we lack amplitude information of the
source signals and their order. We must address these
problems of scaling and permutation at each frequency
for high performance. That is because a separated sig-
nal in the time domain is to be distorted and contains
frequency components from other source signals. In this
work, the scaling problem is solved by the mixing filter
W1 which is the inverse matrix of the ICA solution W
[5]. The permutation problem is solved by the reference
method with outputs of a basic binary mask technique
as the reference signal [6].

3. SEGREGATION USING MULTIPLE
DIRECTIVITY PATTERNS

In this section, we summarize the SMDP, Segregation
using Multiple Directivity Patterns.

3.1 Estimation of the Sound Source Spectra

When a directivity pattern fi (k = 1,---,Q) is given
to the input vector x and DOAs can be estimated, the
spectrum of filtered signal Yy is written as follows.

Yk = fé{X
= filaisi+- -+ fif asss +e
= Fuis1+ -+ Frgss + e (3)

The operator []¥ denotes the complex conjugate. Fy;
represents the dot product between f# and a;. We call
Fy,; directivity pattern. e denotes the noise factor and
error components which can not be modeled in equa-
tion (1) such as reverberation and errors of the steering
vector a;. The power spectrum is derived from above
equation (3) as the following.

Vil = [Faalls1 + - + [Frs|’[ss|? (4)

+(Fr151) - (Fras2)® + (Fris1)® - (Fraso)
+(Fr151) - (Frsss)? + (Fris1)™ - (Fizss3)
+ “e .

It is difficult to estimate the power spectrum from the
data for a given short time because of the correlation
among the sound sources. In other words, the effect
of the dot-product terms (Fj1s1) - (Fras2)? -+ in equa-
tion (4) harms the estimates. We apply frame averaging

with expectation to mitigate the effect of these terms.
The average power spectrum is given as described below
on the assumption that the sound sources are noncorre-
lated.

(Vil?) = [Fia*{Js1]) + - + [Fs[*(|ss]?) (5)
The operator (-) denotes the averaging for several

frames. We can write a simultaneous equation using
Q@ directivities.

y = Fs+e (6)
T
= [V, -, (Yol?]
|F1|? |Fis]?
F = : :
|Fo1|? |Fos|?
T
s = 1), (sql*)]
T
€ = [517""5@]

The estimates of the sound source spectrum are found
as the solutions of equation (6). When the number of
directivities is larger than that of sound sources, the
solutions minimize the squared error e’e.

min e = Vele=0
S

s = (FTF)"'FTy (7)

3.2 Speech Enhancement

We derive the estimates of the target source spectrum
and the disturbance source spectra in equation (7).
However, we sacrifice the acoustic quality of the esti-
mated target spectrum for frame averaging. In addi-
tion, the estimated spectrum cannot give satisfactory
recognition accuracy. That is why the time resolution is
degraded due to averaging step in equation (5) which is
required to mitigate the effect of the correlation among
sound sources. Accordingly, the disturbance spectrum
is removed from short-time spectrum by spectral sub-
traction (SS). Let us assume that §; is disturbance
source spectrum estimated in equation (7). The symbol
Y; (j # 1) represents the target source short-time spec-
trum which is filtered by array processing or ICA-based
BSS and is not averaged for several frames. The short-
time spectrum of the target source |3; \2 is obtained using
the estimated disturbance spectrum (|5;|%), (I # 7).

Yil*—a> (s,
1#]
it [V —ad (s >5 @)
£
0, otherwise,

~ 12
|8;" =

The final output is the signal transformed time-
frequency-domain signal |5;| into the time-domain sig-
nal. To recover time-domain target signal, appropriate
phase function has to be given. For example, we can use
the phase of Y.
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Figure 1: Diagram of proposed method

SMDP

4. INTEGRATION OF SMDP AND
ICA-BASED BSS

Figure 1 shows the diagram of proposed method. Our
proposed method is composed of two main parts. One
is BSS based on ICA in the frequency domain, the other
is SMDP.

We have applied various beamformers to make di-
rectivities fj in our previous works. In this paper, we
utilize directivities obtained by the ICA-based BSS.

SMDP needs multiple directivities, signals filtered
by the directivities, estimated DOAs and the steering
vector. In this section, we explain how these components
are acquired and how the ICA-based BSS is integrated
into SMDP.

4.1 Directivities obtained by ICA

In the equation (2), the ICA solution W at a frequency
is composed of the directivivetiy patterns when its per-
mutation and scaling ambiguity are addressed.

W = [f1, fa, -, fs]" (9)

The separating matrix W is characterized by the spa-
tial information [9]. That means the rows of W direct a
null (which is the point of low gain) towards the sound
sources (section 6 has the figures of its practical exam-
ple). It is equivalent to the directivity patterns created
by beamformer.

Basically, the number of the rows of W is that of
sources S. It means we can use only S directivities.
It is sufficient for SMDP to use S directivities but we
can apply the SMDP using more directivities (Q > ).
In the case of @ > S, we can set up redundant simul-
taneous equations between amplitudes of source spec-
tra and multiple directivity patterns. Source spectra
are estimated as the least squares solutions of these
equations. To formulate redundant simultaneous equa-
tion, we must apply multiple techniques e.g. Delay and
Sum beamformer, Minimum Variance Distortionless Re-
sponse beamformer and so on [4]. We determine the
coeflicient of the equation with these directivities.

4.2 Filtered Signals

The term ’Filtered signals’ represent the signals pro-
cessed by the W, in other words, the outputs of the
ICA-based BSS in the frequency domain. It follows
that the scaling and permutation of outputs must be
solved. When the conventional beamformer is selected
to organize the directivity patterns, designing directiv-
ity patterns and outputting the filtered signal are two
different process in beamformer. On the contrary, the
ICA outputs the separating matrix and the separated,
filtered, signal. In the Figure 1, the process of 'Filter-
ing’ and 'ICA’ are dipicted as different boxes due to the
simplicity.

4.3 Estimate of DOA

SMDP needs estimates of DOA. That is because direc-
tivity pattern Fj; is a function as the DOA. We must
estimate DOA to determine the coefficient of the simul-
taneous equation.

Frj(w,0) = fi' (w) - a;(w,0) (10)

It is possible to estimate the DOAs from the informa-
tion of ICA solution [9]. However we used the binary
mask output as the DOA estimates. There are two rea-
sons. First, the SMDP does not need accurate DOA.
The estimates of DOA in this stage is largely unaffected
the performance of speech separation. The estimates of
DOA from binary mask are sufficient for SMDP. The
error of estimates in the stage to make the directivi-
ties by beamformer have a more negative effect on the
performance [4]. It is the advantage of ICA over the
beamformer that ICA does not require source localiza-
tion to make directivities. Second, DOA is easily formed
from binary-mask in the process of producing the refer-
ence signal to solve the permutation. Reference method
is more effective in solving the permutation than the
DOA-based method [6]

4.4 Steering Vector

In the SMDP, the transfer characteristics needs to be
settled. The steering vectors which we use in this work
are calculated at intervals of 10 degree in the range of
—90 to 90 degree from the microphones on the assump-
tion of far-field such as below.

aj(w) _ [efjwdl COSGJ-’”. 7efjdecos(9j:|T (11)
The symbol 7 is the imaginary unit, d; is the position of
sensor, and 6; is the DOA according to the j-th source.
In the conventional array processing, steering vectors are
observed such as the impulse response. It is also possible
to assume the near-field when we obtain a information
about the distance to the sound source. However, we
use calculated one in order to avoid relying on environ-
mental acoustics.

5. EXPERIMENT

To show the effectiveness, we applied the proposed
method to double-talk recognition and evaluated the
condition where the number of sources was given and
the room acoustics was unknown.
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Figure 2: Recording condition. (We recorded evalua-
tion data in a real room. The reverberation time was
changed by drawing curtains.)

5.1 Experimental Setup

We recorded speech data to enable continuous speech
recognition. The speech was sampled at 32kHz. Two
microphones with spacing of 3cm were used. Figure 2
shows the recording condition. The reverberation time
(RT) could be changed to 240 ms and 320 ms by drawing
heavy curtains or not. The loudspeaker for the target
source was arranged in front of the microphones. An-
other loudspeaker for the disturbance was placed at an
angle with the target. The angle of disturbance was 30
degrees and 60 degrees from the target. Evaluation data
was recorded for a total of four different conditions. As
for target utterances, we selected a total of 100 sentences
spoken by 23 male speakers from ASJ-JNAS continuous
speech corpus [7]. In the same way, we selected speech
data to play as disturbance utterances which were dif-
ferent from the target. Each utterance was adjusted to
almost the same duration and energy. The SNR was
almost 0dB.

5.2 Speech Processing
5.2.1 ICA-based BSS

Analysis condition is described below. Frame length was
64 ms, frame shift was 8 ms with Hamming window.
JADE (joint approximate diagonalization of eigen
matrices) extended to complex values was applied [8].
The scaling problem was solved by the mixing matrix
and the permutation was solved by the reference method
using the outputs of binary-mask as the reference signal.

5.2.2 SMDP

Analysis condition was the same as that of BSS. The
SMDP parameter, the number of the frame to average
was three. The SS parameter, o and 3, was determined
through preliminary experiments so that the word accu-
racy was the highest in each environment (reverberation
time and the angle of the disturbance).

5.2.8 Speech Recognition

The parameters of the acoustic features were 12-
dimensional MFCC, AMFCC and Apower. Pre-
emphasis was done with 1 —0.97z~!. Frame length was

90 m BSS
1 BSS-SS
80 M BSS-SMDP

70 =
60
50
40
30
20
10

Word Accuracy %

RT=240ms RT=320ms

Figure 3: Evaluation of proposed method. (Each thick
bar represents the average performance. Line on the bar
represents the maximum and minimum performance.)

25ms and frame shift was 10 ms by applying Hamming
window.

The acoustic models were trained with 20K sen-
tences spoken by about 100 male speakers from ASJ-
JNAS corpus. The training data was recorded with a
close-talk microphone. The language models were the
trigram language models using lexicon of 20 K vocabu-
lary size. In this experiment, the speech data was sam-
pled at 32kHz while the acoustic models were trained
with the speech data sampled at 16 kHz. Thus segre-
gated speech was converted to 16 kHz sampling rate and
converted to acoustic features.

5.3 Evaluation

We compared the performance of three methods to con-
firm the effectiveness of the proposed method. One is
the BSS-only method, second is the BSS-SS method.
BSS-only method is normal BSS based on ICA. BSS-SS
method is the integration of BSS and spectral subtrac-
tion (SS), which is also our original method. In this
method, estimated disturbance, one output of ICA, is
directly subtracted from estimated target, the other out-
put of ICA. That means we used |Y;|? instead of (|5|*)
in equation (8).

5.4 Results

Figure 3 shows the continuous speech recognition re-
sults. The performance of the BSS only method was
not sufficient for the given reverberation time. BSS-
SS method was effective in enhancing the target signal
compared to BSS. However, our proposed method per-
formed the best out of the three when considering the
long reverberation. The comparison of the SMDP with
commonly used beamformer have been described in our
works before. For comparison, the directionally con-
strained minimization of power (DCMP) adaptive array
performs about 50 % in the recognition accuracy in the
condition of short reverberation time using eight micro-
phones.
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6. DISCUSSIONS

Figure 4 shows the actual directivity patterns produced
by ICA-based BSS at frequency 3200 Hz under the con-
dition of two sound sources. This figure was plotted
F - a; for any 6 in equation (11). In the case of two
sound sources, the filtered signal Y; corresponding to
the target is described as follows.

(Vi = [Ful (s + [Fizl® (s2]?) + 1 (12)

The symbol Fj; expresses the proportion of the tar-
get source power to the disturbance by directivity fi.
Similarly, F15 means the proportion of the disturbance
source to the target. Equation (12) shows that the out-
put of the ICA-based BSS still contains other source
components. That is because the weight of disturbance,
F1o, is never zero and there are many reflections in a real
room . The process of estimating sound source spectra
in SMDP works in reducing the components from other
sources. To solve equation (6) is equivalent of the min-
imizing the negative influence of other sources.

In this work, we utilized steering vectors calculated
on the assumption of far-field not relying on room acous-
tics. Above means that we expect SMDP to remove the
direct sound component of other source. ICA deal with
the reflections in a statistical manner in the frequency-
domain. However, we assume the power of reflection
is itself small. Additionally, reflections come through
different directions than DOAs. The power of reflec-
tion become smaller with multiplying the directivity (or
beamformer) by inputs. It is reasonable to approximate
the real transfer characteristic with calculated one.

To cope with the deterioration of time resolution,
SS can be carried out. In other words, SMDP elimi-
nate the disturbance components which has less other
components from the target source. That is the dif-
ference between the BSS outputs and SMDP outputs.
We consider that above as the reason why BSS-SMDP
performed more effective than BSS-SS.

7. CONCLUSION

We proposed a multistage processing with integration of
BSS and SMDP for a speech segregation system. Pro-
posed method achieved 70 % word accuracy in double-
talk recognition of 20 K vocabulary in source-number-
given condition. From the comparison of the ICA-based
BSS method, the great advantage of proposed method
was shown, particularly in long reverberation environ-
ment.
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