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ABSTRACT
Most image compression systems deal today with color im-
ages although the coding theory and algorithms are still
based on gray level imaging. The performance of such algo-
rithms has not been analyzed and optimized so far for color
images, especially when the selection of color components
is considered. In this work we introduce a rate-distortion ap-
proach to color image compression and employ it to �nd the
optimal color components and optimal bit allocation for the
compression. We show that the DCT (Discrete Cosine Trans-
form) can be used to transform the RGB components into an
ef�cient set of color components suitable for subband cod-
ing. The optimal rates can be used to design adaptive quanti-
zation tables in the coding stage with results superior to �xed
quantization tables. Based on the presented results, our con-
clusion is that the new approach can improve presently avail-
able methods for color compression.

1. INTRODUCTION

It is well known that natural images are characterized by high
correlation between their RGB components [2], [4], [14].
This data redundancy has to be considered in order to reduce
the volume of information that has to be stored or transmit-
ted for a given image. Most of the techniques for color im-
age compression reduce the redundancies between the col-
ors components by transforming the colors primaries into a
decorrelated color space such as YIQ or YUV [7], [12] or
by performing the KLT (Karhunen-Loeve Transform) on the
color components in some color space [5], [13]. The choice
of the YUV or YIQ color space is the most common, but it
is usually not optimal as demonstrated in this work in the
context of subband transform coding systems.

1.1 Subband transforms
Subband transforms include the Discrete Cosine Transform
(DCT), Discrete Fourier Transform (DFT) as well as wavelet
tree decompositions, wavelet packets and �lter banks. The
most familiar systems based on subband transform coding
are the JPEG [12] and JPEG2000 [7] standards for image
coding. Other examples include the EZW wavelet based al-
gorithm [9] for images and for example Uniform DFT Filter
Banks [8] for speech coding and communication tasks [1],
[6].
Subband transforms are a generalization of block trans-

forms. If we consider a non-expansive transform (which
transforms an input signal into an output signal of the same

size), the input sequence x is divided intom-dimensional vec-
tors x[k] and each is transformed to form the (m-dimensional)
output vector y[k]. However, in contrast to a simple block
transform, multiple input vectors are used to form one output
vector according to:

y[k] = ∑
i2Z
AH [i]x[k� i]; (1)

whereA[i] is a series of matrices and H stands for conjugate
transpose. If A[i] 6= 0 only for i = 0; (1) describes a block
transform. The inverse transform, if exists, is of the form:

x[k] = ∑
i2Z
S[i]y[k� i]: (2)

When referring to the bth subband of the transform, we
mean the sequence of the bth components of each output vec-
tor y[k], which we denote yb[n].

1.2 Rate-Distortion theory of subband coders
1.2.1 Rate Distortion of the PCM scheme
The rate-distortion performance of a scalar quantizer with
independently coded samples for a stochastic source x with
variance σ2x can be modeled as [10]:

d(R) = g(R)σ2x2�2R; (3)

where d() is the MSE (Mean Square Error) distortion, R is
the rate in bits per sample and g() is a weak function of the
source. For large enough R, g(R)�= ε2, where ε2 is a constant
dependent upon the distribution of x and therefore:

d(R) = ε
2
σ
2
x2
�2R: (4)

The scheme that performs scalar quantization with indepen-
dent coding of the source samples is called PCM (Pulse Code
Modulation). An example of such a system is a uniform
scalar quantizer with entropy coded output.

1.2.2 Rate-Distortion of a general subband transform coder
Consider an encoder that �rst transforms an N samples
source signal x into a set of subbands by a subband transform
and then each subband coef�cients are coded independently
by the PCM scheme, while the decoder reconstructs the sig-
nal �x from the dequantized transform coef�cients. The MSE
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of the coding system for the signal x can be expressed as [10]:

dx = E

"
1
N ∑

k
(x[k]� x̂[k])2

#
=
B�1
∑
b=0

ηbGbdb; (5)

where db is the MSE distortion of subband b, ηb denotes the
ratio between the number of coef�cients in subband b and
the total number of samples in the source N and B is the total
number of subbands. Gb are the energy gains equal to the L2
squared norms of the subband synthesis vectors [10]. Since
the transform is assumed to be non-expansive, the following
equation holds:

B�1
∑
b=0

ηb = 1: (6)

Substituting the PCM MSE of (4) for db, we get:

dx =
B�1
∑
b=0

ηbGbσ2bε
22�2Rb ; (7)

where σ2b is the variance of the subband indexed b (b 2
[0;B� 1]) and Rb is the rate allocated to it. Equation (7)
holds for orthonormal as well as non-orthonormal trans-
forms, since for an orthonormal transform we can substitute
Gb = 1 for all b 2 [0; :::;B�1].

2. EXTENSION OF THE RATE-DISTORTION TO
COLOR IMAGES

Denote each pixel in a color image in the RGB domain by a
3x1 vector x = [R G B]T . We �rst apply a color component
transform (CCT) to the image, denoted by a matrix M to
obtain at each pixel a new vector of 3 componentsC1;C2;C3,
denoted ex= [C1C2C3]T and related to x by:

ex=Mx: (8)

Then each component in the C1,C2,C3 color space is sub-
band transformed, quantized and its samples are indepen-
dently encoded (e.g. entropy coded). This description corre-
sponds to such image compression algorithms as JPEG [12]
and JPEG 2000 [7], when applied to a color image up to and
including the quantization stage (note that after the quanti-
zation stage, JPEG or JPEG2000 encode the transform coef-
�cients not independently, but using the correlation between
them, so the above description does not apply).
We denote by exrec the reconstructed image in the C1C2C3
domain after inverse quantization, and by xrec the recon-
structed image in the RGB domain, when exrec = Mxrec
similarly to (8). Now we can de�ne the error covariance ma-
trix in the RGB domain Er:

Er= E
�
(x�xrec)(x�xrec)T

�
; (9)

and the error covariance matrix in C1C2C3 domain fEr:fEr= E �(ex�exrec)(ex�exrec)T � ; (10)

where E[�] stands for statistic mean. It is easy to show that:

fEr= E �(Mx�Mxrec)(Mx�Mxrec)T �= MErMT

)Er=M�1fErM�T
:

(11)

The average MSE between the original and reconstructed im-
ages in the RGB domain is then simply:

MSE =
1
3
trace(Er) =

1
3
trace

�
M�1fErM�T�

=
1
3
trace

�fEr(MMT )�1
�
:

(12)

Assuming that the errors in the three color components C1,
C2, C3 (that occur due to the quantization inherent in the
compression process) are uncorrelated, i.e.,

E [(Ci�Cirec)(C j�C jrec)] = 0; i; j 2 f1;2;3g; i 6= j
(13)

(where Cirec is the reconstructed Ci component), it is clear
that fEr is diagonal and therefore the expression for the aver-
age MSE of (12) simpli�es to:

MSE =
1
3

3

∑
i=1

fErii �(MMT )�1
�
ii ; (14)

where fErii denotes the MSE of color component Ci. Using
(7) for this MSE, one can easily derive the following expres-
sion for the average MSE:

MSE =
1
3

3

∑
i=1

B�1
∑
b=0

ηbGbσ2biε
2
i e�aRbi

�
(MMT )�1

�
ii : (15)

Rbi stands for the rate allocated for the subband b of compo-
nent i and σ2bi is this subband's variance. Also a= 2ln2.
The expression obtained can be used to �nd the optimal

subband rates allocation for minimal MSE for a given color
components transform, to �nd the optimal color components
transform for a given rates allocation, or to �nd both optimal
rates allocation and color transform. In the next section we
minimize the MSE function.

3. FINDING THE OPTIMAL RATES AND COLOR
COMPONENTS TRANSFORM

We would like to minimize the MSE of (15) subject to the
constraint of some total rate allocation R for the image:

3

∑
i=1

B�1
∑
b=0

ηbRbi = R: (16)

Using the Lagrange multipliers method, we thus have to min-
imize the function

L(fRbig;M;λ ) =
1
3

3

∑
i=1

B�1
∑
b=0

ηbGbσ2biε
2
i e�aRbi

�
(MMT )�1

�
ii

+λ

 
3

∑
i=1

B�1
∑
b=0

ηbRbi�R
!
;

(17)

where λ denotes the Lagrange multiplier. It can be shown
[3], that minimizing for Rbi andM yields the following equa-
tions for the optimal rates (extensions considering down-
sampling of the color components and non-negativity con-
straints can be found in [3]):

Rbi =
1
a
ln

0@ ε2iGbσ2bi
�
(MMT )�1

�
ii�

∏3
k=1
�
GMkε2k(MM

T )�1kk
�� 1

3

1A+ R
3
: (18)
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GMk here is the weighted geometric mean of the subband
variances of component k (corrected by the energy gainsGb):

GMk =
B�1
∏
b=0
(Gbσ2bk)

ηb : (19)

We can see that the equations for optimal rates allocation
depend on the color components transform (CCT)M. The
optimal color component transform is the one minimizing the
following target function:

�f (M) =
3

∏
k=1

�
(MMT )�1

�
kkGMk: (20)

Taking the energy gains in GMk out of the target function,
since it is not dependent onM, the target function simpli�es
to:

f (M) =
3

∏
k=1

�
(MMT )�1

�
kk

B�1
∏
b=0
(σ2bk)

ηb : (21)

We will now concentrate on the �f (M) target function mini-
mization. As can be seen, no constraints are needed here for
the matrix minimizing this function to be invertible due to
the ∏3

k=1
�
(MMT )�1

�
kk part.

3.1 Minimization of the CCT target function
The target function of (20) can be written as:

�f (M) =
∏3
k=1
�
(MMT )�1

�
kkmk

T�mk

∏3
k=1GTk

; (22)

where GTk is the subband transform coding gain for the color
component Ck (de�ned as the ratio of the MSE of the PCM
scheme and the MSE of the subband transform coder for the
same rate);mk is the kth row ofM as column vector and �
is the covariance matrix in the RGB image domain:

�, E
h
(x�µx)(x�µx)

T
i
, µx , E [x] : (23)

Denoting the numerator of the right hand side of (22) by
g(M):

g(M),
3

∏
k=1

�
(MMT )�1

�
kkmk

T�mk; (24)

it can be shown that the KLT minimizes this target function,
but not the full �f (M) [3]. Referring to the problem of min-
imizing the full target function, an approximated solution,
named Generalized KLT (GKLT) can be proposed under the
assumption of a unitaryM (MMT = I) [3].

4. DCT COLOR COMPONENTS TRANSFORM

The one-dimensional DCT transform matrix

MDCT =

 0:5774 0:5774 0:5774
0:7071 0:0000 �0:7071
0:4082 �0:8165 0:4082

!
(25)

can be applied to the [R G B]T vector as the color compo-
nents transform. It has been shown [11] that the DCT can

be used as an approximation of the KLT transform. How-
ever, we have stated earlier that the KLT is not optimal from
the minimal MSE point of view and it does not minimize the
f (M) target function of (20). Thus, the DCT is not of in-
terest as an approximation of the KLT, but due to a different
property: although the DCT is not a solution to (20), it usu-
ally achieves very close values of the target function to those
of the solution and the optimal transform, i.e., the one mini-
mizing f (M) is sometimes very similar to the DCT. The per-
formance of the DCT vs. other transforms is demonstrated in
the next section.

5. NEW COLOR COMPRESSION ALGORITHM

In this section we propose a new algorithm for color image
compression based on the 2D DCT block transform.
The stages of the algorithm are:

1. Apply the CCT to the RGB color components of a given
image to obtain new color components C1;C2;C3.

2. Apply the two-dimensional block DCT to each color
componentCi:

3. Quantize each subband of each color component inde-
pendently using uniform scalar quantizers. The quanti-
zation step sizes are chosen so that optimal subband rates
are achieved as presented in subsection 5.1.

4. Apply lossless coding of the quantized DCT coef�-
cients similarly to JPEG [12]: differential coding for the
DC coef�cients and zigzag scan, run-length coding and
Huffman coding (combined with variable-length integer
codes) for the AC coef�cients.
Optional down-sampling of some of the color compo-
nents can be performed between stages 1 and 2.

5.1 Determining the quantization steps
Consider a stochastic source X with distribution fX (x), uni-
formly quantized to �X with (small) step size of ∆ and then
entropy coded. The entropy of �X is approximately [10]:

H( �X)�= h(X)� log2∆: (26)

Here h(X) is the entropy of the continuous variable X . The
rate of �X is measured by its entropy: R = H( �X) and thus
using (26) we get:

∆= 2h(X)�R =) ∆1
∆2
= 2�(R1�R2) (27)

when 2 quantization steps ∆1 and ∆2 and two rates are con-
sidered. Using (27) the following algorithm is proposed:
1. Calculate the optimal rates R�bi. The calculation should
consider down-sampling of the color components if em-
ployed and non-negativity constraints for the rates [3].

2. Set some initial quantization steps ∆bi and calculate the
resulting rates Rbi.

3. Update the quantization steps according to:

∆newbi = ∆bi2�(R
�
bi�Rbi)

until the optimal rates R�bi are suf�ciently close, i.e.,
E
���R�bi�Rbi���< ε for some small constant ε .
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5.2 Performance of the algorithm with various CCTs
In this section we present results of images compression us-
ing the new algorithm with different CCTs as shown in Table
1. 'Opt Trans' denotes there the optimal transform - the min-
imizer of (20). We down-sample the C2 and C3 components
by a factor of 2 in each direction. We use the PSNR (Peak
Signal to Noise Ratio) as the performance criterion.
It can be concluded from Table 1 that the optimal CCT in-

deed yields the best results on average, but the DCT is close
behind. Both transforms are superior to the RGB to YUV
transform and the KLT, which fails for low inter-color corre-
lation images in the RGB domain, such as Peppers and Ba-
boon, however, works well for images such as Lena, where
the RGB components inter-color correlations are high [3].
We, therefore, propose using the DCT as CCT. Additional
results are given in the next subsection.

5.3 Performance of the algorithm vs. JPEG
Similar to the PSNR, we de�ne the PSPNR (Peak Signal to
Perceptible Noise Ratio):

PSPNR= 10log10
2552

WMSE
; (28)

whereWMSE (Weighted Mean Square Error) for each color
component is calculated similarly to (5) as:

WMSE =
B�1
∑
b=0

ηbWbGbdb: (29)

HereWb denotes the visual perception weight of subband b.
We have taken the WMSE suggested in [10] for JPEG2000,
so that the subbands in (29) are of the DWT (Discrete
Wavelet Transform). We consider 256x256 or similar size
images displayed on a screen as 12cm x 12cm size images
and a viewing distance of about 50 cm. The PSPNR mea-
sure used is the mean PSPNR on the three color components.
The results for the Lena, Peppers and Baboon images are dis-
played in Fig. 1. The new algorithm outperforms JPEG by
slightly more than 0.5dB PSNR for Lena and Baboon and by
1.7dB for Peppers. Its PSPNR gain is, however, above 2dB
for all the images. The performance gain can also be seen vi-
sually: JPEG introduces color artifacts that are absent or less
pronounced in the images of the new algorithm.

6. SUMMARY

We have introduced a Rate-Distortion model for color im-
age compression using subband transform coders. Based on
the model, a target function for an optimal CCT and opti-
mal rates allocation are derived. The performance of vari-
ous color components transforms for image compression has
been studied and it has been shown that the DCT can be used
as a sub-optimal CCT, close to the optimal adaptive CCT
and superior to the commonly used RGB to YUV transform
or KLT. This solution also has an advantage over adaptive
CCTs, since it is a �xed image independent transform. An
algorithm for designing optimal quantization tables has been
introduced and implemented in the context of the new com-
pression algorithm for color images. Both quantitative (MSE
and WMSE) and visual results have been presented, showing
that the proposed compression algorithm outperforms base-
line JPEG. Our conclusion is that in addition to the theo-
retical aspects of the new Rate-Distortion model, it can also

serve as a tool for improving color image compression sys-
tems compared to presently available algorithms.
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Image YUV DCT KLT Opt Trans CR Rate (bpp)

Lena 30.019 30.372 30.355 30.285 37.75 0.636

Peppers 30.013 30.144 29.475 30.148 30.05 0.799

Baboon 30.010 30.468 28.595 30.540 13.33 1.800

Girl 30.015 30.359 30.343 30.450 43.87 0.547

Tree 30.018 30.295 30.601 30.649 13.76 1.744

Landscape 30.019 30.382 30.195 30.145 13.26 1.810

Jelly Beans 30.019 30.294 30.294 30.314 49.04 0.489
Mean 30.016 30.330 29.980 30.362

Table 1: PSNR for DCT compression with optimal rates and several CCTs at the same CR (compression ratio).

Figure 1: Lena, Peppers and Babbon: original (left), compressed by JPEG (middle) and compressed by the new algorithm (right).
PSNR for Lena (at 0.469bpp) is 28.447dB (JPEG) and 29.015dB (new), with PSPNR of 37.679dB and 39.846dB, respectively.
PSNR for Peppers (at 0.731bpp) is 28.273dB (JPEG) and 29.995dB (new), with PSPNR of 35.429dB and 37.844dB, respectively.
PSNR for Babbon (at 0.287bpp) is 21.469dB (JPEG) and 22.028dB (new), with PSPNR of 29.693dB and 32.065dB, respectively.
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