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ABSTRACT
We consider an OFDM broadcast channel (BC) where re-
sources have to be allocated among M users according to
a scheduling policy. In this framework, we study four dif-
ferent schedulers, namely the maximum weight matching
(MRMS), the minimum rates (MRS), the minimum sum
power (MSPS) and the maximum throughput (MTS) sched-
uler. We present efficient algorithms and derive the corre-
sponding stability regions. Moreover bounds on the average
expected buffer length are presented.

1. INTRODUCTION

A key challenge of future wireless communication systems
will be the smart and dynamic allocation of resources among
multiple users depending on their individual requirements
and the overall system state. This new adaptivity paradigm is
about to win recognition widely and has already influenced
state of the art systems such as UMTS HSDPA (high speed
downlink packet access). Nevertheless, there are currently
significant efforts to further enhance the downlink capacity
of HSDPA within 3GPP long term evolution using OFDM
as the downlink air interface. OFDM yields superior per-
formance and higher implementation-efficiency compared to
standard WCDMA technology. Furthermore, due to fine fre-
quency resolution and a high number of degrees of freedom
OFDM offers the possibility to apply such smart and flexible
resource allocation schemes and to manage interference in a
multi-cell environment [1]. On the other hand, the many de-
grees of freedom complicate the scheduling algorithms and
a general framework providing optimal solutions in different
settings is highly desirable.

As shown in [2] (even without modern duality tools) the
OFDM BC channel can be viewed as a family of classical de-
graded BC channels. Thus, resource allocation generally re-
duces to finding the optimal power allocation over the paral-
lel channels using a global Gaussian codebook. However, the
capacity region of the OFDM BC as a non-degraded channel
can be achieved with Costa Precoding over all subcarriers
and a global en(de-)coding order which has to be specified.
In recent work this general result has been applied to solve
practical scheduling problems such as the sum power mini-
mization problems or scheduling with rate requirements [3]
using advanced Lagrangian and duality techniques.

In this paper we consider optimal resource allocation for
OFDM broadcast channels (BC) in an ideal information-
theoretic context. We introduce several scheduling policies
in a common stability framework and analyze the perfor-
mance in terms of throughput where we mean by throughput
a combined measure of physical and medium access control

(MAC) layer. We provide algorithmic solutions to each pol-
icy and indicate the supportable throughput region, i.e. the
rates that can be (or not be) supported by this policy. These
solutions serve as a general benchmark for more specific ap-
proaches (e.g. by using FDMA) and they also provide some
intuition for good suboptimal solutions.

The remainder of this paper is arranged as follows. Sec-
tion 2 presents the system model. The subsequent Section
3 contains a general analysis of stability and queue lengths.
In Section 4, the schedulers are studied in detail while we
conclude with some final comments in Section 5.

2. OFDM BROADCAST SYSTEM MODEL

2.1 Physical Layer
Supposing familiarity with OFDM we assume an OFDM BC
with M users, K subcarriers, and a short term sum power
constraint ∑M,K

m,k=1 E{|xm,k|
2} = ∑M,K

m,k=1 pm,k ≤ P̄, where xm,k

is the signal transmitted to user m ∈ M = {1, ...,M} on sub-
carrier k ∈ K = {1, ...,K} with power pm,k and E{.} stands
for the expectation operator. Then, the system equation for
each user on each subcarrier can be written as

ym,k = hm,k ∑
j∈M

x j,k +nm,k, m ∈ M ,k ∈ K , (1)

where ym,k is the signal received by user m on subcar-
rier k, nm,k ∼ C N (0,σ 2) is circular symmetric addi-
tive white Gaussian noise with variance σ 2. Let h =
[h1,1, . . . ,h1,K ,h2,1, . . . , ...hM,K ]T (we will do so as well for
the rates, buffer states etc. by using common vector norms)
denote the stacked vector of channel coefficients. We assume
that these channel coefficients are related to a standard time-
varying multipath model (describable by some power de-
lay and Doppler profile) where the channel is approximately
constant over the OFDM symbol. Furthermore, we assume
that Costa Precoding is performed at the base station having
full non-causal knowledge of all messages to be transmitted.
Suppose that in the dual multiple access channel users can
decode their messages using successive interference cancel-
lation with the reverse coding order. Let π ∈ Π be an arbi-
trary encoding order from the set of all M! possible encoding
orders, such that user π(1) is encoded first, followed by user
π(2) and so on. Then the rate of user π(m) can be expressed
as

r̃π(m) =
K

∑
k=1

log

(

1+
gπ(m),k pπ(m),k

1+gπ(m),k ∑n<m pπ(n),k

)

. (2)

with gm,k = |hm,k|
2/σ 2 being the channel gain of user m on

subcarrier k. The instantaneous capacity region of the OFDM



BC under a given sum power constraint P̄ is given by

C (h, P̄) ≡
⋃

π∈Π
∑M,K

m,k=1 pm,k≤P̄

{

r : rπ(m) ≤ r̃π(m) ,m ∈ M
}

(3)

where r̃π(m) is defined in equation (2) and r denotes the vec-
tor of rates. Now, the ergodic capacity region Cerg(P̄) is de-
fined as the set of achievable rates averaged over the channel
realizations subject to the short term sum power constraint P̄.
Furthermore, note that we know from recent results [2,4] that
the capacity regions of OFDM multiple access channel and
BC are identical (uplink-downlink duality) and thus solving
a problem for the OFDM BC means to have the solution for
the OFDM multiple access channel and vice versa. We will
frequently use this duality in solving the various problems.

2.2 Medium access control layer

Assuming that transmission is time-slotted, data packets ar-
rive randomly at the MAC and a buffer with finite length is
reserved to store the incoming data for each user m ∈M . Si-
multaneously the data is read out from the buffers according
to the system state, i.e. the random fading realization and the
current queue lengths. Thus, the system can be modeled as a
queuing system with random processes reflecting the arrival
and departure of data packets.

Denoting the buffer state of the m-th buffer in time slot
n ∈ N by qm (n) and arranging all buffer states in the vector
q(n) ∈ R

M
+ the evolution of the queue system can be written

as
q(n+1) = [q(n)+a(n)− r(n)]+ . (4)

The random vector r(n) ∈ R
M
+ describes the rates asserted to

the individual users according to a specific scheduling policy
P(q(n),h(n)) and a(n) ∈ R

M
+ is a random vector denoting

the data arrival process. Note that the process is reminis-
cent of random walk on the half line (with dependent incre-
ments) where we have rigorously used an uncountable state
space formulation. Since the random variables a(n) are sam-
pled at a given time interval T from M independent Poisson
processes they are independent. Denoting the mean of the
packet arrival rate of user m as λm and the constant packet
size as sm, the expected bit arrival rate for user m is given
by ρm = smλm. On the other hand the random vector r(n)
depends on the buffer and channel state.

3. STABILITY AND QUEUE LENGTHS

3.1 Throughput region

According to a MAC oriented terminology, we call the set
of arrival rates ρ stabilizable by a specific scheduler the
throughput region of the scheduling policy P(q(n),h(n)).
This convention brings up the question for a definition of
stability, since in general there exist a variety of definitions.
Loosely speaking, we define the stability region as the set
of arrival vectors that can be supported avoiding buffer over-
flows. More precisely, we follow the notion of stability from
[5, 6]. To this end define the overflow function bm(ζ ) for a
user m

bm(ζ ) = limsup
n→∞

1
n

n

∑
i=0

1[qm(i)>ζ ] (5)

where 1[x>x0] is the indicator function. The overflow function
reflects the fraction of time instances in which a certain queue
level ζ is exceeded.

Definition 1 A vector of arrival rates ρ is called stabilizable
by a specific scheduling policy P(q(n),h(n)), if the fraction
of time instances exceeding a level ζ vanishes in the limit of
ζ for all users:

lim
ζ→∞

bm(ζ ) = 0 ∀m ∈ M . (6)

Definition 2 A vector of arrival rates ρ is called stabiliz-
able, if there exists a scheduling policy P(q(n),h(n)) such
that

lim
ζ→∞

bm(ζ ) = 0 ∀m ∈ M . (7)

Further, we formalize the description from above:

Definition 3 The set of all stabilizable arrival rate vectors of
a scheduling policy P(q(n),h(n)) is called its throughput
region SP .

Now define the set of rates C P
erg according to

C
P
erg :=

⋂

||q||1=1

{

r1, ...,rM : qT r≤ qT
E

{

rP(q,h)
}}

(8)

where rP(q,h) is the rate allocated by policy P according
to fading and buffer state h and q, respectively. Subsequently
we will use rP

erg(q) = E{rP (q,h)}. A quick inspection of
(8) reveals that C P

erg is a convex set.
With these definitions at hand, we are interested in condi-

tions - necessary and sufficient - , that characterize whether a
system is stabilizable or not. This problem was studied in [7]
for the MIMO case and for a finite number of fading states
in [6]. With the subsequent theorem we present a stability
proof with respect to C P

erg for continuous fading distributions.

Theorem 1 Assume the fading process h(·) to be ergodic
and the scheduling policy regarding the channel to be suf-
ficiently smooth. Suppose further that C P

erg contains all er-
godic rate points assigned by policy P and that it is non-
empty. A sufficient condition for a queuing system to be sta-
bilizable under a scheduling policy P , i.e. ρ ∈ S P , is that
the vector of arrival rates ρ lies strictly inside the set C P

erg:

ρ ∈ int
(

C
P
erg

)

. (9)

Further, a necessary condition for a queuing system to be sta-
bilizable is that the vector of arrival rates ρ lies not outside
the set C P

erg

ρ /∈ C
PC

erg (10)

where A C is the complementary set of A .

Proof 1 First we prove the sufficiency part. By Theorem
9.4.1 in [8] it has to be shown (even without irreducibility)
that the Lyapunov drift is nonpositive

∆V (q(n)) := E{V (q(n+1))−V(q(n))|q(n)} ≤ 0 (11)



for some ‖q(n)‖ > B ∈ R+ where V with V (q) → ∞ as
‖q‖ → ∞ is any Lyapunov function. Omitting the time in-
dex n and choosing V (q) := ‖q‖2

2 we have by elementary
calculus the sufficient condition

∆V (q) = E

(

‖a− r‖2
2 |q
)

+2E
(

qT (a− r) |q
)

≤ 0.

Assuming the policy P it is easy to see that

E
(

qT (a− r) |q
)

= qT ρ −qTrP
erg

where rP
erg is the boundary point of C P

erg that fulfills qT rP
erg ≥

qT r′Perg for all other boundary points r′Perg due to the convexity
of C P

erg. Taking some ρ strictly inside C P
erg with rP

ergm
−ρm ≥

β ,m ∈ M , for some β > 0 we get

∆V (q) = E

(

‖a− r‖2
2 |q
)

+2E
(

qT (a− r) |q
)

= ξ −2β ||q||1
(12)

with ξ = E(‖a−r‖2
2|q). Thus, the Lyapunov drift is nonpos-

itive
∆V (q) ≤ 0 ∀||q||1 > B (13)

choosing B = ξ/2β concluding the first part.
To prove the necessary condition is a bit more involv-

ing. All inequalities are component-wise in the following and
without loss of generality assume finite channel coefficients.
From [5] we have the necessary condition

ρ ≤
1
n

n

∑
i=1

r(n)+ ε, n > n0(ε) (14)

for some ε > 0. Further each admissible rate vector must
lie inside the instantaneous rate region achievable with pol-
icy P . Quantize the channel state space according to h j ∈
A ⊂ R

n
+ with j = 1, ..., |A |. Define a quantization mapping

f : R
n
+ →A such that f (h) ≤ h component-wise with quan-

tization levels h j ∈ A ⊂ R
n
+, j = 1, ..., |A |. Then

ρ ≤ ∑
j≤|A |

1
n ∑

i∈χn
j

r(i)+ ε

= ∑
j≤|A |

1
n ∑

i∈χn
j

(r̃(i)+ r∆h(i))+ ε
(15)

where χn
j is defined as the set of time slots where the channel

is in state j, r̃ is the quantized rate vector and r∆h is the
quantization error. Now

ρ ≤ ∑
j≤|A |

|χn
j |

n
1

|χn
j |

∑
i∈χn

j

r̃(i)+ ∑
j≤|A |

|χn
j |

n
max
i∈χn

j

r∆h(i)+ ε

= ∑
j≤|A |

|χn
j |

n
r′j + ∑

j≤|A |

|χn
j |

n
max
i∈χn

j

r∆h(i)+ ε

(16)

where r′j lies in the convex hull of all admissible rate allo-
cations in channel state j. Taking the limit the RHS of (16)

converges

limsup
n→∞

∑
j≤|A |

|χn
j |

n
r′j + ∑

j≤|A |

|χn
j |

n
max
i∈χn

j

r∆h(i)+ ε

= ∑
j≤|A |

Pr(h j ≤ h < h j +∆h)r′j + sup
n

r∆h(n)

= ∑
j≤|A |

∫ h j+∆h

h j

dFhr
′
j +O(∆h)

≤
∫

h

r′(h)dFh +O(∆h)

(17)

where Fh is the fading distribution and r′(h) lies in the con-
vex hull of all admissable rate allocations in fading state h
according to the policy P (we have tacitly assumend that
the regions increase with increasing h). Since the second
term can be made arbitrary small by choosing ∆h small and,
further, since C P

erg contains all admissable points the region
coincides with the convex hull and the theorem follows.

It is worth noting that stronger stability properties can
be proved for the queue system. In fact, it follows from the
Ljapunov technique that also the expected average queue size
is finite [9] which is upper bounded next.

3.2 Bounds on expected queue lengths
To get any propositions on the delay - which is particularly
interesting for QoS-constrained services - we study the ex-
pected average queue sizes. The following upper bound can
be found:

Lemma 1 The expected value of the sum of buffer lengths in
the stationary regime is upper bounded by

limsup
n→∞

‖q(n)‖1 ≤

(

‖ρ‖1 −‖ρ‖2
2

)

2max
r∈C P

erg

min
m∈M

(rm −ρm)

+

E

(

max
m∈M ,r∈C (h,P̄)

{rm} · max
r∈C (h,P̄)

{‖r‖1}

)

2max
r∈C P

erg

min
m∈M

(rm −ρm)

Proof 2 From a standard telescoping argument and the con-
vergence of the first moment we know from Theorem 1 in [9]

limsup
n→∞

‖q(n)‖1 ≤
ξ

2β

In order to evaluate ξ we have

ξ =E

(

‖a‖2
2

)

−2 ∑
m∈M

E(am)E(rm)+E

(

‖r‖2
2

)

≤E

(

‖a‖2
2

)

−2 ∑
m∈M

(E(am))2 +E

(

‖r‖2
2

)

≤
(

‖ρ‖1 −‖ρ‖2
2

)

+E

(

max
m∈M ,r∈C (h,P̄)

{rm} · max
r∈C (h,P̄)

{‖r‖1}

)

where we used in the last step E(rm) ≥ E(am). The term
E(‖r‖2) is upper bounded since the evaluation of ‖r‖2

2 for



some channel state is a non-convex problem. The denomina-
tor is clearly obtained from

β = max
r∈C P

erg

{

min
m∈M

{rm −ρm}

}

. (18)

In general, the average delay can be expressed asymptot-
ically in the number of users and it is shown that the delay
grows not faster than O(loglogM)2 as the number of users
increases [9]. Lemma 1 can be carried over to the throughput
regions of all presented schedulers.

4. SCHEDULING POLICIES

We present and analyze the four schedulers subsequently.
Besides an efficient algorithmic solution we are interested in
the achievable throughput region of each scheduler.

4.1 Maximum Rate Matching Scheduler (MRMS)
The MRM Scheduler is a stability optimal scheduler in the
sense, that the stability region is maximized [6]. However,
QoS and service specific criteria do not play any role and
thus rates can not be guaranteed.

In each state n the MRMS calculates the rates according
to

r(n) = argmax
r′(n)∈C (h(n),P̄)

qT (n)r′(n). (19)

The solution to this problem has been studied by several au-
thors and a very efficient algorithm exists [2] which is de-
scribed in Algorithm 1. To this end we introduces the notion
of marginal utility functions to characterize the revenue of
each user m to the objective function

u(k)
m (z) =

qm
(

1/gm,k + z
) −λ (20)

where λ is the Lagrangian parameter corresponding to the
sum power constraint. The set of equations characterizing
the solution is given by

rm(n) =

∞
∫

0

∑
k:u(k)

m (z)=
[

maxi u(k)
i (z)

]+

1
(

1/gm,k + z
) dz (21)

P(λ ) =
K

∑
k=1

[

max
m

(

qm

λ
−

1
gm,k

)]+

(22)

and [a]+ := max(0,a). For a detailed study the reader is re-
ferred to [2, 10]. The solution to the system of equations
(21)-(22) can be found by first solving equation (22) for the
Lagrangian multiplier λ . This can be done by simple bisec-
tion, since the RHS of (22) is monotone in λ .

Algorithm 1 MRMS optimization
(1) solve (22) for Lagrangian factor λ
(2) determine the intersections of marginal utility func-
tions (20) for all k ∈ K

(3) calculate resulting rates rm(n) (21) for each user m ∈
M

Concerning the achievable throughput region of the
MRMS SMRMS it follows immediately from Theorem 1 that

the entire interior of the ergodic capacity region can be
achieved SMRMS ≡ int(Cerg(P)) since C MRMS

erg ≡ Cerg. The
stability of the boundary of Cerg(P) is an unsolved problem.
The MRMS is thus throughput optimal. However, note that
the MRMS is not the only scheduler achieving the maximum
throughput region.

4.2 Minimum Rates Scheduler (MRS)
The MR scheduler was designed to overcome the shortcom-
ings of the MRMS. This policy takes into account QoS con-
straints in form of guaranteeing a set of given minimum rates
r̄ = [r̄1, ..., r̄M ]T for some user subset L to assure e.g. real
time services independent of the fading state h. Unfortu-
nately the consideration of rate constraints is achieved at the
expense of a reduced stability region.

The scheduler solves the following problem at each time
instance t:

r(n) = argmax
r′(n)∈C (h(n),P̄),r′m(n)≥r̄m,m∈L

qT (n)r′(n). (23)

An efficient algorithm solving the instantaneous problem in
the dual MAC was presented in [3], which is summarized
beneath. To this end define effective noise coefficients nm,k
as

nm,k := log

{

e
∑

n>m
rπk (n),k

[

1/gπk(m),k

+
m−1

∑
j=1

1/gπk( j),k
(

erπk ( j),k −1
)

e

m−1
∑

n= j+1
rπk(n),k]

}−1

.

(24)

where πk is a set of permutations such that the channel gains
are ordered on each subcarrier decreasingly

gπk(1),k ≥ gπk(2),k ≥ ·· · ≥ gπk(M),k. (25)

Algorithm 2 MRS optimization
(1) check feasibility with Algorithm 3
(2) choose initial Lagrangian factors λ+ and λ−

while sum power constraint P̄ is not met do
while desired accuracy not reached do

for m = 1 to M do
(3) compute the coefficients nm,k (24) for user m
(4) do water-filling according to his queue qm (26)
if rm(n) < r̄m then

(5) choose µm in water-filling level such that
rm(n) = r̄m

end if
end for

end while
(6) increase (decrease) λ if P > P̄ (P < P̄) by bisection

end while

Further, the Karush-Kuhn-Tucker (KKT) optimality con-
ditions can be written in a form allowing water-filling:

rπk(m),k(n) =
[

log((qm + µm)/λ )+nm,k

]+
, ∀m,k (26)



The factor µm is the nonnegative Lagrangian multiplier of
user m corresponding to his minimum rate requirement r̄m
and constitutes a revenue to the water-filling level. Note that
the problem might be infeasible, if the feasible set is empty,
i.e. the required minimum rates r̄ are not supportable with
the given power budget P̄. Thus, feasibility is checked by
running Algorithm 3 first, which is presented in the next sub-
section.

In contrast to the MRMS, the MR Scheduler is not
throuput optimal. The throughput region is generally lim-
ited by the minimum rate requirements r̄ if we consider only
those fading states where the rate requirements can be ful-
filled (see Fig. 1).

4.3 Minimum Sum Power Scheduler (MSPS)

In contrast to the MRMS and the MRS, the MSP scheduler is
not concerned about stability issues; the primary objective is
to achieve a set of user rates r̄ = [r̄1, ..., r̄M ]T with minimum
sum power P. Obviously, this strategy has impact on the
stability and the delay.

The policy of the MSPS is defined as follows:

p(n) = argmin
r̄(n)∈C (h(n),P)

P. (27)

The optimization problem can be efficiently solved in the
dual MAC similar to the MRS. In fact, the MSPS and MRS
algorithms base on the same KKT conditions of an enhanced
problem revealing the intimate connection of both [3]. Thus
once again the water-filling structure can be exploited.

Algorithm 3 MSPS optimization (Iterative rate water-filling)
set rm,k(n) = 0 ∀m ∈ M , ∀k ∈ K

while desired accuracy is not reached do
for m = 1 to M do

(1) compute the coefficients nm,k (24) for user m
(2) do water-filling with respect to the rates rm,k(n)
for user m as in equation (26) setting λ = 1

end for
end while

It can be shown that the throughput region is given by the
interior of the hypercube defined by the set of affine inequal-
ities

rm < r̄m ∀m ∈ M . (28)

4.4 Maximum Throughput Scheduler (MTS)

In contrast to the other schedulers, the MT Scheduler is
purely physical layer oriented: The scheduler maximizes the
overall throughput not taking into account other constraints
according to

r(n) = argmax
r′∈C (h(n),P̄)

M

∑
m=1

r′m(n). (29)

Despite its practical shortcomings in terms of fairness the
MTS is nevertheless interesting for theoretical investigation.
Achieving the maximum throughput with MTS comes at the
cost of severe delays. This is illustrated in Fig. 1.
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Figure 1: a) [left] Path in exemplary throughput regions b)
[right] Simulated average buffer lengths (over 20000 Trans-
mit Time Interval) and the bounds of e.g. MWMS and MTS

5. CONCLUSIONS

We presented a common stability framework and resource al-
gorithms for OFDM broadcast channels. Clearly, this analy-
sis has not come to its end and can be used for further steps
towards investigation of more practical algorithms.
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