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ABSTRACT 
A method for ranking features of wavelet-decomposed EEG 
in order of importance in prediction of epileptic seizures is 
introduced. Using this method, the four most important fea-
tures (extracted from each level of wavelet decomposition) 
are selected from ten features. The proposed set of features 
is then used to recognize “pre-seizure” signal, thus predict-
ing a seizure. Our feature set outperforms previously used 
sets by achieving higher class separability index and correct 
classification rate. 

1. INTRODUCTION 

Epilepsy is known to be the second most frequent brain dys-
function, from which about 50 million people suffer world 
wide. Epileptic seizures cannot be controlled with medica-
tion in a third of this population [1]. The rest of this popula-
tion has to put up with the side effects of the seizure-control 
drugs. A pre-seizure warning can help the patient to prepare 
for the seizure (e.g., pull over if driving). Knowing when a 
seizure would occur, the medication can be used just in time 
to reduce the unwanted side effects. 

The patient’s EEG signal is known to contain much in-
formation about the occurrence of epileptic seizures [2]. It is 
also shown (see Section 2) that the EEG signal conveys 
enough information to predict an epileptic seizure. 

The information content of a signal can be summarized 
in a few features computed for that signal. Several features 
are suggested to represent information of an EEG signal with 
regards to (imminent) occurrence of an epileptic seizure [3, 
4]. One can calculate a number of such features for each con-
sequent segment of the EEG waveform and feed them to a 
classifier, which recognizes its input set of features to be ei-
ther in the “pre-seizure” class (meaning, most probably a 
seizure happens and the patient should be warned), or in the 
“normal” or the “seizure” classes1. 

By increasing the number of features extracted from a 
signal, it is less likely to miss any information relevant in 
classification. With a large number of features, however, it is 
also more difficult to design and/or train a classifier to effec-

                                                            
1 It is a good idea that the system requests medical assis-

tance in cases of “pre-seizure” or “seizure” via patient’s cel-
lular phone, for example. 

tively recognize the desired pattern in the signal (a.k.a. “the 
curse of dimensionality”). Therefore, it is important to select 
only the significant features that carry the relevant informa-
tion of the signal. 

In this paper, we introduce a method of measuring the 
significance of each feature in correct recognition of the 
“pre-seizure” class (i.e., measuring utility of a feature in sei-
zure warning). We also apply our method to determine the 
significance of ten features that are either used in previous 
work or are believed to contain EEG information useful to 
our purpose. 

The rest of the paper is organized as follows. We first re-
view the related previous work in Section 2. The way of ex-
tracting features from the EEG signal, the database on which 
the method is applied, as well as the method for selection of 
the most important features are described in Section 3. The 
selected significant features, and other set of features are 
used for classification of the EEG signals in Section 4. We 
wrap up the paper with a few concluding remarks and a 
number of directions for future work in Section 5. 

2. PREVIOUS WORK 

To the best of our knowledge, there is no method for ranking 
the individual features of (decomposed) EEG waveform 
based on their importance in seizure prediction. [5] gives a 
method of identifying the significant EEG channels for a 
certain purpose. Such a method must be used as the first step 
of customizing an EEG-based seizure warning system for 
every patient to determine the minimum number and the 
locations of the electrodes. 
 Our work addresses the problem of effective feature 
extraction from EEG to achieve a high ratio of true to false 
seizure warning. Several features are considered to represent 
EEG information: [6] suggests zero crossings and extremes 
information of the wavelet decomposed signal. [7, 4] use 
spectral content of the signal. Mean of absolute value [3], 
average power [3], standard deviation [3, 8], mean [8], 
maximum [8], minimum [8], various informational meas-
ures (such as Shannon’s entropy) [9] of each wavelet de-
composition level (sub-band), and the ratios of absolute 
mean values of the adjacent wavelet decomposition levels 
[3] are also used. The most promising of these features 
along with a few we suggested are compared in their utility 
in seizure prediction. 
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3. FEATURE SELECTION 

3.1 Analysis specifications 
Due to the non-stationary nature of EEG signal, it should be 
analyzed both in time and in frequency. Therefore, the wave-
let transform, as a time-frequency analysis tool, is a suitable 
choice [3, 4, 10, 11, and 12]. The wavelet (basis) function 
should be similar to the usual EEG pattern, to capture as 
much information as possible. That is why Daubechies func-
tion family are proved to be a successful choice as the wave-
let basis for our problem [2, 9]. We also show that the fourth-
order Daubechies function is a good choice for our problem 
as well (see Section 4). Since the useful frequency content of 
the EEG signal is up to 30 Hz (i.e., higher frequency compo-
nents are mainly noise or artifacts), the wavelet analysis is 
performed in 4 to 6 levels only [2, 13]. 

3.2 Database 
We use the data provided in [14] and used in [8, 15], where a 
detailed description is also given. The data consists of five 
groups, each comprised of 100 single-channels, 23.6-second 
EEG. The first two groups are recorded from five healthy 
subjects: with open (g1) and closed eyes (g2). The third and 
fourth groups are recorded prior to a seizure from part of the 
brain with the syndrome (g3) and from the opposite (healthy) 
hemisphere of the brain (g4). The fifth group (g5) is recorded 
from part of the brain with the syndrome during the seizure. 

3.3 Method 
The following features were extracted from each level of 
wavelet decomposition for each waveform in the database. 

1. Number of zero crossings. 
2. Number of extremes. 
3. Time of reaching the maximum point. 
4. Maximum value. 
5. Peak to peak value. 
6. Mean value. 
7. Energy. 
8. Standard deviation. 
9. Third-order moment. 
10. Shannon’s entropy (given by (1)). 
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These features are either used in [3, 6, 8, and 9] or we be-
lieved to contain useful information of EEG signal. 
The feature set, X, is distributed in L classes with probabili-
ties of ip . Sw, SB, and S denote in-class scatter, between-class 
scatter, and separability matrices, respectively. The traces 
of WS and BS  express the average within-class scatter and 
the distance between two classes respectively [17]. For a 
given set of features, a measure of separability of the classes 
can be considered as the following. 
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A separability index invariant to linear transformations of 
features is given by the following formula. 
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 For a specific set of features, one measure for utility for 
that set is given by the trace of its separability matrix [16]. 
Also, Disci gives the effect of the i-th feature of the set. 
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Figure 1 – Effect on separability for each of the ten tested fea-

tures extracted for each wavelet decomposition level. 
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Figure 2 – Effect on separability of g3 and g5, for each feature 

summed over all decomposition levels. 
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3.4 Ranking features based on their significance 
Figure 1 illustrates the amount of Disci for each level of 
wavelet decomposition (a column of height Disci for decom-
position level k is depicted at horizontal location )1(10 k-i + ). 
In this experiment, all ten features listed above are used, and 
all L=5 classes are assumed equiprobable ( 0.2=ip ). It is 
observed that the three most effective features in this sce-
nario are computed from the first decomposition level (corre-
sponding to the lower frequency components) and are the 
number of zero crossings, the standard deviation, and Shan-
non’s entropy. Another interesting observation is that the 
number of zero crossings has little effect in separability when 
computed for the second decomposition level. 

In Figure 2, features are compared based on their effect 
on separability of classes g3 and g5, summed over all de-
composition levels. One can see that the number of extremes, 
the number of zero crossings, and energy of the signal are the 
most useful features, considering overall.  

In Figure 3, features are compared based on their effect 
on separability of all classes.  

4. CLASSIFICATION RESULTS WITH THE MOST 
SIGNIFICANT FEATURES 

In Table 1, our proposed set of features (the last row) is 
compared to those suggested by [3, 6, 8, and 9] (the first 
three rows) in their ability to separate and classify all five 
classes. Our proposed set of features, listed in the last row 
(the four features with highest Disci in Figure 3), gives the 
best performance. The data is classified with a multi-layered 
perceptron (MLP), which is a simple neural network classi-
fier with one hidden layer and is commonly used for small 
feature numbers [17]. MLP is trained by a back-propagation 
method, with 50% of the data (the rest is used for test). The 
second column lists the separability index (Disci). The third 
column gives the average correct classification rate. Our set 
of features achieves the highest separability index, and it is 
only 1% below the second set in correct classification rate 
with MLP. Note that a higher separability means that our 
proposed set can result in higher correct classification rate by 
using a more sophisticated classifier. 

In Table 2, utility of five feature sets are compared in 
classification of two equiprobable data groups g3 and g5. In 
addition to the correct classification rates, the confusion ma-
trices are also listed. For example, with the feature set given 
in the third row, the 50 examples of g3 are recognized cor-
rectly in 43 cases, and are mistakenly classified as g5 in 7 
cases. The average correct classification rate is 89%. The 
highest separability is again achieved by our proposed fea-
ture set (those with highest Disci in Figure 2), listed in the 
last row. Note that this set of features (optimal for 2-class 
operation) differs in one feature with the feature set optimal 
for 5-class case. 

In Table 3, three basis functions for wavelet decomposi-
tion are compared in a setup similar to the previous experi-
ment. The fourth order Daubechies function provides the 
highest separability and correct classification rate, and there-
fore is used for analysis. This observation can be justified by 
the fact that Daubechies functions of lower orders lack the 
details required to represent the relevant information in EEG 
signal. 

5. CONCLUSION AND FUTURE WORK 

In this work, we introduced a number of features for EEG 
signal to recognize the signal as a sample of “normal”, “pre-
seizure”, or “seizure” classes. Our main contributions are 
measuring the effect (significance) of each feature in classifi-
cation and using the four most significant ones. We showed a 
high separability can be achieved among the classes using 
the proposed set. Thus, even with a classifier as simple as 
MLP, we reached high correct classification rates that are 
comparable to previous work that used sophisticated classifi-
ers on other feature sets. 

We plan to investigate utility of other features (such as 
higher order statistics) for classification of EEG signal. We 
will also try using more sophisticated classifiers over a larger 
set of features. 
Other bodily signals that do not seem directly related to epi-
lepsy (temperature of certain points on body, and ECG for 
example) may have significant information about occurrence 
of seizures. Using the method of significance measurement 
presented in this work, we plan to check the utility of such 
signals in seizure prediction as well. 
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Figure 3 – Effect on separability of all five classes, for each 

feature summed over all decomposition levels. 

 
Figure 4 – Successful separation of g3 and g5 by the three most 

significant features. 
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Basis 
Function Separability 

Correct 
Classification

rate 

db4 3.92 96.0 % 

db2 3.27 95.3 % 

db1 (Haar)  3.33 93.5 % 

Table 3 – Finding the best order of Daubechies function to be 
used as our wavelet basis function. 

Feature set Separability 
Correct 

Classification 
Rate 

min, max, mean, variance 3.63 54.0 % 

Zero crossing, mean 6.10 73.0 % 

entropy, energy 2.75 63.6 % 

zero crossing, number of 
extremes, mean, energy 7.69 72.0 % 

Table 1– Comparison of various features set in their ability to 
discriminate between all five classes. The last row indicates 

our selected most significant features. 

Feature set Separability 
Correct 

Classification 
rate 

Confusion 
Matrix 

min, max, mean, variance 2.17 94.0 % 45   1 
5   49 

zero crossing, number of 
 extremes, mean, energy 3.54 94.0 % 47   3 

3   47 

zero crossing, entropy, 
 variance,3rd order moment 2.98 89.0 % 43   7 

4   46 

zero crossing, peak to peak, 
entropy, energy 3.37 90.0 % 44   4 

6   46 

zero crossing, number of  
extremes, peak to peak, energy 3.92 94.0 % 47   3 

3   47 

Table 2 – Comparison of various feature sets in their ability to discriminate be-
tween g3 and g5. The last row indicates our selected most significant features and 

the other rows were proposed in previous works. 
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