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ABSTRACT

In this paper, we are interested in restoring blurred multicompo-
nent images corrupted by an additive Gaussian noise. The nov-
elty of the proposed approach is two-fold. Firstly, we show how to
combineM-band Wavelet Transforms (WT) with Fourier analysis
to restore multicomponent images. Secondly, we point out that the
multichannel deconvolution procedure takes advantage of exploit-
ing multivariate regression rules. Simulations experiments carried
out on multispectral satellite images indicate the good performance
of our method.

1. INTRODUCTION

Satellite imaging systems tend to have increasing spatial and spec-
tral resolutions. Operating in different spectral ranges,these in-
struments provide several spectral components. Therefore, a multi-
channel image is delivered for a single sensed area. For instance, for
the SPOT5 satellite, the High Resolution Visible imaging on-board
systems acquire 4 spectral images XS1, . . . , XS4. However, the
image sensing stage generally suffers from various types ofdegra-
dations. The satellite motion coupled with the optics imperfections
yield blurred images. Furthermore, these images are corrupted by
an additive noise produced by the electronics of the device.These
artifacts should be removed prior to fully exploiting the data for
further remote sensing tasks. Much attention was paid to both the
denoising and the deconvolution problems. It is worth pointing out
that two alternatives have been envisaged for multispectral image
denoising/restoration. The first one consists of aseparateprocess-
ing of the spectral components whereas the second one captures
their mutual correlations through amultichannelprocedure. Con-
cerning the denoising problem, the two alternatives have already
been studied. Monochannel methods are often based on spatial fil-
ters such as the well-known Wiener filter or order statistic filters [1].
Besides, thanks to the good energy compaction and decorrelation
properties of the Wavelet Transform (WT), simple shrinkageoper-
ation in the wavelet domain were developped [2]. In the framework
of multichannel denoising, we have recently proposed a veryeffi-
cient and robust method that jointly reduces the noise of thewavelet
coefficients of the spectral components [3].
In a similar way, much works have been dedicated to monochan-
nel deconvolution [4, 5, 6]. The multichannel restoration problem
have been also extensively studied. Pioneering works attempted to
design appropriate filters in the frequency domain [7, 8, 9] .The
WT domain was successfully investigated but mainly in the case
of monochanneldeconvolution [10, 11, 12, 13, 14]. A recent at-
tention was recently paid to combine the Meyer two-band WT and
the Fourier transform for deconvolution purposes through an ele-
gant and efficient wavelet image deblurring method called Waved.
However, to the best of our knowledge, few papers were reported
concerning wavelet-based restoration methods for multicomponent
images. In this paper, we aim at designing a new multivariatesta-
tistical deconvolution technique. The contributions of this paper are
the following.

• Firstly, the deconvolution problem is formulated using an arbi-
trary M-band WT instead of the conventional two-band Meyer
case in order to gain more flexibility in the multiresolutionanal-
ysis.

• Secondly, we extend the Waved method to the multichannel case
and propose a multicomponent statistical estimation technique.

• Besides, the calculations are performed for an arbitrary covari-
ance matrix between the multispectral noise components.

The paper is organized as follows. In Section 2, the problem is
stated and our notation is introduced. The main properties of peri-
odized Meyer wavelets andM-band decompositions are briefly re-
called in Section 3. In Section 4, we present the Waved estimator.
In Section 5, we compute explicit expressions of the statistics of
the Waved estimator. In Section 6, we describe an extension of the
Waved method to the case of multicomponent data. In Section 7,
some experimental results are provided to evaluate the performance
achieved by our multivariate estimation approach and, somecon-
cluding remarks are also given in Section 8. Throughout the paper,
the following notation will be used: letM be an integer greater than
or equal to 2,NM = {0, . . . ,M−1} andN

⋆
M = {1, . . . ,M−1}.

2. PROBLEM STATEMENT

Let s(x) denote an unknownB-component image at spatial position
x ∈ R

2 :

s(x)
△
=(s(1)(x), . . . ,s(B)(x))T . (1)

At each sensorb, the spectral component is degraded by the imaging
system with impulse responseh(b)(x) and, it is also corrupted by an
additive noisen(b)(x), which is assumed to be independent of the
random processs(x). The noise

n(x)
△
=(n(1)(x), . . . ,n(B)(x))T . (2)

is a multivariate random field which is assumed to be Gaus-
sian, spatially white, with zero-mean and spectrum densitymatrix
(γ(b,b′)1≤b,b′≤B. This means that inter-band correlations may exist.

Therefore, the observations can be expressed as follows:

∀b∈ {1, . . . ,B}, r(b)(x) = (h(b) ∗s(b))(x)+n(b)(x). (3)

For the sake of simplicity, only intra-channel blurring is considered
in the previous equation. A deblurring method aims at estimating

s(x) based on the observed vectorr(x)
△
=(r(1)(x), . . . , r(B)(x))T .

A supervised approach assumes that both the blurring kernels
{h(b)(x)}1≤b≤B and the constants{(γ(b,b′))}1≤b,b′≤B are known.
This is currently a realistic assumption in remote sensing thanks to
appropriate calibration procedures [11]. If this assumption does not
hold, unsupervised approaches have to estimate the blur andnoise
parameters from the observed images [15]. Very often, the deconvo-
lution operates in a transform domain, the transform being expected
to make the problem easier to model. To this respect, the wavelet
domain is considered as a very versatile tool.
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3. M-BAND WAVELET TRANSFORM

3.1 Definition

An M-band multiresolution analysis of L2(R) is characterized by
one scaling functionψ0 ∈ L2(R) and(M−1) mother waveletsψm∈
L2(R), m∈ N

⋆
M . In the Fourier domain, these functions are defined

by the so-called scaling equations:

∀m∈ NM ,
√

Mψ̂m(Mω) = Hm(ω)ψ̂0(ω) (4)

where(Hm)m∈NM
are 2π-periodic functions. An orthonormalM-

band wavelet basis of L2(R) is built when para-unitarity conditions
hold:

∀(m,m′) ∈ N
2
M ,

M−1

∑
µ=0

Hm(p+
µ
M

)H∗
m′(p+

µ
M

) = Mδm−m′ (5)

It is worth noting that the filter associated toH0 is low-pass whereas
the filters with frequency responseH1, . . . ,HM−2 are band-pass and,
the filter related toHM−1 is high-pass. In this case, cascadingM-
band para-unitary analysis and synthesis filter banks allows to de-
compose and to perfectly recover any 1D signal of L2(R).
Tensor products of such 1D wavelet system yield the 2D scaling
function ψ0,0(x) andM2−1 wavelet functionsψm,m′(x) obtained
as follows:

∀x = (x1,x2) ∈ R
2, ψ0,0(x)

△
=ψ0(x1)ψ0(x2) (6)

∀m = (m,m′) ∈ NM
2\{(0,0)}, ψm(x)

△
=ψm(x1)ψm′(x2). (7)

In this way, the family{ψ j,k,m} j∈Z,k∈Z2 is an orthonormal basis

of of L2(R2) wherem ∈ NM
2\{(0,0)} and

∀x ∈ R
2, ψ j,k,m(x)

△
=M j/2ψm(M jx−k). (8)

3.2 M-band Meyer wavelets

In the sequel, we will make use ofM-band Meyer wavelet decom-
positions. They involve wavelets of compact support in the fre-
quency domain that have closed-form expressions in this domain.
In the dyadic case (M = 2), the scaling functionψ0 is a func-
tion whose Fourier transform is limited in the frequency domain
to [0,(1+ ε)/2] whereε ∈ (0,1/3]. The corresponding waveletψ1
has a a Fourier transform which is smooth and with compact sup-
port within [(1− ε)/2,1+ ε] [16]. While the dyadic case is well
known, the design ofM-band Meyer decompositions has been re-
cently reported in [17].

3.3 Periodized wavelets

A periodized version within the set[0,1]2 of anM-band multireso-
lution analysis system corresponds to the followingperiodicscaling
and wavelet functionsΨ j,k,m(x):

Ψ j,k,m(x)
△
= ∑

q∈Z2

ψ j,k,m(x+q). (9)

Let j0 ≥ 0. It has been shown that{Ψ j0,k,0} j≥ j0,k∈{0,...,M j0−1}2∪
{Ψ j,k,m} j≥ j0,k∈{0,...,M j−1}2,m6=0 is an orthonormal basis of the

space of periodic functions inL2([0,1]2). Hence, the wavelet co-
efficientsg j,m of any periodic functiong in L2([0,1]2) are given
by:

g j,m(k) =
∫ 1

0

∫ 1

0
g(x)Ψ j,k,m(x)dx. (10)

4. COMBINING WAVELET AND FOURIER
TRANSFORMS FOR DECONVOLUTION

The approach developed in [13, 18] judiciously combines Fourier
analysis with a dyadic Meyer wavelet expansion. In what follows,
we will generalize this approach by considering multicomponent
images analyzed through anM-band decomposition. Each spectral
components(b) is viewed as a periodic function in L2([0,1]2) whose
Fourier coefficientsS(b)(p) are given by:

∀p ∈ Z
2, S(b)(p)

△
=

∫ 1

0

∫ 1

0
s(b)(x)exp(−2πıxTp)dx. (11)

In the frequency domain, Eq. (3) becomes:

∀b∈ {1, . . . ,B}, R(b)(p) = U (b)(p)+N(b)(p), (12)

where
U (b)(p)

△
=H(b)(p)S(b)(p), (13)

and the Fourier coefficientsS(b)(p) andN(b)(p) are obtained by ex-
pressions similar to Eq. (11). It must be pointed out that Eq.(13)
actually corresponds to an approximation of the 2D convolution in
Eq. (3) by a periodic convolution (this problem can be solvedby
making use of zero-padding techniques). Besides, Plancherel’s for-
mula reduces to:

∫ 1

0

∫ 1

0
s(b)(x)Ψ j,k,m(x)dx = ∑

p

S(b)(p)Ψ̂∗
j,k,m(p), (14)

whereΨ̂ j,k,m(p) is a Fourier coefficient ofΨ j,k,m(x), which is
also equal to the Fourier transform ofψ j,k,m(x) at frequencyp.
By combining Equations (10) and (14), the wavelet coefficients can
be obtained as follows:

s(b)
j,m(k) = ∑

p∈C j ,m

S(b)(p)Ψ̂∗
j,k,m(p), (15)

whereC j,m
△
={p ∈ Z

2 : Ψ̂ j,k,m(p) 6= 0}. It is worth pointing out
thatC j,m does not depend onk. This is equivalent to:

s(b)
j,m(k) = ∑

p∈C j ,m

U (b)(p)

H(b)(p)
Ψ̂∗

j,k,m(p), (16)

provided that, for allp ∈ C j,m, H(b)(p) 6= 0. At this point, it is
important to note that it appears preferable to use frequency ban-
dlimited wavelets such asM-band Meyer wavelets. Indeed, in this
case, the cardinality ofC j,m is drastically reduced and the above
condition is not fulfilled only by the zeros ofH(b) belonging to the
frequency support of̂Ψ j,k,m(p).
The detail coefficients cannot be recovered by the latter equation
since the sequenceU (b)(p) is not observable. In [13], it is proposed
to useR(b)(p) as an unbiased estimator ofU (b)(p). As a result, the

so-called Waved estimator ˜s(b)
j,m(k) of s(b)

j,m(k) is obtained:

s̃(b)
j,m(k) = ∑

p∈C j ,m

R(b)(p)

H(b)(p)
Ψ̂∗

j,k,m(p). (17)

Then, it remains to improve the performance of such a coarse es-

timator s̃(b)
j,m(k) through an additional denoising. In [13], for an

appropriate set of target functions, an asymptotically near-optimal

estimator (in the sense of the mean square error) ˆs(b)
j,m(k) is derived

through hard-thresholding by level-dependent thresholdsλ j,m:

λ j,m = λ
log(L)

2
√

L

(
γ(b,b)|C j,m|−1 ∑

p∈C j ,m

|H(b)(p)|−2

)1/2

, (18)
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whereL is the whole number of pixels in each spectral component,
|C j,m| denotes the cardinality ofC j,m andλ is a constant factor.
It is worth pointing out that the wavelet shrinkage is operated from
the coarsest scalej0 up to a finest scalej1. The latter is related to
the degree of ill-posedness of the blurring kernelH(b)(p) [13]. The
main contribution of our work consists in proposing an improved

method for denoising all the coefficients{s̃(b)
j,m(k)}B

b=1 by adopting
amultivariateapproach.

5. STATISTICS OF THE WAVED ESTIMATOR

In order to denoise ˜s(b)
j,m(k), it is useful to derive the statistics of this

estimator. First of all, the Gaussianity of the noise and thelinearity

of the estimator ensures the Gaussianity ofe(b)
j,m(k)

△
= s̃(b)

j,m(k)−
s(b)

j,m(k). Besides, it is easy to show that ˜s(b)
j,m(k) is an unbiased

estimator since:

E[s̃(b)
j,m(k)] = ∑

p∈C j ,m

E[R(b)(p)]

H(b)(p)
Ψ̂∗

j,k,m(p)

= ∑
p∈C j ,m

H(b)(p)E[S(b)(p)]

H(b)(p)
Ψ̂∗

j,k,m(p)

= E[s(b)
j,m(k)]. (19)

The mean square estimation errorγ(b,b)
j,m is given by:

γ(b,b)
j,m

△
=E[

(
s̃(b)

j,m(k)−s(b)
j,m(k)

)2
]

= ∑
p∈C j ,m

E[|N(b)(p)|2]
∣∣∣∣∣
Ψ̂ j,k,m(p)

H(b)(p)

∣∣∣∣∣

2

=γ(b,b) ∑
p∈C j ,m

∣∣∣∣∣
Ψ̂ j,0,m(p)

H(b)(p)

∣∣∣∣∣

2

. (20)

The cross correlationγ(b,b′)
j,m of the estimation errors for any pair of

components(b,b′) at the same locationk can be calculated in a
similar way:

γ(b,b′)
j,m

△
=E[

(
s̃(b)

j,m(k)−s(b)
j,m(k)

)(
s̃(b

′)
j,m(k)−s(b

′)
j,m(k)

)
]

= γ(b,b′) ∑
p∈C j ,m

|Ψ̂ j,0,m(p)|2
H(b)(p)H(b′)(p)∗

. (21)

It is also worth pointing out thats(b)
j,m(k) ande(b)

j,m(k) are decorre-
lated since:

E[s(b)
j,m(k)s̃(b)

j,m(k)] = E[s(b)
j,m(k)2]. (22)

Indeed, the calculation ofE[s(b)
j,m(k)s̃(b)

j,m(k)] yields to:

E[s(b)
j,m(k)s̃(b)

j,m(k)] = ∑
p,p′∈C j ,m

E[S(b)(p)R(b)(p′)∗]
H(b)(p′)∗

Ψ̂∗
j,k,m(p)Ψ̂ j,k,m(p′)

= ∑
p,p′∈C j ,m

E[S(b)(p)S(b)(p′)∗]

Ψ̂∗
j,k,m(p)Ψ̂ j,k,m(p′)

= E[s(b)
j,m(k)2]. (23)

6. PROPOSED MULTICHANNEL WAVED ESTIMATOR

6.1 Motivation

The multivariate approach consists in estimatingjointly all the

B wavelet coefficientss(b)
j,m(k) from all the B waved esti-

mators ˜s(b)
j,m(k). To this purpose, we define the following

B-dimensional vectors: s j,m(k)
△
=(s(1)

j,m(k), . . . ,s(B)
j,m(k))T and,

s̃ j,m(k)
△
=(s̃(1)

j,m(k), . . . , s̃(B)
j,m(k))T . By defining the noise vector

e j,m(k) as:
s̃ j,m(k) = s j,m(k)+e j,m(k), (24)

we get an additive noise observation model. From Section 5, it
appears that the unknown vectors j,m(k) is embedded in the zero-

meanmultivariateGaussian noisee j,m(k) with γ(b,b′)
j,m as the(b,b′)

generic element of its autocovariance matrixΓ
(e)
j,m. Therefore, it

is possible to apply a robust estimator of the wholevectors j,m(k)
that can exploit the intercomponent correlations. In a recent work
[3], we have envisaged two multivariate denoising methods:a MAP
estimation and a more robust one built on Stein’s principle operating
on dyadic decompositions. In the sequel, we will extend themto the
M-band wavelet restoration problem.

6.2 Multivariate MAP

Concerning the MAP method, a prior Bernouilli-Gaussian (BG)
distribution p j,m is considered so as to reflect the sparseness of
s j,m(k) as well as the statistical dependencies existing between the
B components:

∀u ∈ R
B, p j,m(u) = (1− ε j,m)δ (u)+ ε j,mg

0,Γ
(s)
j ,m

(u), (25)

whereδ is the Dirac distribution,g
0,Γ

(s)
j ,m

is the multivariate Gaus-

sianN (0,Γ
(s)
j,m) probability density andε j,m ∈ [0,1] is the mix-

ture parameter. In tandem with this mixed distribution we use an
independent binary random (hidden) variablesq j,m(k) such that:

p(s j,m(k)/q j,m(k) = 0) = δ (s j,m(k))
p(s j,m(k)/q j,m(k) = 1) = g

0,Γ
(s)
j ,m

(s j,m(k)) . (26)

Only whenq j,m(k) = 1, the associated wavelet coefficient vector
carries useful information. Besides, the Gaussianity of the noise
allows to express the conditional probabilities:

{
p(s̃ j,m(k)/q j,m(k) = 0) = g

0,Γ
(e)
j ,m

(s̃ j,m(k))

p(s̃ j,m(k)/q j,m(k) = 1) = g
0,Γ

(e)
j ,m+Γ

(s)
j ,m

(s̃ j,m(k)) .

(27)
Consequently, the denoising problem reduces to a classicalproblem
in estimation theory. However, because of the singularity of the a
posteriori distributionps j ,m(u/s̃ j,m(k)) due to the Dirac distribu-
tion, the MAP estimate takes a degenerate form. This is why the
q j,m(k) are estimated before the computation of the MAP estimate

ŝ
(MAP)
j,m (k). More precisely, the Bayesian estimate ˆq j,m(k) = 1 of

q j,m(k) satisfies:

q̂ j,m(k) =

{
1 if s̃ j,m(k)TM j,ms̃ j,m(k) > χ j,m,
0 otherwise (28)

whereM j,m = (Γ
(e)
j,m)−1 − (Γ

(s)
j,m +Γ

(e)
j,m)−1 and, the threshold

χ j,m is given by:

χ j,m = 2ln

(
1− ε j,m

ε j,m

)
+ ln



 | Γ(s)
j,m +Γ

(e)
j,m |

| Γ(e)
j,m |



 . (29)

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



The corresponding MAP estimator is easily deduced:

ŝ
(MAP)
j,m (k) =

{
Q j,m s̃ j,m(k) if q̂ j,m(k) = 1
0 otherwise , (30)

whereQ j,m
△
=Γ

(s)
j,m(Γ

(s)
j,m +Γ

(e)
j,m)−1 [3].

6.3 Stein’s estimator

It is possible to build another estimator ˆs
(Stein)
j,m that takes into ac-

count the BG model mismatch. More precisely, we replace the
MAP estimator byE[s j,m/s̃ j,m] which is the optimal Bayesian es-
timator for a quadratic cost:

E[s j,m/s̃ j,m] = γε j ,m(s̃ j,m)Q j,ms̃ j,m, (31)

whereγε j ,m

△
=

ε j,mg
0,Γ

(s)
j ,m+Γ

(e)
j ,m

ε j,mg
0,Γ

(s)
j ,m+Γ

(e)
j ,m

+(1− ε j,m)g
0,Γ

(e)
j ,m

(32)

We propose to use an estimator ˆs
(Stein)
j,m whose structure is given by

Eqs. (31)-(32). But, instead of deducingQ j,m andε j,m from the
BG prior, the latter are adjusted so as to minimize the quadratic risk
E j,m = E[‖s j,m − ŝ

(Stein)
j,m ‖2]. A closed form expression ofRj,m

can be derived thanks to Stein’s formula yielding the cost function:

Ẽ j,m = −tr(B j,m
(
A j,m

)−1
BT

j,m), (33)

with A j,m
△
=E[γ2

ε j ,m

(
s̃ j,m

)
s̃ j,m(s̃ j,m)T ]. (34)

B j,m
△
= E[γε j ,m

(
s̃ j,m

)
s̃ j,m(s̃ j,m)T ]−Γ

(e)
j,m

(
E[γε j ,m

(
s̃ j,m

)
]I

+E[∇γε j ,m

(
s̃ j,m

)
(s̃ j,m)T ]

)

So, the minimization ofRj,m amounts to the optimization of a func-
tion of the single variableε j,m ∈ [0,1] since it is easy to check that

the corresponding optimalQ j,m is B j,m
(
A j,m

)−1.
A further improvement consists in envisaging a hybrid scheme

that allows to handle unreliable values of the risk especially in very

noisy environments. For instance, the data ˜s(b)
j,m are considered as

too noisy if the power level of the “clean” data falls below a given

thresholdλ (b)
j,m and, then, they are discarded from the estimation of

the risk as described in [2]. In this case, the SURE componentwise
estimator is applied.

7. EXPERIMENTAL RESULTS

In our experiments, we have used SPOT multispectral images of
size 512× 512. These images have been degraded by consider-
ing several blurring kernels and, adding realizations of a zero-mean
Gaussian noise. Our preliminary simulations were concerned with
spectrally and spatially white noise. The additive noise variance
γ(b,b) is chosen so that the averaged blurred signal to noise ratio
BSNRreaches a target value:

BSNR
△
=

1
B

B

∑
b=1

BSNR(b) (35)

with BSNR(b) △=10log10

(
‖ h(b) ∗s(b) −E[h(b) ∗s(b)] ‖2

Lγ(b,b)

)
. (36)

The involved filters of theM-band Meyer’s wavelet are imple-
mented according to the procedure described in [17]. Monte-Carlo
simulations have been conducted, the performance of a deconvolu-
tion method being assessed by the averaged Improvement in Signal
to Noise RatioISNR:

ISNR
△
=

1
B

B

∑
b=1

10log10

(
E[(s(b) − r(b))2]

E[(s(b) − ŝ(b))2]

)
. (37)

For a fair comparison, we have also made comparisons with up-
to-date wavelet-based restoration methods. All of them aresep-
arately applied to each spectral component, employing their own
setup. The Waved, the Stein and the MAP estimators are derived
from anon redundanttwo-band Meyer’s WT (M = 2). The Forward
method uses Daubechies WT. Thanks to the “cycle-spinning” strat-
egy, the resulting representation is spatially invariant but it is also
redundant. The Forward estimator has been applied with a fixed
value of the regularization parameter. The number of resolution
levels is set toJ = 2. We have also tested the Wiener filter (with the
version provided in [12]). Table 1 provides theISNRachieved by
the different considered techniques for several values of theBSNR.
As expected, by taking into account the intercomponent similari-
ties, our two methods almost always outperform the benchmarked
ones. By avoiding a prior model mismatch, ˆs

(Stein)
j,m exhibits better

performance than ˆs
(MAP)
j,m . It is worthwile noticing that if we use a

redundant translation invariant version of the WT (like theforward
method), higher values of theISNRshould be achieved by our es-
timators. Table 2 gives the resultingISNRfor different sizes of the
blurring kernel when theBSNRis equal to 25 dB. It indicates that
the behavior of the considered techniques remains the same:ŝ(Stein)

produces the best results whatever the support of the blurring mask
is. For instance, it yields a gain of 0.63 dB in terms ofISNRover
the Forward method for the “Tunis” image.
Figure 1 displays the degraded component XS3 of the “Kairouan”
image that depicts a rural area (b = 3). Figure 2 shows the restored
component using ˆs(Stein). The overall visual quality is good even
around the edges of the objects in the scene. Fine details such as the
roads are clearly visible.

8. CONCLUSIONS

We have proposed a restoration method that exploits crosschannel
similarities in multicomponent images. This approach was shown
to be very competitive w.r.t. existing wavelet-based methods. Sev-
eral directions can be investigated to extend this work. In particular,
it would be interesting to take into account interscale dependencies
between spectral components in addition to intrascale ones. An im-
proved structure of the waved estimator is also under investigation.
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[7] B. R. Hunt and O. Kübler, “Karhunen-Loeve multispectral im-
age restoration, part I: theory,”IEEE Trans. Acoustics, Speech,
and Signal Processing, vol. 32, pp. 592-600, June 1984.

[8] N. P. Galatsanos, and R. T Chin, “Restoration of color images
by multichannel Kalman filtering,”IEEE Trans. on Image Pro-
cessing, vol. 39, pp. 2237-2252, 1991.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



[9] N. P. Galatsanos, and R. T. Chin, “Digital restoration ofMC im-
ages,”IEEE Trans Acoustics , Speech, and Signal Processing,
vol. 37, pp. 415-421, Mar. 1989.

[10] F. Abramovich, and B. W. Silverman, “Wavelet decomposition
approaches to statistical inverse problems,”Biometrika, vol. 85,
pp. 115-129, 1998.

[11] J. Kalifa, S. Mallat, and B. Rougé, “Deconvolution by thresh-
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Table 1: ResultingISNR(in dB) of the tested restoration methods.
The size of the blurring kernel is respectively 5×5 for the image
“Tunis” and, 9× 9 for the image “Kairouan”.

(a) Tunis
BSNR Waved Wiener Forward ŝ

(MAP)
j,m ŝ

(Stein)
j,m

15 5.2141 3.6922 8.4673 8.6445 9.0877
25 8.9609 12.3754 14.6004 14.6835 15.1998
35 16.5929 22.2259 23.1091 22.8219 23.2760
45 7.3894 32.2219 32.5455 32.0887 32.4703

(b) Kairouan
BSNR Waved Wiener Forward ŝ

(MAP)
j,m ŝ

(Stein)
j,m

15 4.6771 4.7174 8.2187 8.5040 9.0409
25 12.7939 17.7246 18.8378 18.4001 19.2918
35 21.5830 27.6886 27.8075 27.1757 27.9595
45 33.3587 37.6893 37.7210 37.4699 37.7191

Table 2: ResultingISNR(in dB) of the tested restoration methods
according to the size of the square blurring kernel. TheBSNRis
fixed to 25 dB.

(a) Tunis
Size Waved Wiener Forward ŝ

(MAP)
j,m ŝ

(Stein)
j,m

3 6.6079 9.8321 12.1874 12.2750 12.8075
5 8.9609 12.3754 14.6004 14.6835 15.1998
7 10.1592 13.5779 15.7497 15.8263 16.3282
9 10.8524 14.3054 16.4363 16.5187 17.0117

(b) Kairouan
Size Waved Wiener Forward ŝ

(MAP)
j,m ŝ

(Stein)
j,m

3 8.6020 13.2715 14.6208 14.1821 15.1188
5 6.7308 11.3184 12.9947 12.5551 13.1552
5 10.8743 15.7067 16.9240 16.5194 17.4180
7 12.0780 16.9460 18.1020 17.6800 18.5703
9 12.7939 17.7246 18.8378 18.4001 19.2918
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Figure 1: “Kairouan”: third channel XS3 degraded by a blurring
kernel of size 9×9, BSNR(3) = 25 dB.
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Figure 2: “Kairouan”: third channel XS3 restored by ˆs(Stein),
ISNR= 19.2918 dB.
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