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ABSTRACT

An important tool in high-dimensional, explorative data mining is
given by clustering methods. They aim at identifying samples or
regions of similar characteristics, and often code them by a single
codebook vector or centroid. One of the most commonly used par-
titional clustering techniques is the k-means algorithm, which in its
batch form partitions the data set into k disjoint clusters by simply
iterating between cluster assignments and cluster updates. The lat-
ter step implies calculating a new centroid within each cluster. We
generalize the concept of k-means by applying it not to the stan-
dard Euclidean space but to the manifold of subvectorspaces of a
fixed dimension, also known as the Grassmann manifold. Impor-
tant examples include projective space i.e. the manifold of lines and
the space of all hyperplanes. Detecting clusters in multiple samples
drawn from a Grassmannian is a problem arising in various appli-
cations. In this manuscript, we provide corresponding metrics for
a Grassmann k-means algorithm, and solve the centroid calculation
problem explicitly in closed form. An application to nonnegative
matrix factorization illustrates the feasibility of the proposed algo-
rithm.

1. INTRODUCTION

Clustering denotes the detection of common features within a data
set. It has many applications in fields as varied as signal pro-
cessing, telecommunications, biomedical data analysis and finan-
cial markets. Clustering is typically performed in the data space
itself [8]. Some extensions, namely subspace clustering allow for
additional indeterminacies in some directions by fitting subspaces
into the sample sets [4]. Our contribution here is different: We do
not directly consider the data space as subset of Rn. Instead we
consider a set of subspaces, which for example could have been
extracted from the experiment itself. Our goal is to find clusters
within this set of subspaces. The space of all subspaces is known as
the Grassmann manifold, so we call our clustering algorithm Grass-
mann clustering. Figure 1 illustrates the difference between stan-
dard k-means and Grassmann clustering — clearly k-means fails to
detect the structure of the time series, whereas the relaxed condi-
tions of Grassmann clustering allow for a more precise fit of the
data set.

2. PARTITIONAL CLUSTERING

In the literature Many algorithms for clustering are discussed. In
the following, we will study clustering within the framework of k-
means [2].

In general, its goal can be described as follows: Given a set A of
points in some metric space (M,d), find a partition of A into disjoint
non-empty subsets Bi,

⋃
i Bi = A, together with centroids ci ∈M so

as to minimize the sum of the squares of the distances of each point
of A to the centroid ci of the cluster Bi containing it. In other words,
minimize

E(B1,c1, . . . ,Bk,ck) :=
k

∑
i=1

∑
a∈Bi

d(a,ci)2. (1)

(a) Toy data sequence (dynamic
system)

(b) Standard k-means

(c) Data hyperplanes (d) Cluster centers

Figure 1: Illustration of the differences of standard k-means cluster-
ing and Grassmann clustering. The hyperplanes for the Grassmann
clustering are the spanned by each of 3 consecutive samples of the
sequence.

If the set A contains only finitely many elements a1, . . . ,aN ,
then this can be easily re-formulated as constrained non-linear opti-
mization problem: minimize

E(W,C) :=
k

∑
i=1

T

∑
t=1

witd(ai,ci)2. (2)

subject to

wit ∈ {0,1},
k

∑
i=1

wit = 1 for 1≤ i≤ k,1≤ t ≤ T. (3)

Here C := {c1, . . . ,ck} are the centroid locations, and W := (wit)
is the partition matrix corresponding to the partition Bi of A.

A common approach to minimizing (2) subject to (3) is partial
optimization for W and C, i.e. alternating minimization of either
W and C while keeping the other one fixed. The batch k-means
algorithm employs precisely this strategy: After an initial, random
choice of centroids c1, . . . ,ck, it iterates between the following two
steps until convergence measured by a suitable stopping criterion:
• cluster assignment: at determine an index i(t) such that

i(t) = argmini d(at ,ci) (4)
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• cluster update: within each cluster Bi := {at |i(t) = i} determine
the centroid ci by minimizing

ci := argminc ∑
a∈Bi

d(a,c)2 (5)

The cluster assignment step corresponds to minimizing (2) for
fixed C, which means choosing the partition W such that each ele-
ment of A is assigned to the i-th cluster if ci is the closest centroid.
In the cluster update step, (2) is minimized for fixed partition W,
implying that ci is constructed as centroid within the i-th cluster;
this indeed corresponds to minimizing E(W,C) for fixed W be-
cause in this case the cost function is a sum of functions depending
different parameters, so we can minimize them separately leading
to the centroid equation (5). This general update rule converges to
a local minimum under rather weak conditions [3, 8].

An important special case is given by M := Rn and the Eu-
clidean distance d(x,y) := ‖x−y‖. The centroids from equation
(5) can then be calculated in closed form, and each centroid is sim-
ply given by the cluster mean ci := (1/|Bi|)∑a∈Bi

a; this follows
directly from

∑
a∈Bi

‖a−ci‖2 = ∑
a∈Bi

n

∑
j=1

(a j− ci j)2 =
n

∑
j=1

∑
a∈Bi

(a2
j −2a jci j + c2

i j),

which can be minimized separately for each coordinate j and is
minimal with respect to ci j if the derivative of the quadratic function
is zero, so if |Bi|ci j = ∑a∈Bi

a j.
In the following, we are interested in more complex metric

spaces. Typically, k-means can be implemented efficiently, if the
cluster centroids can be calculated quickly. In the example of Rn,
we saw that it was crucial to use minimize the square distances and
to use the Euclidean distance. Hence we will study metrics which
also allow a closed-form centroid solution.

The data space of interest will consist of subspaces of Rn, and
the goal is to find subspace clusters. We will only be dealing with
sub-vector-spaces; extensions to the affine case are discussed in sec-
tion 4.3.

A somewhat related method is the so-called k-plane clustering
algorithm [4], which does not cluster subspaces but solves the prob-
lem of fitting hyperplanes in Rn to a given point set A ⊂ Rn. A
hyperplane H ⊂ Rn can be described by H = {x|c>x = 0} = c⊥

for some normal vector c, typically chosen such that ‖c‖ = 1.
Bradley and Mangasarian [4] essentially choose the pseudo-metric
d(a,b) := |a>b| on the sphere Sn−1 := {x ∈ R|‖x‖ = 1} — the
data can be assumed to lie on the sphere after normalization, which
does not change cluster containment. They show that the centroid
equation (5) is solved by any eigenvector of the cluster correlation
BiBi

> corresponding to the minimal eigenvalue, if by abuse of no-
tation Bi is to indicate the (n×|Bi|)-matrix containing the elements
of the set Bi in its columns. Alternative approaches to this subspace
clustering problem are reviewed in [7].

3. PROJECTIVE CLUSTERING

A first step towards general subspace clustering is to consider one-
dimensional subspace i.e. lines. Let RPn denote the space of one-
dimensional real vector subspaces of Rn+1. It is equivalent to Sn af-
ter identifying antipodal points, so it has the quotient representation
RPn = Sn/{−1,1}. We will represent lines by their equivalence
class [x] := {λx|λ ∈ Rn} for x 6= 0. A metric can be defined by

d0([x], [y]) :=

√
1−
(

x>y

‖x‖‖y‖

)2

(6)

Clearly d is symmetric, and positive definite according to the
Cauchy-Schwartz’s inequality.

Conveniently, the cluster centroid of cluster Bi is given by any
eigenvector of the cluster correlation BiBi

> corresponding to the
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Figure 2: Illustration of projective k-means clustering in three di-
mensions. 105 samples from a 4-dimensional strongly supergaus-
sian distribution are projected onto three dimensions and serve as
the generators of the lines. These were nicely clustered into k = 4
centroids, located at the density axes.

largest eigenvalue. In section 4.1, we will show that projective clus-
tering is a special case of a more general clustering and hence the
derivation of the corresponding centroid clustering algorithm will
be postponed until later.

Figure 2 shows an example application of the projective k-
means algorithm. Note that the projective k-means can be directly
applied to the dual problem of clustering hyperplanes by using the
description via their normal ‘lines’.

4. GRASSMANN CLUSTERING

More interestingly, we would like to perform clustering in the
Grassmann manifold Gn,p of p-dimensional vector subspaces of
Rn for 0 ≤ p ≤ n. If Vn,p denotes the Stiefel manifold consisting
of orthonormal matrices for n ≥ p, then Gn,p has the natural quo-
tient representation Gn,p = Vn,p/Op, where Op := Vp,p denotes
the orthogonal group. This representation simply means that any p-
dimensional subspace of Rn is given by p orthonormal vectors, i.e.
by a basis V ∈Vn,p, which is unique except for right multiplication
by an orthogonal matrix. We will also write [V] for the subspace.

The geometric properties of optimization algorithms on Gn,p
are nicely discussed by Edelman et al. [6]. They also summarize
various metrics on the Grassmann manifold, which can all be natu-
rally derived from the geodesic metric (arc length) induced by the
natural Riemannian structure of Gn,p. Some equivalence relations
between the metrics are known, but for computational purposes, we
choose the very easy to calculate so-called projection F-norm given
by

d([V], [W]) := 2−1/2‖VV>−WW>‖F (7)

where ‖V‖F :=
√

tr(VV>) denotes the Frobenius-norm of a ma-
trix. Note that the projection F-norm is indeed well-defined, as (7)
does not depend on the choice of class representatives.

In order to perform k-means clustering on (Gn,p,d), we have
to solve the centroid problem (5). One of our main results is that
the centroid [Ci] of subspaces of some cluster Bi is spanned by p
eigenvectors corresponding to the smallest eigenvalues of the gener-
alized cluster covariance (1/|Bi|)∑[V]∈Bi

VV>. This generalizes
the projective and the hyperplane k-means algorithm from above.

4.1 Calculating the optimal centroids
For the cluster update step of the batch k-means algorithm we need
to find [C] such that

f (C) :=
l

∑
i=1

d([Vi], [C])2
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(1, 0, 0, 0)

(0, 1, 0, 0)

(0, .5, .5, 0)

(0, 0, 1, 0) (.5, 0, .5, 0)

(.3, .3, 0, .3)

Figure 3: Illustration of the convex subsets on which the equation
∑

n
i=1 diixi for given D is optimized. Here n = 4 and the surfaces for

p = 1, . . . ,3 are depicted (normalized onto the standard simplex).

for l subspaces [Vi] represented by Vi ∈ V(n, p) is minimal, sub-
ject to g(C) := C>C = Ip (pseudo orthogonality). We may also
assume that the Vi are pseudo-orthonormal Vi

>Vi = Ip.
It is easy to see that:

f (C) = 2−1/2 tr(∑
i
ViVi

>)+ tr(lCC>−2CC>
∑

i
ViVi

>)

= 2−1/2 trD+ tr((lIn−2V)CC>)

where

V := ∑
i
ViVi

> and EDE> = V

denote the eigenvalue decomposition of V with E orthonormal and
D diagonal. This means that

f (C) = 2−1/2
n

∑
i=1

dii + l p−2tr(DE>CC>E)

= 2−1/2
n

∑
i=1

dii + l p−2
n

∑
i=1

diixii

where di j are the matrix elements of D, and xi j of X = E>CC>E.

Here trX = tr(CC>) = p for pseudo orthogonal C (p eigen-
vectors C with eigenvalue 1) and all 0 ≤ xii ≤ 1 (again pseudo or-
thogonality). Hence this is a linear optimization problem on a con-
vex set (see also figure 3) and therefore any optimum is located at
the corners of the convex set, which in our case are {x ∈ {0,1}n |
∑

n
i=1 xi = p}. If we assume that the dii are ordered in descending

order, then a minimum of f is given by

CC> = EXE> = E

(
Ip 0
0 0

)
E>,

which corresponds to

C =
(
Ip
0

)
.

}

}

e2

e1

d0(e1, x) = cos(x1)
2

d0(e2, x) = cos(x2)
2

x = (x1, x2)

Figure 4: Let Vi be two samples which are orthogonal (w.l.o.g.
we can assume Vi = ei represented by the unit vectors). Hence
V = ∑ViVi

> has degenerate eigenstructure. Then the quantisa-
tion error is given by d(e1,x)2 + d(e2,x)2 which is here 1

2 (2 + 2−
2trIXX>) = 2− x2

1 − x2
2 = 1 for X represented by x = (x1,x2).

Hence any X is a centroid in the sense of the batch k-means algo-
rithm.

In this calculation we can also see the indeterminacies of the
optimization:
1. If two or more eigenvalues of V are equal, any point on the

corresponding edge of the convex set is optimal and hence the
centroid can vary along the subspace generated by the corre-
sponding eigenvectors E

2. If some eigenvalues of V are zero, a similar indeterminacy oc-
curs.

An example in RP2 is demonstrated in figure 4.

4.2 Relationship to projective clustering
The distance d0 on RPn from above (equation (6)) was defined as

d0(V,W) =

√
1−
(

V>W
‖V‖‖W‖

)2

,

if according to our previous notation [V], [W] ∈Gn,1 = RPn. Note
that if the two vectors represent time series, then this is the same as
the correlation between the two.

It is now easy to see that this distance coincides with the def-
inition of d on the general Grassmannian from above. Let V,W ∈
V(n,1) be two vectors. We may assume that V>V = W>W = 1.
Then

2d(V,W)2 = tr(VV>+WW>−VW>−WV>)

= tr(VV>)+ tr(WW>)−2tr(V(V>W)W>)

All matrices have rank 1 and hence the trace is the sole nonzero
eigenvalue. Since VV>V = V it is 1 for the first matrix, sim-
ilar for the second and W>V for the third, because VW>V =
(W>V)V. Hence

2d(V,W)2 = 2−2(W>V)2

= 2d0(V,W)2.
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4.3 Dealing with affine spaces

So far we only have dealt with the special case of clustering sub-
spaces, i.e. linear subsets which contain the origin. But in practice
the problem of clustering affine subspaces arises, see for example 6.
This can be dealt with quite easily.

Let F be a p dimensional affine linear subset of Rn. Then F can
be characterized by p+1 points v0, . . . ,vp such that v1−v0, . . . ,vn−
v0 are linearly independent. Consider the following embedding

Rn → Rn+1 : (x1, . . . ,xn) 7→ (x1, . . . ,xn,1).

We may therefore identify the p dimensional affine subspaces with
the p+1 linear subspaces in Rn+1 by embedding the generators and
taking the linear closure. In fact it is easy to see that we obtain a
1-to-1 mapping between the p dimensional affine subspaces of Rn

and the p+1 dimensional linear subspaces in Rn−1, which intersect
the orthogonal complement of (0, . . . ,0,1) only at the origin.

Hence we can reduce the affine case to calculations for linear
subsets only. Note that since only eigenvectors of sums of projec-
tions onto the subsets Vi can become centroids in the batch version
of the k-means algorithm, any centroid is also in the image of the
above embedding and can be identified uniquely with a affine sub-
space of the original problem.

4.4 Convergence and computational complexity

Since the algorithm uses the well understood framework of (batch)
k-means calculation, it is very easy to see that it also inherits the
convergence properties [3]. Hence convergence after finite steps
is guaranteed. The only difference lies in the centroid calculation.
Therefore in each step we have to calculate k eigenvalue decompo-
sitions of a symmetric matrix — is also guaranteed to succeed.

For complexity considerations we note that the eigenvalue de-
composition is in the worst case an O(n3) operation and a worst
case upper bound for iterations of the k-means algorithm is of O(lk),
where l is the number of samples [5]. Hence the complexity is usu-
ally by a factor n2 higher than with the standard k-means algorithm.

In practice however the algorithm converges after only a few
iterations and we can employ restart techniques to avoid local min-
ima.

5. EXPERIMENTAL RESULTS

We finish by illustrating the algorithm in a few examples.

5.1 Toy example

As a toy example, let us first consider 104 samples of G4,2, namely
uniformly randomly chosen from the 6 possible 2-dimensional co-
ordinate planes. In order to avoid any bias within the algorithm,
the non-zero coefficients from the plane-representing matrices have
been chosen uniformly from O2. The samples have been deterio-
rated by Gaussian noise with a signal-to-noise ratio of 10dB. Appli-
cation of the Grassmann k-means algorithm with k = 6 yields con-
vergence after only 6 epochs with the resulting 6 clusters with cen-
troids [Vi]. The distance measure µ(V) := (|vi1 +vi2|+ |vi1−vi2|)i
should be large only in two coordinates if [V] is close to the corre-
sponding 2-dimensional coordinate plane. And indeed, the found
centroids have distance measures µ(Vi) =0.02

0
1.9
1.9

 ,

 1.7
0.01
0.01
1.7

 ,

 1.7
0.01
1.7
0.02

 ,

0.01
1.5
1.5
0

 ,

 2.0
2.0
0

0.01

 ,

0.01
2.0
0.01
2.0

 .

Hence, the algorithm correctly chose all 6 coordinate planes as clus-
ter centroids.

(a) Samples (b) QHull

(c) Grassmann clustering

Samples

QHull contour

Grasmann clustering

Mixing matrix

(d) Result

Figure 5: An example of using hyperplane clustering (p = n− 1)
to identify the contour of a samples figure. QHull was used to find
the outer edges then those are clustered into 4 clusters. The broken
lines show the boundaries use to generate the 300 samples.
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5.2 Polytope identification
As an example application of the Grassmann clustering algorithm,
we want to solve the following approximation problem from com-
putational geometry: given a set of points, identify the smallest con-
vex polytope with a fixed number of faces k, containing the points.
In two dimensions, this implies the task of finding the k edges of
a polytope where only samples in the inside are known. We use
QHull algorithm [1] to construct the convex hull thus identifying
the possible edges of the polytope. Then, we apply affine Grass-
mann k-means clustering to these edges in order to identify the k
bounding edges. Figure 5 shows an example. Generalization to
arbitrary dimensions are straight-forward.

5.3 Nonnegative Matrix Factorization
(Overcomplete) Nonnegative Matrix Factorization (NMF) deals
with the problem of finding a nonnegative decomposition X =
AS+N of a nonnegative matrix X, where N denotes unknown
Gaussian noise. S is often pictured as a source data set containing
samples along its columns. If we assume that S spans the whole
first quadrant, then X is a conic hull with cone lines given by the
columns of A. After projection to the standard simplex, the conic
hull reduces to the convex hull, and the projected, known mixture
data set X lies within a convex polytope of the order given by the
number of rows of S. Hence we face the problem of identifying
edges of a sampled polytope, and, even in the overcomplete case, we
may tackle this problem by the Grassmann clustering-based identi-
fication algorithm from the previous section.

As an example, see figure 6, we choose a random mixing matrix

A =

( 0.76 0.39 0.14
0.033 0.06 0.43
0.20 0.56 0.43

)

and sources S given by i.i.d. samples from a squared gaussian. 105

samples were drawn, and sample subsets containing 10 to 105 points
where used for the comparison. We refer to the figure caption for
further details.

6. CONCLUSION

We have studied k-means-style clustering problems on the non-
Euclidean Grassmann manifold. In an adequate metric, we were
able to reduce the arising centroid calculation problem to the calcu-
lation of eigenvectors of the cluster covariance, for which we gave a
proof based on convex optimization. The algorithm was illustrated
by applications to polytope fitting and to performing overcomplete
nonnegative factorizations similar to NMF. In future work, besides
extending the framework to other clustering algorithms and matrix
manifolds together with proving convergence of the resulting algo-
rithms, we plan on applying the algorithm for the stability analysis
of multidimensional independent component analysis.
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