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ABSTRACT
The goal of our current research is to be able to separate a
few audio sources from the signals of two microphones, us-
ing a separate recording of each player clapping their hands.
The separation is performed in the frequency domain, where
speech and music signals are mostly sparse. Being under-
determined, the separation is performed in two steps. In the
first step, the clapping is used to estimate the transfer func-
tion from each source to each microphone. In the second
step, the sources are reconstructed using Second Order Cone
Programming (SOCP).

Our experiments show moderatly good results for syn-
thetic mixtures (11.5dB average SNR) and poor results for
the real case (2.2dB). This paper points out some of the is-
sues that make this task a difficult one, and shows some ex-
perimental analysis of why this is so.

1. THE CLAP–AND–PLAY SEPARATION
APPROACH

A binaural live recording ofN > 2 audio sources is an in-
stance of an underdetermined convolutive mixture,

x(t) = h1(t)∗s1(t)+ · · ·+hN(t)∗sN(t) = h(t)∗ s(t), (1)

with x(t) = [xl (t) xr(t)]′ the left and right channels of the
mixture,sj(t) source signalj, h j(t) = [hl j (t) hr j (t)]′ the im-
pulse response of the room from sourcej to each micro-
phone, and∗ the convolution operator. That is, the full ma-
trix of impulse responsesh(t) matricially convolved with the
vectors(t) of source signals.

In the short time frequency domain the above equation
can be approximated by

X(k,τ) ≈ H1(k)S1(k,τ)+ · · ·+HN(k)SN(k,τ) (2)
= H(k)S(k,τ), (3)

with k the frequency bin andτ the frame number. Then,
S(k,τ) is the column vector of sources andH(k) is the whole
mixing matrix. The above system is a linear mixture for each
frequency bin. Hereafter, we omit the bin and frame indices,
except when required.

The Blind Source Separation (BSS) problem [1] consists
of finding an estimatêH of H and an estimatêS of S using
only the information inX. BSS in the frequency domain is
intrinsically subject to the scaling and permutation ambigui-
ties. When

ĤŜ = HS = X (4)
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holds, the scaling ambiguity is avoided by observing the es-
timated sources at the microphones [2]. That is, for sourcej,
Ĥ j Ŝj ≈ H jSj if the estimateŝH andŜ are good. We there-
fore defineY j = H jSj , the stereophonic version of sourcej
as recorded at the microphones andŶ j = Ĥ j Ŝj our estimate
of Y j . Our goal, then, is to makêY j as close as possible to
Y j .

For the underdetermined case (more sources than micro-
phones), the separation procedure can be formulated in two
steps: the inference of the mixing matrix, and the reconstruc-
tion of the sources.

In the first step, in order to estimatêH we ask each player
to clap their hands in turn, one at a time, thus avoiding the
permutation ambiguity. For each sourcej, the resulting sig-
nal Yclap

j = H jS
clap
j is a stereophonic clapping sound. Due

to the nature of the clapping sound,Y
clap
j is rich in frequency

content and it can be used to estimate the impulse response
by dividing the right and left channels, as follows:

Z =
Yclap

r j

Yclap
l j

=
Hr j S

clap
j

Hl j S
clap
j

=
Hr j

Hl j
. (5)

Then, we definêHj as

Mag(Ĥl j ) = 1√
1+α2

Phase(Ĥl j ) = δ/2 (6)

Mag(Ĥr j ) = α√
1+α2

Phase(Ĥr j ) = −δ/2, (7)

whith α = Mag(Z), the magnitude, andδ = Phase(Z), the
phase. In this way, without loss of generality,Ĥj is defined
to have unit length, and balanced, zero-average phase. In the
following the above operation is callednormalization, and
we write

Ĥ j = N (Yclap
j ). (8)

In the second step, given̂H, the reconstruction of the
sources needs some additional assumption because the sys-
tem is underdetermined. The usual assumption is the sparsity
of the sources. In our case, we assume that the magnitudes
of the sources are laplacian and their phases uniform, and a
maximum likelihood formulation leads to the following op-
timization problem,

min̂S ∑ j Mag(Ŝ j)

subject to X = ĤŜ. (9)
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Figure 1: Room size and location of the sources (circles) and
microphones (crosses), in meters. Sources and microphones
are 0.9m and 1.03m high, respectively. The room is 3m high

This problem is an instance of Second Order Cone Program-
ming (SOCP) [3]. Details of the maximum likelihood for-
mulation can be found in [4, 5], and the particularization of
SOCP to magnitude minimization is described in [6].

Our approach stems from [7, 4], and in some respects it
is similar to the work in [8] and references within.

2. SEPARATION EXPERIMENTS: THE
SYNTHETIC VS THE REAL CASE

2.1 Experiment I: four speakers in a simulated office
room

We first ran a synthetic experiment, encouraged by the re-
sults in [5]. We used the impulse response simulator in [9] to
synthetizeh(t). The setting of the synthetic room is shown
in Fig. 1 (the actual dimensions of our office). We used a re-
flection coefficientr = 0.99 that yielded a reververation time
T60 ≈ 90ms. The impulsional response was then truncated to
lh = 93ms(1024 samples atf s= 11.025Hz). The resulting
signal is shown in Figure 2.

The unmixed sources were 4 speech utterances (1 male,
3 female) recorded at close distance with an unexpensive dy-
namic microphone and a standard sound card, downsampled
to f s= 11025Hz. Time domain convolution was used to gen-
erate the mixturex(t), and anlw = lh point short time FFT
transform was used with a Hanning window to produceX,
with a 70% time overlap between adjacent frames.

The mixing matrix was then normalized̂H = N (H) to
simulate the loss of scale information and the sources were
reconstructed by SOCP. Back in the time domain, results
were compared in sensor space using the following signal
to error ratio (SER),

SER(ŷ,y) = minβ ,t010log
||β ŷ(t − t0)||2

||β ŷ(t − t0)−y(t)||2 . (10)

Results are shown in Table 1. The subjective intelligibil-
ity of the separated signals was good, since the background
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Figure 2: Synthetic impulse response from sourcej = 4 to
microphonei = r. a)hi j (t) (t in sec.) b) Reverberation curve.
T60 = 89ms. c) 20∗ log(Mag(Hi j ( f )) ( f in Hz)

noise was mainly a distorted, unintelligible mix of the other
sources.

Signalŷr4 yielded the worst results. Througout the anal-
ysis experiments of section 3, we will use this signal as the
Worst Case representative of the Synthetic setting (WCS).

2.2 Experiments II and III: four speakers live in the ac-
tual office room

We then proceeded to the real case. Experiment II consisted
of four people (3 male, 1 female) speaking simultaneously
in a setting geometrically equal to Fig. 1 (that is,in our of-
fice). Speakers and microphones were actually set at the lo-
cations signaled in the figure, and a couple of condenser my-
crophones were used with a good quality sound card. Again,
signals were downsampled tof s = 11025Hz. The analysis
and resynthesis parameters were the same as in Experiment
I.

The clapping sounds were produced with a couple of
plastic school rules, because clapping hands saturated the
microphones, and̂H was estimated aŝH j = N (Yclap

j )
(Eqn. 8). T60 measured directly on the clapping sounds was
again around 90ms. The resulting signal is shown in Fig-
ure 3. When we ran the SOCP software, the separation was
very poor.

Experiment III was the same as Experiment II, but each
speaker was recorded separately, thus providing they j(t)’s
for a numerical comparison of the results, withx(t) =
∑ j y j(t). According to the superposition principle, this artifi-
cial mixture should be equivalent to the simultaneous record-
ing. Results are shown in Table 1. For signal ˆyl2 the perfor-
mance seems quite good, but still the intelligibility is quite
bad. We call this signal the Best Case representative of the
Live setting (BCL).

In the next section we report the experiments performed
to analyze the reason for these poor results.
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Figure 3: Clapping sound from sourcej = 2 to microphone
i = 1. a)yclap

i j (t) (t in sec.) b) Reververation curve.T60 =

89ms c) 20∗ log(Mag(Yclap
i j ( f )) ( f in Hz)

3. EXPERIMENTAL ANALYSIS

3.1 Analysis and resynthesis

The analysis and resynthesis procedure was checked by
transformingx(t) into X(k,τ) and back to the time domain,
x̃(t). The SER was 706.5dB in the context of Experiment
I and 707.1dB in the context of Experiment III. Thus, the
analysis and resynthesis procedure worked fine.

The problem with the short-time fourier transform of
convolved sources is that adjacent frames overlap, thus in-
troducing time aliasing. In order to measure this effect, we
took the transforms of the source and the impulse response
separately and multiplied them in the frequency domain,
X̆ = HS, using a zero padded window of lengthl̆w = lw + lh
(cyclic convolution). Back in the time domain, when com-
paringx̆(t) with x(t) the average SER was only 13.4dB. The
impact of the time-domain aliasing was large indeed, leaving
little gain margin for the separation procedure. This measure
could not be repeated for Experiment III, since the original
sources are not available.

3.2 Experiments IV and V

In order to see the best possible performance of the recon-
stuction, we then fed the SOCP optimizer with thelocal mix-
ing matrix computed at each frame. That is, in Experiment
IV we usedĤ j(k,τ) = N (Y(k,τ)) instead of the normal-
ized synthetic mixing matrix, and in Experiment V we used
Ĥ j(k,τ) instead of the normalized clapping sound. Results
are shown in Table 1. (11.8 and 5.2dB, respectively).

No improvement was observed in Experiment IV
(11.8dB) because the synthetic mixture is static and the local
mixing matrices shouldn’t differ much from̂H. But in Ex-
periment V the improvement was significant (2.2 to 5.2dB).
Notice, in particular, that the BCL signal reached 14.3dB but,
of course, this result is artificial because in a real situation the
Y(k,τ) are not available.
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Figure 4: Variability of the local mixing anglesγ j(k,τ) (in
degrees), forj corresponding to a) the WCS signal in Ex-
periment IV and b) the BCL signal in Experiment V, for the
central frequency range (in Hz). Circled lines correspond to
Ĥ, scattered dots correspond to frames for allk, and crossed
lines show the median of the latter

3.3 Variability of the local mixing matrices

In order to study the variability of the local mixing matrices,
for sourcej we define

γ j = tan−1(
Hr j

Hl j
). (11)

Figure 4 is a plot ofγ j(k,τ) when j corresponds to the WCS
and BCL signals, respectively.

As expected, the contrast between the two is quite clear,
but the variability of the synthetic case was larger than ex-
pected, probably due to the time-domain convolution and
windowing. For Experiment IV, the curve of the median
follows closely the curve of the synthetic mixing matrix,
whereas for Experiment V the mixing matrix produced by
the clapping sound is much more erratic.

Quantitatively, withµ(k) the mean ofγ j(k,τ) over all
frames τ and σ(k) the corresponding deviation, Table 1
shows the averageµ andσ over all frequency binsk for the
WCS and BCL signals. The mean is related to the geometry
of the mixing, but there is an obvious difference in deviation
from one case to the other.

4. DISCUSSION

In this paper we have presented our current approach towards
the separation of underdetermined live recorded sources. The
separation procedure has two steps: the estimate of the mix-
ing matrix and the reconstuction of the sources. On the one
side, this paper analyses the feasibility of estimating themix-
ing matrix using a separate clapping sound, from the location
of each source. On the other side, the paper evaluates the per-
formance of SOCP for the reconstruction of the sources for
different mixing matrix estimates.
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Table 1: Min, max and average SER(dB) for the different
experiments (see text)

Synthetic Live
min max avg min max avg

Exp. I Exp. III
SER(ŷ,y) 5.7 20.8 11.5 0.2 8.2 2.2
SER(x̃,x) 706.5 707.1
SER(x̆,x) 13.4

Exp. IV Exp. V
SER(ŷ,y) 8.3 17.4 11.8 0.8 14.3 5.2

µ(k) 53.5 38.6
σ(k) 9.7 18.8

The experiments presented here show a comparison be-
tween a synthetic context based on a simulated impulse re-
sponse, and a live context based on a clapping sound. Un-
fortunately, although the synthetic results were good, thelive
results were really poor.

The source separation of live recordings is difficult for
the following reasons:
1. Sources are not punctual, and the location of the clap-

ping is not exact, which leads to estimates of the wrong
impulse response.

2. Sources are not static (the speakers move). The mixing
matrix is different from frame to frame, a fact that was
actually demonstrated in section 3.3.

3. There is background noise, affecting both the clapping
and the actual recordings. This should explain some of
the variability of the live local mixing matrices.

4. For short time FFT, the convolution theorem is just an ap-
proximation,X ≈ HS, because of time aliasing between
adjacent frames. This was shown in section 3.1.

5. For underdetermined systems, even though Eqn. 4 holds,
SOCP doesn’t guarantee thatĤ j Ŝj ≈ H jSj , not even
whenĤ j ∝ H j , because the decomposition is not unique.
That means that even with a good estimate of the mixing
matrix, the reconstruction may not be so good. This is
ilustrated by the results in the synthetic context.

6. Analysis and resynthesis must be done with care both to
avoid clicking at the frame junctions and to reduce musi-
cal noise. As shown in section 3.1 this was successfully
done.

7. The finite precision of the computations may introduce
additional variability.
Experiments VI and V, as compared to I and III, make

use of the source signals, which would be unavailable in the
real situation, but they show how good the separation might
be using the local mixing matrices. The conclusion, though,
is that the wrong estimate of the clap-based mixing matrix is
not the only reason for the lack of success.

Finally, we hope that the issues presented in this paper
will provide a fruitfull discussion at the special session on
underdetermined sparse audio source separation. Further re-
sults will be presented at the conference.
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