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ABSTRACT 
This paper explores properties of the spiking neuron model 
of auditory nerve fiber. As it results from the described rea-
soning, the model response in a form of the spike sequence 
is in fact a first-order Markov chain of certain non-
overlapping sub-sequences, which, being taken separately, 
encode the incoming signal on the corresponding time inter-
vals. This observation comes as a direct consequence of the 
finite precision of the spike registration process at the higher 
levels of neural signal processing. The result has important 
implications to the modelling of auditory apparatus and 
signal processing algorithmic interpretation of hearing 
physiology. 

1. INTRODUCTION 

Auditory neurons produce a very peculiar representation of 
the incoming audio signal. They respond with short electri-
cal pulses to the acoustic stimulation. Traditionally it was 
perceived that the frequency of these pulses represent the 
frequency of the incoming stimulation at the lower part of 
the spectrum (less than 1 kHz) in accordance with the "fre-
quency" theory. However, at the higher frequency range, 
much more than 1 kHz, the firing rate encodes the amplitude 
of the stimulus, which is captured by the "place" theory [1]. 
Neither of these theories can ultimately explain the neural 
"code" in the mid-frequency range. Besides, both of them 
deal with the steady spike generation in response to the sta-
tionary stimulation, which is rarely the case for "real life" 
signals. Another point of criticism is that in accordance with 
the mentioned theories, spike production by auditory neu-
rons does not seem to benefit from the complex chemo-
electrical cochlear mechanics, which is observed and proved 
to be important for hearing. 
Indeed, the cumulative action of the middle and inner parts 
of the ear is equivalent to the action of the variable signal-
dependent band-pass filter in accordance with the "active 
cochlea" model [2]. The so-called “suppressive” action of 
the active cochlea has been observed to play essential role in 
the sound perception [3-5] and has certain signal processing 
interpretation [6,7]. Thus, each sound-sensory cell, i.e. inner 
hair cell (IHC), is excited with the band-passed version of 
the original audio signal.  
This excitation, in turn, results in the release of the neuro-
transmitter into synaptic cleft between IHC and the auditory 

neuron fiber. The neurotransmitter release process is also 
rather complex. It is successfully captured by the reservoir 
model of the IHC [8-10]. As it is shown in [11], it is possible 
to interpret this model as an automatic gain control (AGC) 
mechanism and, additionally, it can be linked to a class of 
modulation spectrum filtering techniques. Under the stimu-
lation, coming from the IHC side, the auditory neurons pro-
duce a series of "spikes", i.e. action potentials, short electri-
cal discharges, which travel along their axons to submit in-
formation about the sound source to the higher regions of 
the brain, where the further signal processing is performed. 
The final result of this enormously complex process is the 
species ability to access auditory scene and relay informa-
tion through sound. As it is evident from the comparison 
[12], human auditory system represents a universally fine 
tool for sound and speech processing. It outperforms by far 
all known artificial signal processing strategies, especially 
when it is being subjected to environment interferences. 
This observation suggests that better understanding of the 
way our auditory system encodes and processes sounds will 
lead to improved novel artificial sound processing strategies. 
It is rather safe to assume that all information about the 
sound source, remaining at the level of the auditory nerve, is 
contained in the specific pattern of the action potentials. The 
fact that these spikes are registered by the higher neurons 
with finite precision gives a ground for the information theo-
retical approach (e.g. see [13]) to the study of neuronal re-
sponse patterns. Additionally it offers a possibility to trans-
fer auditory cochlear and neuronal models into a digital do-
main. 
Quantification of the information, transmitted through the 
neuronal channel, is of fundamental importance for many 
possible neuromorphic audio signal processing techniques. 
First of all, cochlear prosthetic devices would clearly benefit 
from a better knowledge of the way auditory neurons encode 
audio-signals. Audio coding may also benefit from the at-
tempt to discriminate between parts of the incoming signal 
on the basis of their ability to change the spike pattern of the 
auditory neurons. Automated speech recognition is also to 
gain, especially in robustness to the environment interfer-
ence, due to the reasons mentioned above. 
The present paper is an attempt to contribute to the under-
standing of the neuronal "code" for audio signals. Particu-
larly, it is shown here that the pulse train, generated by the 
spiking neuron model, is, in fact, a first-order Markov chain 
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consisting of sub-sequences of spikes as discrete "labels" for 
the incoming signal on the corresponding time intervals. As 
it is shown here, this property is a direct result of the finite 
precision of the spike-registration process by the higher 
level auditory neurons. 
The current study of the properties of the simple spiking 
neuron model was originated and motivated in an attempt to 
understand the behaviour of auditory nerve neurons. Indeed, 
this model is known to successfully capture the essence of 
spike-generation process by the auditory neurons [2]. How-
ever, the obtained results are valid in any case, where the 
simple phenomenological spiking neuron model is applica-
ble. 

2. THE SPIKING NEURON MODEL 

Generation of spikes by the spiking neuron model (see fig.1) 
[14-16] is described by the following set of equations: 
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i.e. the dynamic firing threshold  of the neuron is being 
reduced up to the moment, when it becomes equal to the 
internal activity . At that moment the firing threshold is 
rapidly increased by the amount V  and the spiking neuron 
emits an output action potential Y . 
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Figure 1 - The neuronal spike generator schema 

 
Let us assume that immediately before the spiking at “zero” 
time instant  the neuron firing threshold is equal 
to

00 == Tt

ε . In accordance with the neuron properties (1), immedi-
ately after this spike it’s firing threshold will be increased by 

: V
  . (2) VTUTU +== +− εε )()( 00

The values of ε  and V  are strictly positive parameters of the 
spiking neuron model. 
Until the next spike ( ) the firing threshold de-
creases exponentially. In general case of spike sequence at 
the time instants 
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In the intervals )t  between the successive spikes the 
firing threshold  is expressed identically to , but 
with the appropriate change of the argument: 
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An example of the firing threshold evolution of the spiking 
neuron model in response to the applied signal is provided 
by the fig.2. 
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Figure 2 - Evolution of the spiking neuron model. Input signal – 

blue dots, output signal – red bold, internal activity – magenta line) 

3. INDEPENDENCE OF FORTHCOMING SPIKE 
FROM THE NEURON’S INITIAL STATE 

For the sake of simplicity let us assume, that the incoming 
signal  does not change on the interval nXtX =)(

[ 2,2 tTtTt nn ∆+∆−∈ ] . In practice this means that the incom-
ing signal varies slowly in comparison with interval 
length  and may be represented by it’s approximate value 

. 
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n

The real neuron of the spiral ganglion (SG) is linked via 
synapses with neurons in cochlear nucleus (CN) that per-
form further stages of the incoming signal processing. The 
uncertainty of spike propagation and registration processes 
over this link is about  [16,17]. It means, that from 
the point of view of the receiving end there is no difference 
in which particular moment of the interval 
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Conditions (3) and (4) reflect the influence of the neuron 
initial state ε  on it’s further activity. In accordance with 
these expressions the firing threshold is a function of pa-
rameters of the spiking neuron model (α , ), the initial 
condition 

V
ε  and a sequence of the spikes preceding the cur-

rent moment of time { } 1...1:1
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i . The condition of in-
dependence of the spike at the time instant  from the ini-
tial condition , for the fixed spike train 
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The reasoning, which leads to the inequality (5), is given 
below. From (4) it follows, that for any fixed ] and 
the constant spike sequence { }

[ Ε∈ ,0ε
1...1:1

1 −=− niT n
i , the firing 

threshold  is a monotonically decreasing function, 

where  is a constant. Further, in accordance 

with (1) the following inequality holds: 
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This inequality should hold for any initial condition 
], which means that the right-hand side should be big-

ger than the biggest possible 
[ Ε∈ ,0ε

E=ε , and left-hand side should 
be smaller then the smallest possible 0=ε : 
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Summation of both inequalities leads to the following ex-
pression: 
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The inequality (5), which defines the spike independence 
condition, directly follows from the above inequality. 

4. CONSISTENCY OF INDEPENDENCE 
CONCLUSION 

Lemma. If the impulse of the spiking neuron model at the 
time instant  does not depend upon initial condition nT ε , 
then all subsequent impulses  are independent from 
this condition. 
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As it is evident from (1) for the action potential to appear the 
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This formula is a similar condition to (8), but it is formulated 
for the impulse in the time instant 1 . Subsequent recursive 
application of this result gives a statement, that for any 

 the present lemma holds true. 
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5. DEPENDENCY INTERVAL LENGTH 

As a matter of fact, the logarithm in (5) reflects the time-
difference between the two time instants  and . The ini-
tial condition 

nT 0T
ε , in accordance with (2), reflects the total 

firing threshold immediately before the spike at the time 
instant . This total firing threshold may reflect not only the 
“true” initial condition, but also a cumulative effect of all 
spikes, preceding the time instant . The initial time instant 

 should not necessarily coincide with the time scale zero 

point. It is only remarkable for the fact, that this is the most 
ancient spike, which still affects the present spike generation 
at the time instant . It is also the closest spike to a present 
one, which is in the past at least by the time difference 
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which we’ll further denote as the minimum dependency 
interval  for the spike at the time instance . nτ nT

Further, instead of the term , reflecting the most ancient, 
but still significant impulse for the spike at the time , the 
term  will be used. This change in notation is conven-
ient since it removes an association between particular  
and the length of the dependency interval . 
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Remarkably, the interval length does not depend upon the 
recharging magnitude constant V . Another particularly no-
table property of the dependency interval is a possibility to 
estimate it’s length with a certain predefined confidence. Let 
us assume that the initial condition ε  will not exceed the 
boundary E  with a probability , then with the same 
probability all history prior to the impulse  will not affect 
the current impulse. Obviously, the formula (9) is meaning-
ful, when  

( E)≤P ε
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otherwise  should be regarded as zero. nτ
In reality the dependency interval should be somewhat big-
ger than , since it spans up to the impulse immediately 
preceding the time instant  (if zero of the time scale co-
incides with the present). Theoretically the maximum de-
pendency interval might be infinite, but in this case there 
should not be any spikes before . However in practice 
one can disregard such unrealistic scenario (since it is a 
spiking rather than silent neuron, which is of interest) and 
consider the maximum dependency interval 
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 to be 
finite, but somewhat bigger than the minimum value. 
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6. SPIKE SEQUENCE AS A FIRST-ORDER 
MARKOV CHAIN 

As it was shown above, for any spike at the certain time 
instance  it is possible to choose a finite spike history span nT

{ } 1...:1 −−=−
− nhniT n

n
hni n , which will contain all possible factors 

that affect the current impulse. The current impulse  is not 
dependent on whatever has happened before , this ir-
relevant history is cumulatively denoted as ]. It is 
assumed that precision  and initial condition boundary 
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the sequence, when , there is only a need to esti-
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quence in (11) is a variable-order Markov sequence since 
history length  is bounded and after certain finite se-
quence is smaller than the current index m . But this relevant 
history length is varying through time. Dependency intervals 

 and  of successive impulses are overlapped 
in general case. 
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Let us choose an arbitrary spike in the sequence at the time 
instance . As the dependency interval is always finite, 
there must be the most early spike T , such that it’s 
position is independent upon anything happening before .  
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Figure 3 – Spikes and their maximal dependency intervals 

Let us further choose the earliest spike at the moment 
, so that it’s position is only dependent upon history 

including and after the moment  (see fig. 3 for illustra-
tion). 
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On the basis of the proved lemma one may easily conclude, 
that dependency intervals of all spikes  lay in-
side time interval between  and 1 . All spikes  
will obviously be independent upon the history before . 
The dependency interval of the compound event is a super-
position of the dependency intervals of it’s elementary 
events. Subsequently, one may write the following statement 
for the fragments  and of the original spike se-
quence: 
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Recursive application of the above reasoning leads to the 
conclusion that it is possible to rewrite formula (11) in the 
following form: 
  , (12) 

)(*)|}({*)}{|}({*

...*)}{|}({)}({

00
1

0
1

0
1

110

εε PTPTTP

TTPTP
aaba

a

m
k

n
m

n

−−−+

++=

where indexes  define the appropriate fragmenta-
tion of the original spike train into sub-sequences, which 
form the first-order Markov chain. A complete set of all pos-
sible sub-sequences defines an alphabet of the Markov 
source. 

nmkba ,,,...,,

Each of the sub-sequences is in fact a vector  of discrete 
integer values of the form  

Λ
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because of the finite precision of the spike registration. Here 
the term  denotes a floor operation. In accordance with 
the rule of spike generation (1) these vectors represent an 
irregularly under-sampled representation of the correspond-
ing input signal frame. The rule of sample selection, as it 
obviously follows from (1), (3) and (4), links the inter-spike 

intervals (i.e. inter-sample intervals) and amplitudes of the 
incoming signal at the moment of the spike (sample): 
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The combination of the two above equations allows to ex-
press the vector components through the amplitudes of the 
input signal at the moment of spikes: 
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7. PROPERIES OF THE AUDITORY SPIKING 
NEURON AS A MARKOV SOURSE 

The tasks of quantification of the information transfer 
through the neural connection and assessment of the degree 
of surprise to encounter a particular sequence of spikes de-
mand estimation of the spike-train probabilities. 
In order to have a principal possibility to estimate the prob-
ability of the particular spike sequence, i.e. the inverse of the 
degree of surprise, in accordance with (12) one needs an 
estimate of the transition matrix, which characterizes this 
particular first-order Markov source: 
  ( )jiij PaA ΛΛ== |   

and a knowledge of the appropriate factorisation of the spike 
sequence of the observed neuron. 
The real CN neuron, receiving the output of the SG neuron, 
sees only inter-spike intervals as the source of information 
about the incoming stimulation. As it was established above, 
this sequence can be reduced to the first-order Markov chain 
to the extent of validity of the spiking neuron model. But the 
appropriate segmentation needs to be somehow communi-
cated from the SG neuron to the information receiving end 
in the CN. 
Let us assume that the SG neuron under consideration emits 
impulses for a quite long time for initial conditions to be-
come irrelevant. In this situation there is no any special “an-
chor” point to start decomposition of the spike train into the 
Markov chain. As a matter of fact, there exist multiple ways 
to decompose spike train with the formula (12). The differ-
ence is introduced by the specific choice of the starting point 

 of the chain. Further tracking of the possible Markov 
chains results in the observation that they tend to converge 
to the single possible chain if there exists such situation, 
when 1 , i.e. if a single-value vector occurs. In ac-
cordance with the formulae (9) and (10) this situation be-
comes possible if the current value of the incoming signal 
becomes large in comparison with the expected maximal 
initial condition 

kT

−−< nnn TTτ

E . 
It is a remarkable coincidence, that AGC of the chemical 
synapse between IHC and the afferent neural fiber in the 
cochlea emphasizes transient processes in the incoming sig-
nal [11]. In hearing physiology this phenomenon is known 
as IHC adaptation. The immediate neurotransmitter release 
rate in response to just-applied stimulation is much higher 
than it’s equilibrium rate for the same stimulus intensity. The 
particularly strong and short in duration emphasis of the 
incoming signal is observed in the synapses with high-
spontaneous spiking rate fibers. The present analysis shows 
that, besides of having other useful properties [11], the adap-
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tation mechanism possibly serves as a tool to synchronize 
the receiving neurons with the certain “true” spike train de-
composition. 

8. CONCLUSION 

The analysis of the spiking neuron model results in the con-
clusion that it is possible to represent its spike train as a 
first-order Markov chain, consisting of the non-overlapping 
sub-sequences of spikes. Superposition of these elementary 
sub-sequences constitutes to the entire sequence. This result 
suggests a possible encoding method of the input stimula-
tion by the auditory neuron – each elementary subsequence 
is a vector of integers, describing an irregularly under-
sampled representation of the corresponding incoming sig-
nal frame. The particular form of each vector is dependent 
only upon the current frame of the input signal and the im-
mediately preceding vector. 
There exists an important synergy between the properties of 
“hair cell – auditory nerve” synapse and the proposed cod-
ing scheme. Indeed, the adaptive response of the IHC tends 
to produce a condition for a single-value representation-
vector during the transient regions of the incoming signal 
and, thus, to synchronize various possible decompositions of 
the spike train with an “ideal” one. 
The fact, that the spiking neuron represents a true first-order 
Markov source, implies that there is no need to gather a 
higher order statistics to estimate probabilities of the particu-
lar spike train. To do this one needs only a square matrix of 
conditional probabilities and access to an optimal spike-train 
segmentation. 
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