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ABSTRACT 

In almost all super-resolution methods, the blur operator is 

assumed to be known. However, in practical situations this 

operator is not available or available only within a finite 

extend. In this paper, a super-resolution algorithm is 

presented in which the assumption of availability of the blur 

parameters is not necessary. It is a two-dimensional and 

single-input multiple-output extension of the well-known 

constant modulus algorithm which is widely used for blind 

equalization in communication systems. The algorithm 

consists of determining a set of deconvolution filters to be 

applied on interpolated low-resolution and low-quality 

images and is suitable for pure translational motion only 

and shift-invariant blur. Experimental results have shown 

that the proposed method can satisfactorily reconstruct the 

high-resolution image and remove the blur especially for 

five or less-bit images. 

1. INTRODUCTION 

Super-resolution image reconstruction can be defined as the 

process of constructing a high-quality and high-resolution 

image from several shifted, degraded and undersampled 

ones. In areas such as medical imaging and satellite 

imaging, where multiple frames of the same scene can be 

obtained, super-resolution is proven to be useful. Also, 

multiple frames in a video sequence can be utilized to 

improve the resolution for frame-freeze or zooming 

purposes. 

In the literature, super-resolution is treated as an inverse 

problem, where the high-quality and high-resolution image 

to be obtained is linked to the undersampled images by a 

series of operators such as warping, blur, decimation and 

additive noise. Among recent work are projection onto 

convex sets (POCS) approach, iterative back-projection, 

maximum a posteriori (MAP) estimation, etc. Excellent 

tutorials about the subject can be found in [1] and [2]. 

In almost all above methods, in order for the high-resolution 

image to be reconstructed, the blur and the motion operators 

should be known in advance. Although the motion 

parameters are estimated a priori to some extend, as known 

to the authors, the blur operator is just assumed to be in 

hand. But this is hardly the case in practice. Either the blur 

parameters must be estimated or the high-resolution image 

must be constructed without the need for the blur 

parameters, hence the term blind image super-resolution. 

In this work, a blind super-resolution image reconstruction 

method is developed for pure translational motion and shift-

invariant blur. Generally, the blur is modelled as a 2-D finite 

impulse response (FIR) filter and need not be the same for 

all low-resolution images. The high-resolution image is 

estimated by superposing the degraded images after they 

pass through distinct adaptive FIR reconstruction filters 

whose coefficients are updated by using the 2-D version of 

the constant modulus algorithm (CMA). CMA [3, 4] is a 

popular tool in the area of blind equalization in 

communications, where the aim is to suppress the 

intersymbol interference (ISI). It can also be used in single-

input multiple-output (SIMO) or multiple-input multiple-

output (MIMO) systems as well as in single-input single-

output (SISO) systems, to reduce the interuser interference 

(IUI) besides ISI [5]. 

The idea of the CMA depends on the fact that the source is 

of constant modulus or from a finite alphabet. In this 

context, image can be considered as a finite-alphabet source 

because each pixel is represented by a finite (usually 8) 

number of bits. Vural and Sethares [6] utilized this property 

to develop a CMA-based blind single-image blur removal 

algorithm. The work presented here is essentially an 

extention of the mentioned algorithm to the single-input 

multiple-output case. 

The paper is organized as follows: In Section 2, the 

observation model that links the high-resolution image to the 

observed low-resolution images is presented. If the motion 

between the LR images consists of only pure translational 

motion, then the model can be simplified. Based on the 

simplified model, the super-resolution problem is 

formulated. In Section 3, the CMA-based high-resolution 

image reconstruction algorithm is developed. In Section 4, 

experimental results are presented and some conclusions are 

drawn in Section 5. 

2. SYSTEM DESCRIPTION 

Figure 1 shows the observation model that links the high-

resolution image to the observed low-resolution ones. In this 

model, the LR image is obtained by successive operations 

such as warping, blurring and subsampling on the high-

resolution image. In general, the warp operator (denoted by 

W1, W2, … , WM, where M is the  number of  observed  low-  
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Figure 1 – Observation model relating the low-resolution images to the high-resolution image 

 

 

Figure 2 – Simplified observation model 

resolution images) may consist of global or local translation,  

rotation, etc. The motion therein must contain shifts in 

subpixel units in order to utilize additional information to 

construct the HR image. The blurring operation (B1, …, BM) 

results from factors such as relative motion between the 

imaging system and the scene, out of focus, point-spread 

function of the sensor, and so on. It is generally modeled as 

a linear shift-invariant finite impulse-response (FIR) two 

dimensional filter. The aliased low-resolution image is then 

generated by subsampling the warped and blurred high-

resolution image. Finally, after the addition of the noise (not 

shown in the figure), the observed low-resolution images are 

generated. 

If the warp operators consist only of global translational 

motion, then the two-dimensional z-transform of the blurred 

and warped high-resolution images can be written as 

follows: 

( ) ( ) ( )21212121, , ,, zzBzzzzXzzX i
VH

bi
ii −−

= .     (1) 

In  Eq.  (1), ( )21, zzX ,  ( )21, , zzX bi   and ( )21, zzBi   are the 

two dimensional z-transforms of the respective spatial-

domain signals, and Hi and Vi are the horizontal and vertical 

shifts, respectively, in terms of high-resolution pixel units, 

for the ith low-resolution image, where i = 1, 2, …, M. 

If we define 

( ) ( )212121
' , , zzBzzzzB i

VH
i

ii −−
=  

or alternatively 

( ) ( )iiii VnHnbnnb −−= 2121
'  ,,  

then Eq. (1) can be written as 

 

Figure 3 – Reconstruction stage 

( ) ( ) ( )21
'

2121, ,,, zzBzzXzzX ibi =  

or equivalently 

( ) ( ) ( )21
'

2121, ,,, nnbnnxnnx ibi ∗= . 

Hence the warp and the blur operators can be merged into a 

single blur operator if the only motion is global translation 

and the observation model in Figure 1 can be reduced to 

what is seen in Figure 2. 

For now, let us pretend that the subsample operator does not 

exist. In this case, if we define the system output vector 

y(n1,n2) and the system impulse response vector B(n1,n2) as 
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then the input-output relation for this particular low-

resolution image formation system can be expressed as 

 ( ) ( ) ( )212121 ,,, nnxnnnn ∗= By  

where * denotes the 2-D convolution of the vector (or 

matrix) sequences. For general 2-D matrix sequences 

aij(n1,n2) and bij(n1,n2), their convolution is defined as 

( )[ ] ( )[ ] ( ) ( )







∗=∗ ∑

k
kjikijij nnbnnannbnna 21212121 ,,,, . 

To recover the high-resolution and distortion-free image 
x(n1,n2), a set of reconstruction filters is applied to the low-

resolution images yi(n1,n2) as in Figure 3. The impulse 

response sequence of the reconstruction filters, G(n1,n2), 

satisfies 
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 ( ) ( ) ( )212121 ,,, nnnnnn δ=∗BG . 

G(n1, n2) is defined as 

( ) ( ) ( ) ( )[ ]2121221121 ,,,, nngnngnngnn ML=G . 

3. ALGORITHM DEVELOPMENT 

The proposed algorithm is explained in detail in this 

section.The constant modulus (CM) cost was introduced by 

Godard [3] and Treichler and Agee [4] for blind equalization 

of communication signals that have constant modulus or 

from a finite alphabet. Recently, it has been reformulated 

and adapted to the two-dimensional case by Vural and 

Sethares [14] for blind image deconvolution problem.  

Throughout this paper, the high-resolution image pixel 

values  are  assumed  to  have  odd  integer  values between 

-(L-1) and +(L-1) inclusive, where L is the number of gray 

levels in the original high-resolution image. It is known that 

most gray-scale images are 8-bit (256 grey levels), but they 

can be transformed by uniform or non-uniform thresholding 

to obtain the desired pixel values. It is also assumed that the 

gray levels of the true image are independent and identically 

distributed random variables. A suitable pre-processing for 

the low-resolution images such as histogram equalization 

may be necessary for this prerequiste. Under these 

assumptions, the CM cost is given by 
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where γ  and κx are the dispersion constant and the normal-

ized kurtosis of the true image, respectively. They are de-

fined by 
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The dispersion constant and normalized kurtosis of a zero 

mean uniformly distributed gray scale image is given in 

Table 1 for several gray levels. 

Because a closed-form solution does not exist for minimizing 

JCM , a stochastic gradient-descent (GD) minimization 

method is used. A surface called the CM cost surface is gen-

erated by plotting the CM cost versus the adaptive filter pa-

rameters. The minimization algorithm tries to minimize the 

cost by starting at some point on the surface, then following 

the trajectory of the steepest descent. An instantenous esti-

mate of JCM is given by 

( )( )2

21
2

,ˆ
4

1
: γ−= nnxJ . 

In Fig. 3, it is shown that the degraded images yi(n1,n2) are 

applied to a set of 2-D adaptive FIR filters gi(n1,n2) which 

tries to remove the blur and generate the high-resolution im-

age (note that the subsampling process is still ignored). An 

estimate of the true image is obtained as the output of the 

adaptive filters at the jth iteration: 
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= −= −=
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Gray levels γ κx 

2 1 1 

4 8.2 1.64 

8 37 1.716 

16 152.2 1.790 

32 613 1.797 

64 2456.2 1.799 

128 9829 1.799 

256 39320 1.8 

Table 1 – Dispersion constant and normalized kurtosis for images 

having different gray levels 

where AxB is the support of the adaptive filters and gi,j(a,b) 

are the coefficients for the ith adaptive filter for the jth itera-

tion. This true image estimate is used to obtain a better esti-

mate of the adaptive filter coefficients for the next spatial 

location in an adaptive manner. The derivative of J with re-

spect to the adaptive filter coefficients is needed in order to 

implement the GD minimization. Let gj denote the lexico-

graphically ordered vector which is composed of the coeffi-

cients of the adaptive filters at the jth iteration: 
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and let y(n1, n2) be the regressor vector for the (n1, n2)th pixel 

at the jth iteration: 
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The estimate of the true image for the (n1,n2)th pixel at the jth 

iteration, using vectors gj and y(n1,n2), can be written as 

( ) ( )2121 ,,ˆ nnnnx
T
jj yg= .            (2) 

The derivative of J with respect to gj is given by 

( )( ) ( ) ( )212121
2 ,,ˆ ,ˆ nnnnxnnx

d

dJ
jj

j

y
g

γ−= .     (3) 

Hence, the adaptive filters are updated according to 

j
jj

d

dJ

g
gg µ−=+1      (4) 

where µ is a small positive step-size that guarantees the algo-

rithm stability. 

The discussion above assumes that the subsampling operator 

does not exist. But this is not the case, and an interpolation 

method is used to obtain a scaled version of the observed 

low-resolution images as inputs to the adaptive filter set, i.e. 
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to obtain yi(n1,n2) from yi(l1, l2). The C2-continuous cubic 

kernel with N=6 supporting points is chosen as the 

interpolation method because of its superiority over other 

kernels [7]. 

Initialization of the adaptive filters is worth mentioning at 

this point. For each adaptive filter, using a 2-D spike 

characterized by a non-zero coefficient whose location is 

determined by the motion vector of the corresponding filter 

input, i. e. 

( ) MiVnHng iii ,...,2,1    , , 211, =++= δ    (5) 

is found to be useful because it eliminates the effect of the 

motion at the beginning by initially shifting the interpolated 

low-resolution images to their original motion-free spaces. 

Based on the above discussion, the proposed blind image 

super-resolution algorithm is summarized below: 

(i) Interpolate the observed low-resolution images 
yi(l1, l2) to obtain yi(n1,n2). 

(ii) Initialize the adaptive filters as described in 

Equation (5). 

(iii) Perform Equations (2) to (4) to obtain an esti-

mation of the true image and the adaptive filter 

coefficients. 

(iv) Repeat Step (iii) until a predefined number of 

iterations is reached or the difference between 

consecutive image (or adaptive filter) estima-

tions falls below a threshold value. 

4. SIMULATION RESULTS 

To demonstrate the usefulness of the proposed method, two 

computer simulation results are provided in this section. A 

computer-generated one-bit image and Lena images of one, 

two, three, four and five-bits are used in the simulations. 

Some pre-processing is applied on the images to fulfill the 

assumptions made at the beginning of Section 3. Then for 

each image, four low-resolution images are obtained by 

simulating the image formation model which is given in 

Figure 1. As the blur operator, a 3x3 random blur whose 

coefficients add up to one is chosen to be applied on each 

shifted image. Note that for each shifted image, a different 

random blur is used. Then the shifted and blurred images are 

subsampled by a factor of two in each dimension. Finally, 

zero-mean Gaussian noise is added to the low-resolution 

images to complete the image formation model such that the 

Blurred Signal-to-Noise Ratio (BSNR) of each noisy low-

resolution image is approximately 60 dB. 

In Figure 4, the original one-bit computer generated image, 

the image obtained by bilinear interpolation of one of the 

four low-resolution images, and the image obtained by the 

proposed method are shown. It is seen that the method has 

generated the high-resolution image and removed the blur to 

some degree without the knowledge of the blur parameters. 
Figure 5 shows the increase as iteration number increases in 

terms of the frequently-used metric Improvement in Signal-

to-Noise Ratio (ISNR). 

The results obtained from one and two-bit Lena figures are 

shown in Figures 6 and 7, respectively. As the number of the 

bits used to represent the true  image  pixel  values  increases, 

 
 

 

 
 

 

 

Figure 4 – (Top) computer generated one-bit image, 

(middle) the image obtained by bilinear interpolation of 

one of the low-resolution images, (bottom) the image 

obtained by the proposed method 
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Figure 5 – ISNR vs. iteration number 

the improvement in the quality of the image becomes less 

apparent. This is because, (i) the cost surface flattens as the 

image kurtosis increases, hence the number of iterations 

needed to achieve improvement becomes excessively large, 

and (ii) the step size must be chosen much smaller in order to 

maintain algorithm stability [8]. 

5. CONCLUSION 

A new blind image super-resolution method in which the 

blur parameters are not assumed to be known is presented in 

this paper. It is a 2-D and single-input, multiple-output 

extension of the CMA which is widely used in the area of 

blind equalization. An important property of the method is 

that the blur need not be the same for all low-resolution 

images, but the only motion allowed is pure translational 

motion. Simulation results show that the method can recover  

the high-resolution image and remove the blur for especially 

five or less-bit images. As the number of gray levels used to 

represent the true image decreases, the performance of the 

method increases.   
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Figure 6 – (Left) original one-bit Lena image, (middle) the image obtained by bilinear interpolation of 

one of the low-resolution images, (right) the image obtained by the proposed method 

 

             

Figure 7 – (Left) original two-bit Lena image, (middle) the image obtained by bilinear interpolation of 

one of the low-resolution images, (right) the image obtained by the proposed method 
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