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ABSTRACT 

In this paper two methods of designing efficiently a digital 
linear-phase differentiator of an arbitrary degree of 
differentiation are proposed. The first one utilizes a symbolic 
expression for the coefficients of a generic fractional delay 
filter and is based on a fundamental relationship between the 
coefficients of a digital differentiator and the coefficients of 
the generic FD filter. The second profits from one of the 
crucial attributes of the structure invented by Farrow for FD 
filters. It lies in an alternate symmetry and anti-symmetry of 
sub-filters which are linear-phase differentiators. The 
proposed design methods are illustrated by examples. Some 
practical remarks concerning the usage of the Farrow 
structure are also included.  

1.  INTRODUCTION 

Digital linear-phase differentiators play an important role in 
many up-to-date applications such as radar, sonar, image 
processing, biomedical engineering and others. Often it is 
necessary to obtain not only first order, but also higher order 
derivatives, e.g., of biomedical data. Therefore there is a 
need for feasible and efficient methods of designing digital 
filters offering different degrees of differentiation. This is 
also reflected by a constant progress in the development of 
new techniques of designing digital differentiators. An 
example is a recent publication [1] where Tseng derived a 
closed-form solution (see (52) in [1]) for the coefficients of 
a Lagrangian digital differentiator performing differentiation 
of second degree. This is an FIR filter maximally accurate at 
direct component (DC), thus especially suited for precise 
measurement applications. Tseng’s result can be considered 
as an extension of the results presented in [2] where also a 
closed form formula for the coefficients of such a 
differentiator (see (10) in [2]) but for first degree 
differentiation was presented. Both these differentiators have 
their complex frequency approximation error )(,

ωj
Nk eE  

maximally flat at DC. This error is defined as the difference 
between an ideal k-th degree differentiator (DDk) frequency 
response    
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where k=1,2,… and the frequency response 
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of the approximating FIR of order N, i.e. 
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the “transport” delay inevitable in the target FIR.  
Obviously, one can continue the process of deriving 

closed form formulae for the DDk coefficients with higher 
degree of differentiation, i.e. for k>2. But the value of such 
formulae would be rather of theoretical nature. This is 
because with k increasing these formulae become more and 
more complicated. As a result the accuracy of coefficients’ 
computation becomes problematic, especially for wideband 
applications, thus for high FIR order N. Also, the process of 
coding becomes more and more laborious. The aim of this 
paper is to propose two efficient approaches to designing a 
DDk of an arbitrary order k on the basis of a fractional delay 
filter but without limit computation, thus simpler than in [1]. 

2. MAIN RESULTS 

The first approach to designing a DDk efficiently is based on 
the following fundamental formula [14], [15] 
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relating the coefficients ][, nh Nk , n=0,1, … N of the linear-
phase DDk to the coefficients ][,,0 nh pN  of a generic 
fractional delay (FD) FIR filter having k=0, whose fractional 
delay ]5.0,5.0[−∈p  covers a sample interval of duration T 
conveniently normalized here to unity and whose total delay 
is D=N/2+p. The same relationship obeys for the frequency 
responses of the above mentioned filters, i.e. (2) and  
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as well as for their ideal counterparts: (1) for DDk and 
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for the FD filter. A proof for the latter is the following: 
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On the basis of (3) one can design a linear-phase DDk 
by differentiating the impulse response of a FD filter k times 
over D and substituting D=N/2, which means p=0. In case 
when one has at disposal directly a closed form formula for 
the FD filter coefficients which normally is much simpler in 
form than that for a differentiator (see, e.g., [3] for a 
Lagrangian FD filter, thus maximally flat around DC), the 
coefficients of the linear-phase DDk can be calculated readily 
and accurately using Symbolic Toolbox in MATLAB. An 
exemplary code was given in [4]. Similar code can be 
generated also for any other than Lagrangian method of 
approximating the ideal frequency response of a FD filter, 
either an FIR or IIR, although by nature of the IIR filter in 
the latter case the target DDk does not have its phase 
response linear. Also, this approach can be found useful 
when the FD filter is designed in an iterative manner, as it is 
normally done, e.g., in Chebyshev approximation using 
cremez.m in MATLAB.  

The second approach proposed here derives from that 
the Farrow structure [5], very popular for implementing 
variable FD filters efficiently [6] ÷ [14], is comprised of sub-
filters which are linear-phase differentiators of different 
orders [8] whose coefficients are fixed, thus independent on 
p. Therefore, in the Farrow structure of a FD filter of order N 
having N+1 sub-filters, we have in hand the impulse 
responses of digital differentiators having the degree of 
differentiation k=1,2, … , N. (A proof of the Farrow sub-
filters’ phase linearity is given in [8].) Thus again the 
problem resolves to designing the generic FD filter. The 
specific of this second approach lies however not in 
differentiating the FD filter impulse response but in 
rearranging the generic FD filter transfer function  
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(cf. (4)) from the polynomial in the unit delay 1−z  as in (6)  
to the polynomial in fractional delay p, as in [5] or [4], and 
then extracting from it the DDk impulse response for the 
desired value of k. This way, for example, the two-rate 
technique given in [9] for designing wideband FD filters can 

be readily adopted and exploited for designing linear-phase 
differentiators of different orders.  

Obviously, both approaches considered here lead to the 
same results. 

However, there is an important point concerning the 
Farrow structure that should not be overlooked in order to 
derive the desired linear-phase DDk successfully. Linear-
phase response means that the set of coefficients of the DDk 
(i.e. the set of elements of the DDk impulse response) is 
either symmetric or anti-symmetric. It depends on the 
degree of differentiation. This symmetry is an attribute of 
the true Farrow structure (see Table I in [5]). Namely, the 
sets of the coefficients of the Farrow sub-filters are 
alternately symmetric and anti-symmetric. However, in the 
literature, there exist a number of publications, where their 
authors attribute to Farrow a structure at first sight very 
similar to that symmetric, perfect one, but which is a 
vitiation of Farrow’s invention in that the parameter for 
controlling the variable delay is changed from p to D=N/2+p 
relative to that in [5]. (In the Farrow original work [5] the 
fractional delay parameter is called α , which is an 
equivalent to p used here.) It means that the transfer function 

)(,,0 zH pN  (6) is mistakenly rearranged into a polynomial in 
D rather than p. A result of this change, while the frequency 
response is kept unchanged, is an asymmetry of sub-filters. 
Consequently, the asymmetric sub-filters, which are 
differentiators of different orders, are not linear-phase filters. 
The desired phase-linearity of sub filters, very important for 
an efficient implementation, is lost. To sum up, the correct 
Farrow structure should be arranged as presented in Fig. 1 
for a successful derivation of the symmetric/anti-symmetric 
DDk thus having the linear-phase response as desired. 

 
 
 
 
 
 
 
 

 
Fig. 1. The Farrow structure for a generic FD FIR filter, with 

fractional delay ≡α p, having total delay D=N/2+α . 
 

In Fig. 1 ∑
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transfer functions of the M+1 Farrow sub-filters, where M 
can be equal to or different than N, and ][ncm , 

Mm ,...,1,0=  are the impulse responses of these sub-
filters.  The overall generic FD filter transfer function after 
the above mentioned rearrangement of (6) is given by 
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The coefficients of digital differentiators, DDk, are obtained 
in the following way 

 MkNnncknh k
k

Nk ,...,1,0,,...,1,0];[)!()1(][, ==−=  (8) 

3. EXAMPLES 

Example 1.  The coefficients of the Lagrangian FD filter, 
maximally flat at DC, are given by the formula [3] 
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for Nn ,...,1,0= . From this formula we obtain for N=3 
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where D=3/2+p. The transfer function of this FD filter is  
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In the first approach we differentiate ][,3,0 nh p  N times 
over D in accordance with (3) and set D=3/2. This way we 
obtain the coefficients (8) of the Lagrangian differentiators 
with the degree of differentiation k=0,1,2,3. These 
coefficients are shown in Table 1. Notice their alternate 
symmetry and anti-symmetry. 

 
Table 1. The coefficients of FIR Lagrangian differentiators of 
order N=3 odd and degree of differentiation k=0,1,2,3, 
maximally accurate at DC. 
 

 
n 

][3,0 nh  
k=0 

][3,1 nh  
k=1 

][3,2 nh  
k=2 

][3,3 nh  
k=3 

0 -1/16 -1/24 1/2 1 
1 9/16 9/8 -1/2 -3 
2 9/16 -9/8 -1/2 3 
3 -1/16 1/24 1/2 -1 

 
In the second approach we rearrange (10) in agreement with 
(7). This way for M=N we obtain  
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The coefficients ][ncm  of respective linear-phase Farrow 
sub-filters are gathered in Table 2. 
 
Table 2. The coefficients of Farrow sub-filters of order N=3 
for a variable FD filter maximally flat around DC. 
 

 
n 

][0 nc  
m=0 

][1 nc  
m=1 

][2 nc  
m=2 

][3 nc  
m=3 

0 -1/16 1/24 1/4 -1/6 
1 9/16 -9/8 -1/4 1/2 
2 9/16 9/8 -1/4 -1/2 
3 -1/16 -1/24 1/4 1/6 

 
Using (8) and Table 2 with k=m we arrive at the coefficients 
of linear-phase digital differentiators from Table 1. 

For the sake of comparison Table 3 shows the 
coefficients of FIR Lagrangian differentiators of even order 
N=2.  

Opposite to the case of order odd, for order even the 
zero degree differentiator (see column two in Table 3) is an 
integer delayer, thus a “constant system” (cf. [6]), while for 
order even (see column two in Table 1) it is a half-sample 
delayer. The latter is an equivalent to that considered, e.g., in 
[6], i.e. having the same transfer function, but with the 
fractional delay parameter (here denoted by p) set to zero. 
 
Table 3. The coefficients of FIR Lagrangian differentiators of 
order N=2 even and degree of differentiation k=0,1,2, 
maximally accurate at DC. 
 

 
n 

][2,0 nh  
k=0 

][2,1 nh  
k=1 

][2,2 nh  
k=2 

0 0 1/2 1 
1 1 0 -2 
2 0 -1/2 1 

 
Example 2.  Here we consider a differentiator with first 
degree of differentiation, obtained on the basis of a two-stage 
variable FD filter designed in [9]. The generic wideband 
optimal (mini-max) variable FD filter in [9] is composed of a 
half-band symmetric Nyquist [14] FIR filter of order 58 with 
16 nonzero coefficients of different values and a FD filter of 
order 6 with four sub-filters whose alternately symmetric and 
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anti-symmetric coefficients are given in [9] in Figure 4. 
Using the above mentioned approach this filter was 
redesigned into a DDk with k=1 (differentiation of first 
degree).  
 

 
 

 

 
Fig. 2. The amplitude response and amplitude response 

approximation error for a differentiating FIR filter having 19 
coefficients of different values in total.  

 
The amplitude response and the amplitude response 
approximation error in dB for this linear-phase differentiating 
filter are shown in Fig. 2. Straight line in the upper part of 
Fig. 2 represents the ideal DD1. 

4. CONCLUSIONS 

In this paper two methods of designing a digital linear-phase 
differentiator of an arbitrary degree of differentiation 
efficiently have been proposed. The first one utilizes a 
symbolic expression for the coefficients of a generic 
fractional delay filter and is based on a fundamental 
relationship between the coefficients of a digital 
differentiator and the coefficients of the generic FD filter. 
The second profits from one of the principal attributes of the 
structure invented by Farrow for FD filters. It lies in an 
alternate symmetry and anti-symmetry of sub-filters which 
are linear-phase differentiators. The proposed design 
methods are illustrated by examples. Some practical remarks 
concerning usage of the true Farrow structure with 

symmetric/anti-symmetric sub-filters, as opposed to the 
asymmetric one often met in the literature are also included.  
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