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ABSTRACT based transceiver with minimum redundancy. By jointly de-

Discrete multitone (DMT) systems have been widely adopte&igning the transmitter and receiver, the required number of
in broadband communications. When the transmission Chaﬁgdundant samples can be reducedlig2], where[x| de-

nel is frequency selective, there will be interblock interfer-"t€S the smallest integerx. However, these minimum re-
ence (IBI). IBI can be avoided byero-padding(zP) [1]. dundancy systems have a high implementation cost and the

Another solution is to allow IBI during transmission, and design of transmitter requires the knowledge of channel im-

at the receiver the samples that contain IBIl are removed b@ulse response.

; - In this paper, we will combine the ZP and ZJ techniques
zero-jamming(ZJ) [2]. The ZP DMT system employs the
ZP téchniqug(wh)e[re]as the CP DMT s))//stem Whgreya cycli reduce the redundancy of DMT systems. For the proposed
prefix is added at the transmitter uses the ZJ technique. - -%J DMT system, we will show that ZF equalization can

both the ZP DMT and CP DMT systems, the number of re_be achieved if the number of redundant samples is at least
; L/2]. Moreover, we will also study the least-squares and

dundant samples are larger than or equal to the channel - . ’ °
b g a i/IMSE receivers for ZP-ZJ system. A direct implementation

der. In this paper, we propose a ZP-ZJ DMT system. B . . ) .
combining ZP and ZJ techniques, we are able to reduce t’f these receivers in general has a high complexity. Thus ef-

number of redundant samples needed for IBI elimination b cient implementation based on FFT operations will be de-

: _ rived. We also carry out the numerical simulation of the bit
as much as one half. The transmitter of the ZP-ZJ DMT sys rror rate (BER) performance of the ZP-ZJ DMT systems.

tem involves only one IFFT operation and its receiver can b%imulation results show that the ZP-ZJ DMT system with a

implemented efficiently using a small number of FFT/IFFT
operations. Simulation shows that the bandwidth efficien Tﬂa}lller ntumber of redundant samples can outperform the CP
system.

ZP-ZJ DMT system can sometimes outperform the CP DM

system. Notations: Boldfaced lower and upper case letters rep-

resent vectors and matrices respectively. The notatién
1. INTRODUCTION denotes transpose—conjugatemtar!dAT denotes Fhe trans-

The block transmission scheme has found many applicatiorPse ofA. W is theM x M no_rzrnrglallzed DFT matrix, whose

in broadband communications. For frequency selective char(k7 1)th entry is[W]| = 1 e

nels, there will be interblock interference (IBI) between suc- oM

cessive transmission blocks. One can avoid IBI by adding

a sufficient number of zeros at the end of each transmis- 2. SYSTEM DESCRIPTION

sion block and such a technique is called zero-padding (ZR)et x(n) be theM x 1 vector containindvl input modulation

[1][2]. Another solution is to allow IBI during transmission, symbols of the transmitter. Without much loss of generality,

and at the receiver the samples that contain 1Bl are removqg}/is assumed thak(n) is zero-mean and uncorrelated with

by zero-jamming (ZJ) [2]. The ZP DMT system employs thesymbol energy equal ts. That is,

ZP technique whereas the CP DMT system where a cyclic

prefix is added at the transmitter uses the ZJ technique. &{x(n)} =0 éa{x(n)xT(n—I)} = EI5(1). 1)
Suppose that the channel ordelLis Then for both the ’

ZP and ZJ systems, the minimum number of redundant sanet the transmitting matrixs be anN x M matrix. For every

ples needed for IBI elimination is. As the redundant sam- \; . 1 input vector, we transmit aN x 1 vector given by

ples do not carry any information, this will reduce the band-

width efficiency. Thus there have been studies on transmis- u(n) = Gx(n). )

sion schemes with a reduced number of redundant samples

[3] [4] [5]. In many DMT applications, some subchannels or|, this paper, we assume thiit> M so that zero-forcing

tones are not used for data transmission. These unused tor&ijalization is possible. Le —N_M. ThenK is the

are known as null tones or virtual subcarriers. In [4] [S], thenmper of redundant symbols added at the transmitter. We

authors show that by exploiting these null tones, zero-forcing ssyme that the channel does not change during the transmis-

(ZF) equalization can be obtained even when no redundagion of one input block and it can be modeled as an FIR LTI

sample is added at the transmitter. However, in order tQystem with ordet.. The channel transfer function is
achieve zero-forcing transmission, there should be at least

null tones in the system. In [3], the authors proposed a block C2)=cot+arzt+cz 2+ +ozt. 3)

THIS WORK WAS SUPPORTED IN PARTS BY NSC94-2752-E-002- . . .
006-PAE AND NSC94-2213-E-002-075, NATIONAL SCIENCE coun- N this paper, we will consider the case of everfor no-
CIL OF TAIWAN, R.O.C. tational simplicity. One can easily extend the results to the
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case of odd.. In most applicationd\ is usually a large in- Using (9) and (10), we can show th&y = SCoG =1 and
teger andN > L. Under this condition, the received vector atthe CP DMT system is zero-forcing. The recei#éiin (10)
the receiver is given by also has a low implementation cost.

r(n) = Cou(n) 4+ Cyu(n—1) +q(n), (4) 3. ZP-ZJ DMT SYSTEM

where q(n) is a noise vector. The matriXCo is an  Both the ZP and ZJ systems in Section 2 adcedundant
N x N lower triangular Toeplitz matrix with the first samples atthe transmitter. In this section, we propose a DMT

coumn[c ¢ - ¢ 0 -~ 0] and C; is an  system that uses both the ZP and ZJ techniques. Let the num-
N x N upper triangular Toeplitz matrix with first row per of redundant samples added at the transmitté¢ hed
[0 -+ 0 c c-1 -+ c ]. WhenCy1G #0, there K < L. The transmitting matri is an(M +K) x M matrix

is IBI in the received vector(n). Let theM x N receiving given by
matrix at the receiver b8. Then the output of the receiver is

given by G= [ OWT ] . (11)
%(n) = SCoG x(n) + SC1Gx(N— 1) +Sq(n).  (5) oM
~— ~— That is,K zeros are added to each transmission block. When

To T1 K < L, the first(L — K) rows of C1G are nonzero, there is

To eliminate the IBI, the transmitting and receiving matrices!Bl due to insufficient number of zeros between successive
should satisfyI'; = SC1G = 0. Two well-known designs of blocks. One can remove the residual IBI by discarding the

G andSs for IBI elimination are briefly reviewed below. first (L — K) samples of each received block. This can be
attained by selecting av x (M +K) receiving matrix of the
2.1 ZP System form
The first solution is the ZP system with the redundalicy S— [ Oni (LK) g } . (12)
L. In this case, théM +L) x M transmitting matrix has the
following form Note thatS" is anM x (M + 2K — L) matrix. By substituting
G (11) and (12) into (5), it is easy to see thBt = 0. IBl is
G= { 0 } , (6) eliminated and the output of the receiving matrix is given by

, n) =S BW'x(n) +S'q(n), 13
whereG is anM x M matrix. One can verify thaf1G = 0; _ y(n x(n)+ q(_ ) o (13)
there is no IBI. In the ZP DMT systenG' is chosen as the WhereBis an(M+2K —L) x M Toeplitz matrix given by

IDFT matrix W, and the receiving matrix is fck - G 0O o i 0 ]
S:Elw[IM IOL} () '
CK

wherekE is a diagonal matrix consisting of tthé-point DFT . )
coefficients of the channel impulse respomrgdl]. With B— : K Co . (14)
these choices of transmitting and receiving matrices, one . :

can verify thatTg = SCoG =1 and the ZP DMT system CL

achieves zero-forcing. Note that the receifein (8) has a 0 CL_K

low implementation cost a8~ is a diagonal matrix and the

DFT matrixW can be efficiently implemented using FFT. : : : :
0 e e 0 cL - Ck

2.2 ZJ System

The second solution is the ZJ system with redundatey
L. In this case, th& x (M + L) receiving matrixS has the
following form

For a zero-forcing solution, we ne&BWT = Iy, which
implies that(M + 2K — L) > M. Thus the number of redun-
dant samples should satisfy> L/2. WhenK =L/2, itis
called a minimum redundancy ZP-ZJ DMT system. In the
S — [ 0o S ] 8) following, we will find the zero-forcing and MMSE (mini-

’ mum mean square error) receivers for the ZP-ZJ DMT sys-

whereS' is anM x M matrix. For each received bloakn), tem.

the firstL samples are discarded by the receiver. One can
verify thatSC; = 0; IBl is eliminated. In the special case of
CP DMT system, the transmitting matrix is chosen as

Zero-Forcing Receivers:WhenK =L /2, BisanM x M
matrix, and its inverse is unique (if it exists). From (13), we
can obtain the zero-forcing receiver as

t ,
G- [ :;Vv% } , ) S, = WB. (15)

+ ) : ~ WhenK > L/2, the(M+2K —L) x M matrix B is a tall
whereW| consists of the ladt rows of W', and the matrix  matrix and its left inverse (if it exists) is not unique. One of

S’ is chosen as the solutions is the least-squares receiver given by:

S' =E'w. (10) Sis = W(B'B) B, (16)
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It is known that the least-squares receiver is the least-normwhereD is a diagonal matrix. Th®l diagonal entries are the
solution. Thus whery(n) is AWGN, the least-squares re- M-point DFT coefficients of the first column &;,. Using
ceiverS|, also minimizes the output noise variance. this diagonalization property and the decompositioBg@in
(20), we are now ready to derive the low cost implementa-

MMSE Receivers: One can also solve for the MMSE re- tion of the receivers. We will first consider the zero-forcing
ceiver from (13). Assume thag(n) is AWGN with variance  receiverS,; for the minimum redundancy case k§f=L/2
No. Then using the orthogonality principle, it is straightfor- ang then the MMSE received’, ... The derivation for the
ward to verify that the MMSE receiver is given by least-squares receivBf, can be obtained by settim= 0in

H !

S,mmse: WB'(pIy + BB') . a7 the expression @8, mse
4.1 Zero-forcing ReceiverS,;
WhenK = L /2, the matrixB = B is anM x M matrix, and

the matricedJ; andL; areL/2 x L/2 matrices. Recall that
the zero-forcing receive8); is given in (15). Substituting

(20) and (22) into the expression 8§, we get
Comparing (16) and (18), we see that except for the term

wherep = No/Es andN = M + K. Using the singular value
decomposition 0B, S;,,sccan be rewritten as

Slmmse: W(pIM + BTB)ilBt (18)

pIv, both the least-squares recei and the MMSE re- S,y = WWwWDw-a)!? (23)
ceiverSy,mschave the same expressions. When the system is o1
noise free, that ip = 0, the MMSE receiveS/,,screduces = (D-WAW')""W. (24)

to the least-squares receiver. . .

Unlike the ZP and CP DMT systems in Section 2, the re}-€t  us__partition the DFT matrix asW =
ceiving matrices of the ZP-ZJ system are no longer a produdt W1 W2 W3z | where W1 and W3 consist of the
of a diagonal matrix and a DFT matrix. Their implementa-first L/2 and the last,/2 columns of W respectively. Then

tion cost is in general in the order bf?. we can write

.
4. LOW COMPLEXITY RECEIVERS WAW' = [ W, W; | [ RS } [ x* ] (25)
1
Though the ZP-ZJ DMT system can reduce the required re- 3

dundancy for IBI elimination by as much as one half, its re-pafine thavl x L matrix W — [ W1 W3 |. Using (25) and

ceiver has a high implementation cost. Below we will derive, o ying the matrix inversion lemma given in the appendix to
low cost implementations of the zero-forcing, Ieast—squaref:,1e matrix(D _WAWT)A we get

and MMSE receivers for the ZP-ZJ DMT system. The ba-

sic idea is to exploit the structure in the matixgiven in / 1 — ot g
(14). Recall that for a ZP-ZJ DMT system with redundancy S;=D (I+W@1W D )W; (26)
K >L/2,the(M+2K —L) x M matrix B is a tall matrix. We
can partitionB as where®1 is anL x L matrix given by
B; 17 . \-1
B= { B> ] (19) 0= ([ Uo,l Lé ] —WTD1W> . (27)
1

whe(erl\/is anM x Mégmatrix andBz is an(2K —L) M Thoygh the expression &, in (26) is more complicated
matrix. We can rewritd3; as than that in (15), it actually has a much lower implementation

B;=Cgr — A (20) cost. Note thaW is anM x L submatrix of the DFT matrix
are e W. In many applicationsM is usually much larger thah.
whereCyg; is a right circulant matrix whose first row is The matriceSW andW ' can be implemented directly with
a complexity ofML or using an FFT/IFFT algorithm. The
[cck - ¢ O -+ 0 ¢ -+ CL_k-1 ] matrix @1 is anL x L matrix whose implementation needs

only L2 multiplications.
TheM x M matrix A is a sparse matrix of the form:
4.2 MMSE ReceiverSymse

A— 8 8 %1 1) For the MMSE case, consider the receiver given in (18). We
o L. 0 0O ’ will derive the result for the general caselof> L/2. Note
! that whenK > L /2, we can partitiorB as (19), wher@; is

whereU1 is anK x K upper triangular Toeplitz matrix with an(2K —L) x M Toeplitz matrix given by

firstrow|[ cL -+ CL_k4+2 CL—k+1 ] andLjis an(L—

K) x (L — K) lower triangular Toeplitz matrix with the first 0 - 0 & &1 CGkiz Gkl
column[ cg ¢ -+ CL_k-1]". Itis known [1] thata B2 = : - :
circulant matrix satisfies O -0 -~ 0 ¢ . Ck

1>

WCi W' =D, (22) [0 U], (28)
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whereU, is an(2K — L) x K upper triangular Toeplitz ma-

trix. Using (19) and (22), we can write

B'B+pI = BIB;1+B}B,+pl (29)
P Wt
=W | D'D+pI WDTW'II[N } ,
+pI+] ¥ D

II

whereW is anM x L matrix consisting of the firsfL — K)

and the lasK columns of W, and W is anM x L matrix
consisting of the firsK and the lasfL — K) columns ofW.
The matrix® is an2L x 2L matrix given by

LIL; 0 0o LI
v_| 0 Uju+uUju, -ul o
0 = 0 0
Ly 0 0 0

Applying the matrix inversion lemma to the matiix—* and
defining the diagonal matriDmmse= (DD + pI)~1, we
can write(B'B 4-pI)~* as

t W DIwW w'

where®; is an2L x 2L matrix given by

o~

WT
WD

-1

©,= (\Ill + [ } DinmsW DTVNV])

Using (20) and (22), we can wriB" = [BI Bz] where

B] Bl]= wD'wW_-AT BJ. (31)

Combining the results in (30) and (31), we can rewrite th

MMSE receiver given in (18) as
—~ — wt
S;nmse: Dmmse<I[W DTW](')Z[ WTD }Dmmse)

W[ wiD'w-A" B} ] (32)

For the case of minimum redundangy—= L /2. In this case,
the matricesW = W = W andB = B;. One can obtain

/

the expression 08;,,,sefor the minimum redundancy case

by appropriately modifying (32).

4.3 Complexity Comparison

The direct implementation of afM + 2K — L) x M receiver

in general needM(M + 2K — L) CMULSs. For the low cost
implementations in (26) and (32), we need to implement the
M x M DFT and IDFT matrices. In practicé/ is often a
power of 2 so that these matrices can be efficiently imple-
mented using the FFT/IFFT algorithms. In this paper, we will
use the split-radix FFT/IFFT algorithms in [6]. The number
of CMULs of an2"-point FFT/IFFT is listed in Table VI of

[6] for differentn. In addition to the DFT and IDFT matri-
ces, we have to realize thé x L matricesW, W, W and
their transpose conjugates. Note that these matrices are sub-
matrices of DFT/IDFT matrices. They can either be imple-
mented directly withML CMULSs or be implemented using
FFT/IFFT algorithms. For most valuesidfandL, it is found
that the FFT/IFFT algorithms in [6] have a smaller number

of CMULs thanML. So the matriceV, W, W and their
transpose conjugates are implemented using the split-radix
FFT/IFFT algorithms. Thé x L matrix®41 and2L x 2L ma-
trix @3 in (26) and (32) are implemented directly and they
needL? and4L? CMULSs respectively.

We compute the rati@) for different values ofM and
L. In practice,L is usually much smaller tha so that the
bandwidth efficiency of the system is large. The ratjov
is seldom larger thaf.2. Some typical values dfl andL
are given in Table 1. The values gf for S}; are shown
in Table 1. For the MMSE case, the ratjovaries slightly
with respect to the redundanéy Table 2 shows the results
for K =0.75L. From these two tables, it is seen that a lot
of computational saving can be attained by implementing the
receivers using the expressions in (26) and (32) Mrer512
andL = 32, we have a saving of arou®8%and94%for S/
andS,mscrespectively.

For completeness, we also compare the number of
CMULs of the low cost implementation & in (26) with
that of ZP DMT receiver in (7) (The CP DMT receiver in
(10) has the same number of CMULS). The ratio is listed in
Table 3. From the table, we see that the ZP-ZJ DMT receiver
is about 3 to 8 times more costly than the ZP DMT receiver.

e

5. SIMULATION RESULTS

In this section, we carry out the Monte Carlo simulation to
verify the performance. The transmitted symbols are QPSK
with signal powerEs. The size of the DFT matrix i =
64. The channel order ik = 16. The channel taps(l) are
independent zero-mean complex Gaussian random variables
with varianceg? = 1/17 for 0 < | < 16. A total of 20000
random channels are used in the numerical simulation. The
channel noise is AWGN with noise powik. We plot the
bit error rate (BER) versus the signal to noise r&igNo.

Fig. 1(a) shows the performance of ZP-ZJ DMT systems
with least-squares receivers for different value& ofor the

We will compare the number of complex multiplications purpose of comparison, we also plot the BER of the conven-
(CMUL) required for the low complexity receivers in (26) tional CP DMT system with 16 redundant samples. When
and (32) with that needed for the direct implementation ofthe redundanci is 10, the performance of the ZP-ZJ DMT
S’ andSy,nserespectively. The implementation cost for the system is comparable to the CP DMT system. WKen 10,
least-squares receivsf, is the same as the MMSE receiver the performance of the proposed system is better than CP
Slumse We will evaluate the efficiency of the low complexity PMT system. A ZP-ZJ DMT system can achieve a better

implementation by computing the following ratio:

_no. of CMUL in low cost implementation
~ no. of CMUL in direct implementation

(33)

performance in both BER and bandwidth efficiency.

Fig. 1(b) shows the performance for the MMSE case.
From the figure, we see that the ZP-ZJ DMT system with a
minimum of 8 redundant samples is only slightly inferior to
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L\M | 64 128 | 256 | 512 | 1024 10°
8 | 0.0996| 0.0536| 0.0297| 0.0165| 0.0092 ;
16 | 0.1465| 0.0653| 0.0326| 0.0173| 0.0094 o
32 X | 0.1122| 0.0443| 0.0202| 0.0101
64 X x | 0.0912| 0.0319| 0.0130 10l
128 X X x | 0.0788| 0.0247
-3
Table 1:n for S;. 0%
m K=16,CP
\M | 64 128 | 256 | 512 | 1024 10 —— K=8,zP-2J
8 | 0.2569] 0.1323] 0.0716| 0.0395| 0.0218 | ¢ K=9,2P-2)
16 | 0.4312| 0.1789| 0.0835| 0.0425| 0.0225 107 —— K=10,2P-ZJ
32 x | 0.3593| 0.1314| 0.0548| 0.0257 | T Ke12.2P-2)
64 X x | 0.3143| 0.1035| 0.0382 107 —== K=14,7P-2]
128 | x X x | 0.2879] 0.0875 L= Ke16.2P
10 ; ! +
Table 2:n for the MMSE receiver withK = 0.75L. 0 10 %%R(dB) %0 40 50

Figure 1(a): Performance of the least-squares receivers

L\M 64 128 256 512 1024

8 3 [ 2.7962] 2.7303| 2.7189| 2.7279 o ,
16 | 4.4118| 3.4076 3 2.8394| 2.7828 '
32 | x |5.8535|4.0787|33212| 3 e, ]
64 X X 8.3933| 5.2484| 3.8707
128 X X X X 7.3537 107 1
Table 3: Ratio of number of CMULs @&, to that of the ZP ol ]
receiver in (7). &
o K=16,CP |
—— K=8,ZP-2ZJ
the conventional CP DMT system withs redundant sam- 105k ¢ K=9,2P-2] |
ples. WherK > 9, the proposed ZP-ZJ DMT system outper- —— K=10,2P-ZJ
forms the CP DMT system. For a BER 90 or less, the wool| T K=12,Z2P-Z) ]
gain can be substantial. —== K=14,7P-Z2)
| —— K=16,2P-2J
6. CONCLUDING REMARKS 0 10 20 30 40 50

SNR(dB)
We propose a ZP-ZJ DMT system that can eliminate 1Bl with Figure 1(b): Performance of the MMSE receivers
fewer redundant samples. Both the zero-forcing and MMSE
receivers are studied. Moreover their low cost implementa-

tions are derived. Compared with the direct implementation;>] p. p, vaidyanathan, B. Vrcelj, “Transmultiplexers as pre-
these low cost implementations have a significantly smaller “coders in modern digital communication: a tutorial re-
number of complex multiplications. Simulations show that  yjew” IEEE ISCAS004.

the proposed system with fewer redundant samples can ou[E’,-] Y. P. Lin, S. M. Phoong, “Minimum redundancy for ISI

perform the CP DMT system. free FIR filterbank transceiverdEEE Trans. Signal Pro-

7. APPENDIX. MATRIX INVERSE LEMMA cessingApril 2002. . '
[4] T. Karp, S. Trautmann, N. J. Fliege, “Zero-forcing

Let A andR be respectivelyn x mandn x ninvertible ma- frequency-domain equalization for gerneralized DMT
trices. Then transceivers with insufficient guard intervaBURASIP
(A+XRY) 1= A 1- A XR 1+ YA 1X) YAl Journal on Applied Slgnal_ Processing004. o
[5] S. Trautmann, N. J. Fliege, “Perfect equalization for
The matricesX andY need not be square. DMT systems without guard timelEEE Trans. Selected
Area in Communication2002.
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