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ABSTRACT

Discrete multitone (DMT) systems have been widely adopted
in broadband communications. When the transmission chan-
nel is frequency selective, there will be interblock interfer-
ence (IBI). IBI can be avoided byzero-padding(ZP) [1].
Another solution is to allow IBI during transmission, and
at the receiver the samples that contain IBI are removed by
zero-jamming(ZJ) [2]. The ZP DMT system employs the
ZP technique whereas the CP DMT system where a cyclic
prefix is added at the transmitter uses the ZJ technique. In
both the ZP DMT and CP DMT systems, the number of re-
dundant samples are larger than or equal to the channel or-
der. In this paper, we propose a ZP-ZJ DMT system. By
combining ZP and ZJ techniques, we are able to reduce the
number of redundant samples needed for IBI elimination by
as much as one half. The transmitter of the ZP-ZJ DMT sys-
tem involves only one IFFT operation and its receiver can be
implemented efficiently using a small number of FFT/IFFT
operations. Simulation shows that the bandwidth efficient
ZP-ZJ DMT system can sometimes outperform the CP DMT
system.

1. INTRODUCTION

The block transmission scheme has found many applications
in broadband communications. For frequency selective chan-
nels, there will be interblock interference (IBI) between suc-
cessive transmission blocks. One can avoid IBI by adding
a sufficient number of zeros at the end of each transmis-
sion block and such a technique is called zero-padding (ZP)
[1][2]. Another solution is to allow IBI during transmission,
and at the receiver the samples that contain IBI are removed
by zero-jamming (ZJ) [2]. The ZP DMT system employs the
ZP technique whereas the CP DMT system where a cyclic
prefix is added at the transmitter uses the ZJ technique.

Suppose that the channel order isL. Then for both the
ZP and ZJ systems, the minimum number of redundant sam-
ples needed for IBI elimination isL. As the redundant sam-
ples do not carry any information, this will reduce the band-
width efficiency. Thus there have been studies on transmis-
sion schemes with a reduced number of redundant samples
[3] [4] [5]. In many DMT applications, some subchannels or
tones are not used for data transmission. These unused tones
are known as null tones or virtual subcarriers. In [4] [5], the
authors show that by exploiting these null tones, zero-forcing
(ZF) equalization can be obtained even when no redundant
sample is added at the transmitter. However, in order to
achieve zero-forcing transmission, there should be at leastL
null tones in the system. In [3], the authors proposed a block
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based transceiver with minimum redundancy. By jointly de-
signing the transmitter and receiver, the required number of
redundant samples can be reduced todL/2e, wheredxe de-
notes the smallest integer≥ x. However, these minimum re-
dundancy systems have a high implementation cost and the
design of transmitter requires the knowledge of channel im-
pulse response.

In this paper, we will combine the ZP and ZJ techniques
to reduce the redundancy of DMT systems. For the proposed
ZP-ZJ DMT system, we will show that ZF equalization can
be achieved if the number of redundant samples is at least
dL/2e. Moreover, we will also study the least-squares and
MMSE receivers for ZP-ZJ system. A direct implementation
of these receivers in general has a high complexity. Thus ef-
ficient implementation based on FFT operations will be de-
rived. We also carry out the numerical simulation of the bit
error rate (BER) performance of the ZP-ZJ DMT systems.
Simulation results show that the ZP-ZJ DMT system with a
smaller number of redundant samples can outperform the CP
DMT system.

Notations: Boldfaced lower and upper case letters rep-
resent vectors and matrices respectively. The notationA†

denotes transpose-conjugate ofA andAT denotes the trans-
pose ofA. W is theM×M normalized DFT matrix, whose

(k, l)th entry is[W]k,l = 1√
M

e
− j2πkl

M .

2. SYSTEM DESCRIPTION

Let x(n) be theM×1 vector containingM input modulation
symbols of the transmitter. Without much loss of generality,
it is assumed thatx(n) is zero-mean and uncorrelated with
symbol energy equal toEs. That is,

E {x(n)}= 0, E {x(n)x†(n− l)}= EsIδ (l). (1)

Let the transmitting matrixG be anN×M matrix. For every
M×1 input vector, we transmit anN×1 vector given by

u(n) = Gx(n). (2)

In this paper, we assume thatN ≥ M so that zero-forcing
equalization is possible. LetK = N−M. Then K is the
number of redundant symbols added at the transmitter. We
assume that the channel does not change during the transmis-
sion of one input block and it can be modeled as an FIR LTI
system with orderL. The channel transfer function is

C(z) = c0 +c1z−1 +c2z−2 + · · ·+cLz−L. (3)

In this paper, we will consider the case of evenL for no-
tational simplicity. One can easily extend the results to the
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case of oddL. In most applications,M is usually a large in-
teger andN≥ L. Under this condition, the received vector at
the receiver is given by

r(n) = C0u(n)+C1u(n−1)+q(n), (4)

where q(n) is a noise vector. The matrixC0 is an
N × N lower triangular Toeplitz matrix with the first
column [ c0 c1 · · · cL 0 · · · 0 ]T and C1 is an
N × N upper triangular Toeplitz matrix with first row
[ 0 · · · 0 cL cL−1 · · · c1 ]. WhenC1G 6= 0, there
is IBI in the received vectorr(n). Let theM×N receiving
matrix at the receiver beS. Then the output of the receiver is
given by

x̂(n) = SC0G︸ ︷︷ ︸
T0

x(n)+SC1G︸ ︷︷ ︸
T1

x(n−1)+Sq(n). (5)

To eliminate the IBI, the transmitting and receiving matrices
should satisfyT1 = SC1G = 0. Two well-known designs of
G andS for IBI elimination are briefly reviewed below.

2.1 ZP System

The first solution is the ZP system with the redundancyK =
L. In this case, the(M +L)×M transmitting matrix has the
following form

G =
[

G
′

0

]
, (6)

whereG
′
is anM×M matrix. One can verify thatC1G = 0;

there is no IBI. In the ZP DMT system,G
′

is chosen as the
IDFT matrixW†, and the receiving matrix is

S = E−1W
[

IM
IL
0

]
, (7)

whereE is a diagonal matrix consisting of theM-point DFT
coefficients of the channel impulse responseck [1]. With
these choices of transmitting and receiving matrices, one
can verify thatT0 = SC0G = I and the ZP DMT system
achieves zero-forcing. Note that the receiverS in (8) has a
low implementation cost asE−1 is a diagonal matrix and the
DFT matrixW can be efficiently implemented using FFT.

2.2 ZJ System

The second solution is the ZJ system with redundancyK =
L. In this case, theM× (M + L) receiving matrixS has the
following form

S =
[

0 S
′ ]

, (8)

whereS
′
is anM×M matrix. For each received blockr(n),

the first L samples are discarded by the receiver. One can
verify thatSC1 = 0; IBI is eliminated. In the special case of
CP DMT system, the transmitting matrix is chosen as

G =
[

W†
L

W†

]
, (9)

whereW†
L consists of the lastL rows ofW†, and the matrix

S
′
is chosen as

S′ = E−1W. (10)

Using (9) and (10), we can show thatT0 = SC0G = I and
the CP DMT system is zero-forcing. The receiverS′ in (10)
also has a low implementation cost.

3. ZP-ZJ DMT SYSTEM

Both the ZP and ZJ systems in Section 2 addL redundant
samples at the transmitter. In this section, we propose a DMT
system that uses both the ZP and ZJ techniques. Let the num-
ber of redundant samples added at the transmitter beK and
K ≤ L. The transmitting matrixG is an(M +K)×M matrix
given by

G =
[

W†

0K×M

]
. (11)

That is,K zeros are added to each transmission block. When
K < L, the first(L−K) rows ofC1G are nonzero, there is
IBI due to insufficient number of zeros between successive
blocks. One can remove the residual IBI by discarding the
first (L−K) samples of each received block. This can be
attained by selecting anM× (M +K) receiving matrix of the
form

S =
[

0M×(L−K) S
′ ]

. (12)

Note thatS
′
is anM× (M +2K−L) matrix. By substituting

(11) and (12) into (5), it is easy to see thatT1 = 0. IBI is
eliminated and the output of the receiving matrix is given by

y(n) = S
′
BW†x(n)+S′q(n), (13)

whereB is an(M +2K−L)×M Toeplitz matrix given by

B =




cL−K · · · c0 0 · · · · · · 0
...

...
...

cK
. ..

.. .
...

...
. .. c0

cL
.. .

...

0
...

... cL−K
...

. ..
. ..

...
0 · · · · · · 0 cL · · · cK




. (14)

For a zero-forcing solution, we needS
′
BW† = IM, which

implies that(M +2K−L) ≥M. Thus the number of redun-
dant samples should satisfyK ≥ L/2. WhenK = L/2, it is
called a minimum redundancy ZP-ZJ DMT system. In the
following, we will find the zero-forcing and MMSE (mini-
mum mean square error) receivers for the ZP-ZJ DMT sys-
tem.

Zero-Forcing Receivers:WhenK = L/2, B is anM×M
matrix, and its inverse is unique (if it exists). From (13), we
can obtain the zero-forcing receiver as

S
′
z f = WB−1. (15)

When K > L/2, the (M + 2K − L)×M matrix B is a tall
matrix and its left inverse (if it exists) is not unique. One of
the solutions is the least-squares receiver given by:

S
′
ls = W(B†B)−1B†. (16)
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It is known that the least-squares receiver is the least-norm
solution. Thus whenq(n) is AWGN, the least-squares re-
ceiverS′ls also minimizes the output noise variance.

MMSE Receivers:One can also solve for the MMSE re-
ceiver from (13). Assume thatq(n) is AWGN with variance
N0. Then using the orthogonality principle, it is straightfor-
ward to verify that the MMSE receiver is given by

S
′
mmse= WB†(ρIN +BB†)−1, (17)

whereρ = N0/Es andN = M +K. Using the singular value
decomposition ofB, S

′
mmsecan be rewritten as

S
′
mmse= W(ρIM +B†B)−1B†, (18)

Comparing (16) and (18), we see that except for the term
ρIM, both the least-squares receiverS′ls and the MMSE re-
ceiverS′mmsehave the same expressions. When the system is
noise free, that isρ = 0, the MMSE receiverS′mmsereduces
to the least-squares receiver.

Unlike the ZP and CP DMT systems in Section 2, the re-
ceiving matrices of the ZP-ZJ system are no longer a product
of a diagonal matrix and a DFT matrix. Their implementa-
tion cost is in general in the order ofM2.

4. LOW COMPLEXITY RECEIVERS

Though the ZP-ZJ DMT system can reduce the required re-
dundancy for IBI elimination by as much as one half, its re-
ceiver has a high implementation cost. Below we will derive
low cost implementations of the zero-forcing, least-squares
and MMSE receivers for the ZP-ZJ DMT system. The ba-
sic idea is to exploit the structure in the matrixB given in
(14). Recall that for a ZP-ZJ DMT system with redundancy
K ≥ L/2, the(M+2K−L)×M matrixB is a tall matrix. We
can partitionB as

B =
[

B1
B2

]
, (19)

whereB1 is anM×M matrix andB2 is an (2K− L)×M
matrix. We can rewriteB1 as

B1 = Ccir −∆, (20)

whereCcir is a right circulant matrix whose first row is

[ cL−K · · · cL 0 · · · 0 c0 · · · cL−K−1 ].

TheM×M matrix∆ is a sparse matrix of the form:

∆ =

[ 0 0 U1
0 0 0
L1 0 0

]
, (21)

whereU1 is anK×K upper triangular Toeplitz matrix with
first row [ cL · · · cL−K+2 cL−K+1 ] andL1 is an (L−
K)× (L−K) lower triangular Toeplitz matrix with the first
column [ c0 c1 · · · cL−K−1 ]T . It is known [1] that a
circulant matrix satisfies

WCcirW† = D, (22)

whereD is a diagonal matrix. TheM diagonal entries are the
M-point DFT coefficients of the first column ofCcir . Using
this diagonalization property and the decomposition ofB1 in
(20), we are now ready to derive the low cost implementa-
tion of the receivers. We will first consider the zero-forcing
receiverS′z f for the minimum redundancy case ofK = L/2
and then the MMSE receiverS′mmse. The derivation for the
least-squares receiverS′ls can be obtained by settingρ = 0 in
the expression ofS′mmse.

4.1 Zero-forcing ReceiverS′z f

WhenK = L/2, the matrixB = B1 is anM×M matrix, and
the matricesU1 andL1 areL/2×L/2 matrices. Recall that
the zero-forcing receiverS′z f is given in (15). Substituting

(20) and (22) into the expression ofS
′
z f, we get

S
′
z f = W(W†DW−∆)−1 (23)

= (D−W∆W†)−1W. (24)

Let us partition the DFT matrix as W =
[ W1 W2 W3 ] where W1 and W3 consist of the
first L/2 and the lastL/2 columns ofW respectively. Then
we can write

W∆W† = [ W1 W3 ]
[

0 U1
L1 0

][
W†

1
W†

3

]
. (25)

Define theM×L matrixW = [ W1 W3 ]. Using (25) and
applying the matrix inversion lemma given in the appendix to
the matrix(D−W∆W†)−1, we get

S
′
z f = D−1

(
I+WΘ1W

†
D−1

)
W, (26)

whereΘ1 is anL×L matrix given by

Θ1 =
([

0 L−1
1

U−1
1 0

]
−W

†
D−1W

)−1

. (27)

Though the expression ofS′z f in (26) is more complicated
than that in (15), it actually has a much lower implementation
cost. Note thatW is anM×L submatrix of the DFT matrix
W. In many applications,M is usually much larger thanL.

The matricesW andW
†

can be implemented directly with
a complexity ofML or using an FFT/IFFT algorithm. The
matrix Θ1 is anL× L matrix whose implementation needs
only L2 multiplications.

4.2 MMSE ReceiverS′mmse

For the MMSE case, consider the receiver given in (18). We
will derive the result for the general case ofK ≥ L/2. Note
that whenK > L/2, we can partitionB as (19), whereB2 is
an(2K−L)×M Toeplitz matrix given by

B2 =




0 · · · 0 cL cL−1 · · · cL−K+2 cL−K+1
...

. . .
...

0 · · · 0 · · · 0 cL · · · cK




4
= [ 0 U2 ] , (28)
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whereU2 is an(2K−L)×K upper triangular Toeplitz ma-
trix. Using (19) and (22), we can write

B†B+ρI = B†
1B1 +B†

2B2 +ρI (29)

= W†


D†D+ρI+[Ŵ D†W̃]Ψ

[
Ŵ†

W̃†D

]

︸ ︷︷ ︸
Π


W,

whereŴ is anM×L matrix consisting of the first(L−K)
and the lastK columns ofW, andW̃ is anM× L matrix
consisting of the firstK and the last(L−K) columns ofW.
The matrixΨ is an2L×2L matrix given by

Ψ =




L†
1L1 0 0 −L†

1
0 U†

1U1 +U†
2U2 −U†

1 0
0 −U1 0 0
−L1 0 0 0


 .

Applying the matrix inversion lemma to the matrixΠ−1 and
defining the diagonal matrixDmmse= (D†D + ρI)−1, we
can write(B†B+ρI)−1 as

W†Dmmse

(
I− [Ŵ D†W̃]Θ2

[
Ŵ†

W̃†D

]
Dmmse

)
W, (30)

whereΘ2 is an2L×2L matrix given by

Θ2 =
(
Ψ−1 +

[
Ŵ†

W̃†D

]
Dmmse[Ŵ D†W̃]

)−1

.

Using (20) and (22), we can writeB† = [B†
1 B†

2] where

[B†
1 B†

2] = [W†D†W−∆† B†
2]. (31)

Combining the results in (30) and (31), we can rewrite the
MMSE receiver given in (18) as

S′mmse= Dmmse

(
I− [Ŵ D†W̃]Θ2

[
Ŵ†

W̃†D

]
Dmmse

)

W
[

W†D†W−∆† B†
2

]
(32)

For the case of minimum redundancy,K = L/2. In this case,
the matrices̃W = Ŵ = W andB = B1. One can obtain
the expression ofS′mmsefor the minimum redundancy case
by appropriately modifying (32).

4.3 Complexity Comparison

We will compare the number of complex multiplications
(CMUL) required for the low complexity receivers in (26)
and (32) with that needed for the direct implementation of
S′z f andS′mmserespectively. The implementation cost for the
least-squares receiverS′ls is the same as the MMSE receiver
S′mmse. We will evaluate the efficiency of the low complexity
implementation by computing the following ratio:

η =
no. of CMUL in low cost implementation
no. of CMUL in direct implementation

. (33)

The direct implementation of an(M +2K−L)×M receiver
in general needsM(M + 2K−L) CMULs. For the low cost
implementations in (26) and (32), we need to implement the
M×M DFT and IDFT matrices. In practice,M is often a
power of 2 so that these matrices can be efficiently imple-
mented using the FFT/IFFT algorithms. In this paper, we will
use the split-radix FFT/IFFT algorithms in [6]. The number
of CMULs of an2n-point FFT/IFFT is listed in Table VI of
[6] for different n. In addition to the DFT and IDFT matri-
ces, we have to realize theM×L matricesW, Ŵ, W̃ and
their transpose conjugates. Note that these matrices are sub-
matrices of DFT/IDFT matrices. They can either be imple-
mented directly withML CMULs or be implemented using
FFT/IFFT algorithms. For most values ofM andL, it is found
that the FFT/IFFT algorithms in [6] have a smaller number
of CMULs thanML. So the matricesW, Ŵ, W̃ and their
transpose conjugates are implemented using the split-radix
FFT/IFFT algorithms. TheL×L matrixΘ1 and2L×2L ma-
trix Θ2 in (26) and (32) are implemented directly and they
needL2 and4L2 CMULs respectively.

We compute the ratioη for different values ofM and
L. In practice,L is usually much smaller thanM so that the
bandwidth efficiency of the system is large. The ratioL/M
is seldom larger than0.2. Some typical values ofM andL
are given in Table 1. The values ofη for S′z f are shown
in Table 1. For the MMSE case, the ratioη varies slightly
with respect to the redundancyK. Table 2 shows the results
for K = 0.75L. From these two tables, it is seen that a lot
of computational saving can be attained by implementing the
receivers using the expressions in (26) and (32). ForM = 512
andL = 32, we have a saving of around98%and94%for S′z f

andS′mmserespectively.
For completeness, we also compare the number of

CMULs of the low cost implementation ofS′z f in (26) with
that of ZP DMT receiver in (7) (The CP DMT receiver in
(10) has the same number of CMULs). The ratio is listed in
Table 3. From the table, we see that the ZP-ZJ DMT receiver
is about 3 to 8 times more costly than the ZP DMT receiver.

5. SIMULATION RESULTS

In this section, we carry out the Monte Carlo simulation to
verify the performance. The transmitted symbols are QPSK
with signal powerEs. The size of the DFT matrix isM =
64. The channel order isL = 16. The channel tapsc(l) are
independent zero-mean complex Gaussian random variables
with varianceσ2

l = 1/17 for 0≤ l ≤ 16. A total of 20000
random channels are used in the numerical simulation. The
channel noise is AWGN with noise powerN0. We plot the
bit error rate (BER) versus the signal to noise ratioEs/N0.

Fig. 1(a) shows the performance of ZP-ZJ DMT systems
with least-squares receivers for different values ofK. For the
purpose of comparison, we also plot the BER of the conven-
tional CP DMT system with 16 redundant samples. When
the redundancyK is 10, the performance of the ZP-ZJ DMT
system is comparable to the CP DMT system. WhenK > 10,
the performance of the proposed system is better than CP
DMT system. A ZP-ZJ DMT system can achieve a better
performance in both BER and bandwidth efficiency.

Fig. 1(b) shows the performance for the MMSE case.
From the figure, we see that the ZP-ZJ DMT system with a
minimum of 8 redundant samples is only slightly inferior to
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L\M 64 128 256 512 1024
8 0.0996 0.0536 0.0297 0.0165 0.0092
16 0.1465 0.0653 0.0326 0.0173 0.0094
32 x 0.1122 0.0443 0.0202 0.0101
64 x x 0.0912 0.0319 0.0130
128 x x x 0.0788 0.0247

Table 1:η for S′z f.

L\ M 64 128 256 512 1024
8 0.2569 0.1323 0.0716 0.0395 0.0218
16 0.4312 0.1789 0.0835 0.0425 0.0225
32 x 0.3593 0.1314 0.0548 0.0257
64 x x 0.3143 0.1035 0.0382
128 x x x 0.2879 0.0875

Table 2:η for the MMSE receiver withK = 0.75L.

L\M 64 128 256 512 1024
8 3 2.7962 2.7303 2.7189 2.7279
16 4.4118 3.4076 3 2.8394 2.7828
32 x 5.8535 4.0787 3.3212 3
64 x x 8.3933 5.2484 3.8707
128 x x x x 7.3537

Table 3: Ratio of number of CMULs ofS′z f to that of the ZP
receiver in (7).

the conventional CP DMT system with16 redundant sam-
ples. WhenK ≥ 9, the proposed ZP-ZJ DMT system outper-
forms the CP DMT system. For a BER of10−4 or less, the
gain can be substantial.

6. CONCLUDING REMARKS

We propose a ZP-ZJ DMT system that can eliminate IBI with
fewer redundant samples. Both the zero-forcing and MMSE
receivers are studied. Moreover their low cost implementa-
tions are derived. Compared with the direct implementation,
these low cost implementations have a significantly smaller
number of complex multiplications. Simulations show that
the proposed system with fewer redundant samples can out-
perform the CP DMT system.

7. APPENDIX. MATRIX INVERSE LEMMA

Let A andR be respectivelym×m andn×n invertible ma-
trices. Then

(A+XRY)−1 = A−1−A−1X(R−1 +YA−1X)−1YA−1.

The matricesX andY need not be square.
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