
A COMPARISON OF DATA REPRESENTATION TYPES, FEATURE TYPES AND 
FUSION TECHNIQUES FOR 3D FACE BIOMETRY 

Helin Duta�acı(1), Bülent Sankur(1), and Yücel Yemez(2) 
(1) Department of Electrical-Electronics Engineering, Bo�aziçi University 

Bebek, 34342, Istanbul, Turkey 
phone: + (90) 212 359 6414, fax: + (90) 212 287 2465, email: {dutagach, bulent.sankur}@boun.edu.tr 

web: http://busim.ee.boun.edu.tr/~sankur/ 
 

(2) Department of Computer Engineering, Koç University 
Rumeli Feneri Yolu, Sarıyer, 34450, Istanbul, Turkey 

phone: + (90) 212 338 1585, fax: + (90) 212 338 1548, email: yyemez@ku.edu.tr 
web: http://network.ku.edu.tr/~yyemez/

ABSTRACT 
This paper focuses on the problems of person identification 
and authentication using registered 3D face data. The face 
surface geometry is represented alternately as a point cloud,  
a depth image or as voxel data. Various local or global 
feature sets are extracted, such as DFT/DCT coefficients, 
ICA- and NMF- projections, which results in a rich 
repertoire of representations/features.  The identification 
and authentication performance of the individual schemes 
are compared. Fusion schemes are invoked, to improve the 
performance especially in the case when  there are only few 
samples per subject.  

1. INTRODUCTION 

Improvements in 3D imaging devices have enabled 3D face 
data to be a promising new biometric modality. The 
geometrical information of 3D facial is more robust to such 
adverse effects as illumination conditions, small pose 
variations, and skin color cosmetics, all of which are 
challenging problems for 2D face recognition systems. On 
the other hand, 3D face data may suffer from lower 
resolution and the uncertainty at low-reflection points such 
as facial hair. 
In this work, we address identification and authentication 
problems based solely on 3D face data in a fusion context. 
Identification corresponds to the person recognition without 
the user providing any information. The system must assign 
an identity from among the enrolled faces in the database. In 
authentication, the system tests the veracity of the claim of 
the user resulting in “accept” or “reject” decisions. 
Research on 3D face biometrics is relatively recent.  Lee and 
Milios [1] modeled the curvature information on the face by 
Extended Gaussian Image (EGI). Tanaka et al. [2] utilized 
EGI, by including principal curvatures and their directions 
and compared EGI’s using Fisher’s spherical correlation. 
Chua et al. [3], have used point signatures, a free form 
surface representation technique.  Beumier et al. [4] extracted 
central and lateral face profiles, and compared curvature 
values along these profiles. Chang et al. [5] developed a 

multi-modal face recognition system by applying Principal 
Component Analysis (PCA) on both 3D range data and 
intensity images. Another multi-modal scheme based on PCA 
can be found in [6]. Bronstein et al. [7] focused on 3D face 
recognition algorithms that are invariant to facial 
expressions. 
The focus of this work is on the fusion of the diverse 3D face 
recognition techniques described in [8] where we obtained 
very promising identification results. For example, we 
achieved 99.8% identification performance provided  that the 
training data have at least four samples of each individual. 
However, as the training size drops, the performance 
deteriorates proportionally, hence the need to invoke fusion 
methods in the more realistic case when there could exist, at 
most, two or three samples per subject. In addition we also 
address the authentication (verification) problem. 
In section 2 we summarize the representation schemes and 
feature types. Section 3 introduces the fusion techniques that 
we use in this work and describes the matching schemes for 
identification and authentication. In section 4, the 
experimental results are reported. Finally, we provide 
concluding remarks in Section 5. 

2. REPRESENTATION TYPES AND FEATURES 

The range images employed in this work are registered and 
cropped by the algorithm described in [9]. Table 1 gives a 
summary of the face recognition schemes, which are 
comparatively assessed in [8]. We summarize in the sequel 
the 3D data representation types and the features extracted. 
 
2.1 Representation Types  
 
3D Point Cloud: The 3D point cloud is the set of registered 
3D  coordinates of the range data, where all the 
correspondences are  defined  (Figure 1.a).  
2D Depth Image: The 2D depth image is obtained by 
projecting the point cloud onto a regular X-Y grid. The Z-
coordinates then constitute the depth image ),( yxI , much 
like an intensity image (Figure 1.b). 
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3D Voxel Representation: A 3D binary function is  defined 
on a voxel grid using the point cloud.  A voxel is assigned a 
value “1” if it comprises a range point and “0” otherwise. 
The mapping is then smoothed by applying 3D distance 
transform, as depicted in Figure 2. 
 

      
(a)   (b) 

Figure 1 – (a) 3D point cloud. (b) 2D depth image 

 

 
Figure 2 – Slices from the voxel representation 

 
2.2 Features 
 
2.2.1 Independent Component Analysis 
We apply independent component analysis (ICA) both to the 
point cloud and to the depth image. The coordinates of the 
point cloud or the values of the depth image ),( yxI  of each 
face in the training set, are concatenated to form a single 
vector which in turn forms one of the columns of the data 
matrix. The vector dimension is first reduced via PCA and 
the data matrix X  is then subjected to the FastICA algorithm 
[10].  ICA yields the mixing matrix, A , and the independent 
coefficients, S , so that: 

ASX =  
The columns of the mixing matrix, A , form a basis for the 
data, and the columns of S  are used as the ICA-based feature 
vectors of the corresponding faces. The length of the feature 
vector is determined by the PCA projection. We denote the 
ICA-based schemes applied to point clouds and depth images 
as PC-ICA and DI-ICA, respectively. 
2.2.2 Non-negative Matrix Factorization 
Non-negative matrix factorization (NMF) is a technique to 
obtain parts-based representation of images, which is 
commonly used for 2D face recognition. In this work we 
extend this approach to 3D face recognition, using 3D point 
cloud coordinates.  
The NMF algorithm results in two non-negative matrices, 
W  and H such that, 

WHX ≈  
where X  is the non-negative data matrix. The columns of 
W  can be regarded as basis faces, whereas the columns of 
H serve as feature vectors of the faces in the training set. In 
order to obtain the feature vector of an input test face, the 
pseudo-inverse of  W  is multiplied by the data vector 
representing the input face. We construct the data matrix in a 

similar manner as in the ICA-based scheme, however, in this 
case we do not apply PCA to the original data matrix. The 
data matrix is normalized so as to have non-negative values. 
We use the multiplicative update rules [11] to obtain the 
matrices W  and H . We denote the NMF-based scheme 
applied to a point cloud as PC-NMF. 

Table 1 - Representation types and features  

Representation Features 

3D Point Cloud �� ICA  (PC-ICA) 
�� NMF (PC-NMF) 

2D Depth Image 

�� Global DFT (DI-DFT) 
�� Global DCT (DI-DCT) 
�� Block-based DFT   
       (DI-block-DFT) 
�� Block-based DCT  
       (DI-block-DCT) 
�� ICA (DI-ICA) 

3D Voxel  
Representation 

�� 3D DFT (V-DFT) 

 
2.2.3 Global DFT/DCT 
We apply 2D Discrete Fourier Transform (DFT) to the depth 
image and extract the first KxK DFT coefficients from the 
coefficient matrix. The real and imaginary parts of the 
coefficients are concatenated to construct the feature vector 
of size 2K2–1. Likewise, the DCT-based features are 
extracted by applying   2D Discrete Cosine Transform to the 
depth image. The first KxK coefficients are concatenated into 
the feature vector. In this case the feature vector is of size K2, 
since DCT coefficients are real. These two schemes will be 
referred to as DI-DFT and DI-DCT in the rest of the paper. 
2.2.4 Block-based DFT/DCT 
Block-based DFT/DCT-schemes have previously been 
applied to intensity images for face recognition [12]. In this 
work, we apply these schemes to depth images. We partition 
the depth image into blocks and calculate the DFT or DCT 
on each block separately. Then we extract the first KxK 
coefficients and form the individual feature vector of each 
block. The fusion is conducted at feature level. The first KxK 
DFT/DCT coefficients of the blocks of a face are 
concatenated to form one single feature vector. These block-
based schemes will be referred to as DI-block-DFT and DI-
block-DCT. 
2.2.5 Three-dimensional DFT 
The last face representation that we consider is constructed 
based on the 3D distance transform of the surface voxel data. 
The real and imaginary parts of the first KxKxK coefficients 
obtained from the 3D-DFT of the distance transform are 
concatenated to form a feature vector. The resulting feature 
vector of size 2K3-1 is referred to as V-DFT. 

3. FEATURE MATCHING AND CLASSIFIER 
FUSION  

We use linear discriminant analysis for matching features. 
Each class (person identity) in the training set is modeled by 
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a multivariate normal density. The covariance matrix is 
estimated using the whole data in the training set, since we 
have very small number of training samples per class. The 
distance of a test feature to the class means are calculated 
using the discriminant functions. The class with the smallest 
distance is selected as the identity of the input face.  
For authentication, the distance to the claimed class mean is 
calculated. If the distance is below a threshold, the input face 
is accepted. Since the linear discriminant analysis minimizes 
the within-class scatter and maximizes the between-class 
scatter in the training data, we need an additional “training” 
set, to determine the threshold. The false rejection and false 
acceptance rates are calculated on several threshold values, 
and the one that gives the equal error rate is determined as 
the threshold for the authentication system. The false 
acceptance and rejection errors are then evaluated on a 
separate test set.  
We have considered three fusion techniques to improve the 
performance of the individual schemes used for the 
identification and authentication tasks. All fusion techniques 
that we employ are performed at decision level as described 
in the sequel.  
3.1. Consensus Voting 
In consensus voting, the identity with the highest number of 
votes is declared as the identified subject. For authentication, 
each method independently accepts or rejects the claimed 
identity, and the consensus is formed on the most favorable 
mode. 
3.2. Borda Count 
Each method assigns its own rank to all the faces in the 
database based on their distances to the input face. The ranks 
from individual schemes are summed up to obtain a final 
rank for each face in the database. Then the identity of the 
face is declared to be the one with the highest rank. Borda 
count is not applicable to the authentication problem, since it 
involves comparison with all faces in the database. 
3.3. Sum Rule 
Each method produces a distance value from the test face to 
the classes. The distance values are first mapped to the range 
[0, 1] and then summed up to obtain the final distance. 

4. EXPERIMENTAL RESULTS 

4.1. Results for individual schemes 
We have used the 3DRMA data set [13] in our experiments. 
The 3DRMA data set contains face scans of 106 subjects 
with 5-6 sessions per subject. The total number of faces is 
617. The faces are registered using the ICP algorithm 
described in [9]. 
The point cloud representation contains 3389 points. The 
depth images are of size 81x73, and the size for the voxel 
representation is selected as 64x64x64. 
Table 2 gives the feature vector dimension utilized for each 
scheme. The size of the feature vector varies with respect to 
the number of training samples per subject, since the feature 
dimension that LDA can handle is constrained with the size 
of the training set. The same number of features is used for 
identification and authentication. 

We have altered the training and test sets, and conducted N-
fold experiments. For the cases with two and three training 
samples per subject, we have conducted 10 experiments. For 
the case with four training samples, the fold number was 5. 
Table 3 gives the identification results averaged over the 
number of experiments. The best values are obtained with 
ICA and NMF-based features obtained from point cloud 
representation. When applied to depth images ICA-based 
method yields poorer results as compared to the other 
methods. This relatively poor performance is due to the high 
energy variability at the borders of the faces among the depth 
images. This variability is modeled by ICA but has little 
contribution to recognition. 

Table 2 – Feature vector dimension 

Schemes 2 training 
samples 

3 training 
samples 

4 training 
samples 

PC-ICA 30 40 50 

PC-NMF 30 30 50 

DI-DFT 49 71 127 

DI-DCT 49 81 121 

DI-block-DFT 84 84 84 

DI-block-DCT 108 108 108 

DI-ICA 60 80 50 

V-DFT  53 127 127 
 

Table 3 – Identification results for individual schemes 

Schemes 2 training 
samples 

3 training 
samples 

4 training 
samples 

PC-ICA 96.8 98.8 99.8 

PC-NMF 96.7 98.7 99.8 

DI-DFT 90.5 96.1 98.2 

DI-DCT 88.3 94.7 96.7 

DI-block-DFT 93.8 97.3 98.8 

DI-block-DCT 93.5 97.9 98.2 

DI-ICA 84.0 93.9 96.8 

V-DFT  88.4 94.1 98.3 
 
For authentication, two or three samples per subject are used 
for training the linear discriminants. One sample per subject 
is reserved for determining the threshold and the rest are used 
for testing. Table 4 and 5 display the authentication 
performances for the cases with (2+1) and (3+1) training 
samples per subject, respectively. The second column gives 
the equal error rates over the training set used for finding the 
optimal threshold. The third and fourth columns give false 
rejection and false acceptance rates, respectively, when this 
threshold is applied to the test set. 
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We observe that the DFT/DCT based schemes yield 
authentication errors above 5%. The intra-distance measures 
for these schemes contain outliers (Figures 3 and 4), which 
affect the threshold computation in an unfavorable way, 
whereas ICA-based features extracted from point clouds 
yield compact intra-distance distributions (Figure 5).  

 
Figure 3 – Impostor and genuine distributions for DI-block-DFT 

scheme (obtained from a single experiment) 

 
Figure 4 – Impostor and genuine distributions for V-DFT scheme 

(obtained from a single experiment) 

 
Figure 5 – Impostor and genuine distributions for PC-ICA scheme 

(obtained from a single experiment) 
 

 
Figure 6 – ROC curves for individual schemes 

Table 4 – Authentication results for 2+1 training samples per subject 

Schemes 

Equal 
Error 
Rate (%) 
(Training) 

False 
Reject. 
Rate (%) 
(Test) 

False 
Accept. 
Rate (%) 
(Test) 

PC-ICA 2.3 2.4 2.3 

PC-NMF 2.7 2.9 2.7 

DI-DFT 8.5 9.8 8.0 

DI-DCT 8.4 11.8 8.0 

DI-block-DFT 6.8 6.1 7.1 

DI-block-DCT 7.6 6.5 7.8 

DI-ICA 5.8 9.2 5.6 

V-DFT  6.5 9.7 6.8 
 

Table 5 – Authentication results for 3+1 training samples per subject 

Schemes 

Equal 
Error 
Rate (%) 
(Training) 

False 
Reject. 
Rate (%) 
(Test) 

False 
Accept. 
Rate (%) 
(Test) 

PC-ICA 1.8 1.7 1.6 

PC-NMF 2.2 1.7 2.3 

DI-DFT 7.5 8.9 7.3 

DI-DCT 9.5 10.5 9.3 

DI-block-DFT 6.1 4.7 6.1 

DI-block-DCT 6.9 4.8 6.9 

DI-ICA 3.9 7.1 3.5 

V-DFT  7.1 8.5 7.5 
 
 
4.2. Results with fusion algorithms 
Tables 6 to 9 display the identification results obtained with 
fusion algorithms. In each case, a different combination of 
schemes is used. When all the schemes are fused, the results 
do not further improve, except for a slight increase obtained 
with the consensus voting technique. 
Fusing the best two and three methods (Table 7 and 8) 
outperforms the individual techniques. We obtain the highest 
performance (99.2%) with consensus voting of PC-ICA, 
PC-NMF  and DI-block-DCT methods. 

Table 6 – Identification results with fusion of all schemes  

Fusion techniques 
(All schemes are fused) 

2 training 
samples 

3 training 
samples 

Max. individual perfor. 96.8 98.8 
Consensus Voting 96.7 99.0 
Borda Count 94.5 97.7 
Sum Rule 96.7 98.8 
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Table 7 – Identification results with fusion of                                
PC-ICA and PC-NMF  

Fusion techniques 
(PC-ICA+PC-NMF) 

2 training 
samples 

3 training 
samples 

Max. individual perfor. 96.8 98.8 
Borda Count 96.9 98.9 
Sum Rule 97.2 99.1 

 

Table 8 – Identification results with fusion of PC-ICA,      
PC-NMF and DI-block-DCT 

Fusion techniques 
(PC-ICA+PC-NMF+ 
DI-block-DCT) 

2 training 
samples 

3 training 
samples 

Max. individual perfor. 96.8 98.8 
Consensus Voting 97.1 99.2 
Borda Count 96.7 98.8 
Sum Rule 97.3 99.0 

 

Table 9 – Identification results with fusion of weak methods 

Fusion techniques 
(6 weakest methods) 

2 training 
samples 

3 training 
samples 

Max. individual perfor. 93.8 97.9 
Consensus Voting 95.5 98.6 
Borda Count 93.5 97.7 
Sum Rule 95.6 98.3 

 
For authentication, we have fused PC-ICA and PC-NMF 
techniques using the sum rule. With fusion, the average of 
false acceptance and false rejection errors reduces from 2.4 to 
1.1% for the case with three training samples per subject, and 
from 1.7 to 1.0 for the case with four training samples per 
subject. Figure 7 shows the ROC curves obtained by fusion 
of these best two techniques. The ROC curve of the 
individual schemes are also provided on the same plot.  

 
 

Figure 7 – ROC curves for PC-ICA , PC-NMF and their fusion 
 

5. CONCLUSION 

We have tested various representation types and feature 
extraction methods, both for recognition and authentication. 
The experimental results show that the best features are 
NMF and ICA-based features extracted from the point 
clouds. We have also conducted fusion experiments. The 
two best methods that individually result in the highest 
performances, namely PC-ICA and PC-NMF, give further 
improved results when fused using borda count and sum 
rule. When relatively weak methods are fused, the individual 
identification performances are also outperformed (Table 9). 
The methods we have proposed for registered 3D face data 
are very promising in that they achieve 99 % correct 
identification and  with 1.8 % equal error rate at their best. 
There is evidence of further room for improvement using  
fusion schemes [14]. 
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