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ABSTRACT
Since the downlink has a difficult algebraic structure, it
is more convenient to switch to the dual uplink problem
which has better algebraic properties. We consider the up-
link/downlink duality with respect to themean square er-
ror (MSE), where our system model is as general as pos-
sible, i.e., we allow not only for correlations of the symbols
and noise, but also model the precoders, the channels, and
the equalizers as compact linear operators. We show that
a duality with respect to the MSE per user is preferable to
the state-of-the-art stream-wise MSE duality, since the up-
link/downlink transformation of the user-wise MSE duality
has a considerably lower complexity than the one of the
stream-wise MSE duality. Interestingly, the uplink/downlink
transformation for the total MSE duality is trivial, i.e., asim-
ple weighting with a scalar common for all filters has to be
computed. We apply the uplink/downlink duality to derive
the operator form of the well-knowntransmit Wiener filter
(TxWF).

1. INTRODUCTION

In the broadcast setup [1], e.g., the downlink of a cellular
system, one transmitter communicates with several receivers.
If the broadcast channel(BC) is non-degraded [1], e.g., the
downlink withmultiple-input multiple output(MIMO) chan-
nels to the multiple users, optimizing the system, e.g., maxi-
mizing the sum rate, is difficult in general, since most prob-
lems for the BC are non-convex.

A powerful tool to circumvent the difficulties with the
BC is the uplink/downlink duality, i.e., the achievable region
of a suitably defined dualmultiple access channel(MAC)
is the same as the achievable region of the original BC un-
der the same total transmit power constraint. Such a du-
ality was reported for the vector Gaussian BC capacity re-
gion in [2, 3] (with non-lineardirty paper coding; DPC [4]),
for the MIMO Gaussian BC capacity region in [5] (with
DPC), for thesignal-to-interference-and-noise ratio(SINR)
region with linear beamforming in [2, 6] (vector BC) and
[7] (MIMO BC with fixed receivers), and recently, for the
MIMO BC MSE region with linear precoding and with DPC
in [8, 9] and [10, 11], respectively. The aforementioned du-
alities enabled efficient algorithmic solutions to non-convex
BC optimizations, because the dual MAC problems are con-
vex, e.g., sum rate maximization [12].

To reach the whole capacity region of the MIMO BC,
the non-linear DPC has to be applied [5]. However, we re-
strict ourselves to linear precoding to avoid the complexity of
DPC. Since the rate related problems (e.g., maximization of
the sum rate and rate balancing) for linear precoding are also

non-convex in the dual MAC, we have to resort to alternative
quantities to be optimized. We choose the MSE, since the
MSE gives a lower bound to the sum rate and the most popu-
lar MSE problems either turn out to be convex (minimization
of the sum MSE, [8, 9]) or can be solved via the KKT condi-
tions which are sufficient (balancing of the MSEs, [9]) in the
dual MAC.

We aim at a duality which is as general as possible. To
this end, we consider anNH -dimensional (NH is possibly
infinite) Hilbert spaceH with the inner product1 denoted by
〈•,•〉 and restrict ourselves neither to uncorrelated symbols
and uncorrelated noise processes nor to finite operators, i.e.,
matrix operators. We only have to impose the assumptions
that the channel operators and the filter operators (precoder
and equalizer) are bounded, that is, any input with finite norm
is transformed to a bounded output. Together with the as-
sumption that the correlation operators of the symbols and
the noise are nuclear, i.e., the sum of their singular valuesis
finite, the combination of any correlation operator with some
precoding operator, channel operator, and/or equalization op-
erator is element of the trace class [13].

We present the MSE uplink/downlink duality per data
symbol, per user, and for the total MSE in Section 3. Al-
though the uplink/downlink duality can be used to find algo-
rithmic solutions to problems without closed form solutions,
we will apply the duality to obtain an expression for the well
known TxWF [14] as an operator in Section 4. Thereby, we
will see the advantage of our duality especially for sum MSE
minimizations, i.e., the uplink/downlink transformationis a
simple weighting with a common scalar.

2. SYSTEM MODEL

As depicted in Fig. 1, we consider a BC, whereK users are
served by one centralized transmitter. The data signal

sk(t) =
NH

∑
i=1

sk,iak,i(t) (1)

for the k-th user is transformed by the respective precoder
Pk at the transmitter, where E[sk,is∗k, j ] = rk,i, j . The formula-
tion of sk(t) in (1) confirms the fundamental concept of digi-
tal communications (i.e., communication by means of wave-
forms), if thesk,i ’s are elements of a finite alphabet. The sum
of the precoded signals is transmitted over the channelHk to
userk whose received signal is perturbed by the noiseηk(t)

1In our notation, we have for the inner product that〈αϕ ,ψ〉 = α〈ϕ ,ψ〉
and 〈ϕ ,αψ〉 = α∗〈ϕ ,ψ〉 for α ∈ C. We also have that〈ϕ ,ψ〉 = 〈ψ ,ϕ〉∗,
where(•)∗ denotes complex conjugation.
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ŝK(t)

Figure 1: Broadcast Channel Model

and transformed by the equalizerGk to get the estimation sig-
nal

ŝk(t) = GkHk

K

∑
i=1

Pisi(t)+Gkηk(t). (2)

The estimate for thei-th data symbolsk,i of userk is obtained
by following inner product:

ŝk,i = 〈ŝk,bk,i〉. (3)

Besides the assumptions that both, theak,i(t)′s and the
bk,i(t)′s, are linearly independent, we do not impose any spe-
cial constraints on the signaturesak,i(t) andbk,i(t), e.g., we
do not assume that they form orthonormal bases ofH or that
they are the same. Popular examples forak,i(t) andbk,i(t)
are pulse shaping and its matched filter, the spreading se-
quences of CDMA signals, and canonical unit vectors for
MIMO sytems.

The correlation operator for a random processx(t) is de-
noted byRx, whereRx is defined by E[x〈ϕ ,x〉] = Rxϕ for any
ϕ(t). As we restrictRx to be nuclear for any processx(t), we
get

E[〈Ax,x〉] =
NH

∑
i=1

〈AE[x〈x,ϕi〉∗],ϕi〉 = Tr(ARx)

for any orthonormal basisϕi(t), i = 1, . . . ,NH of H and for
any bounded operatorA. We use the abbreviation Tr(A) for
the sum∑NH

i=1 〈Aϕi ,ϕi〉 which is independent of the choice
for the orthonormal basisϕi(t) and is called the trace of
an operator [13, 15].2 Note that the correlation operator
Rx is positive definite by definition. Therefore, we always
have that Tr(ARxA) ≥ 0, whereA denotes the adjoint op-
erator ofA. Furthermore, we assume that the noiseηk(t)
of user k is uncorrelated with any data signalsi(t), i.e.,
E[ηk〈ϕ ,si〉] = Rηk,si ϕ = 0 with i,k = 1, . . . ,K for any ϕ(t).
Symbols of different users are assumed to be uncorrelated,
that is, E[sk,is∗ℓ, j ] = 0 for k 6= ℓ.

Our general system model comprises many popular spe-
cial cases, e.g., flat-fading MIMO channels (the channels can
be described by a matrix operator, [8, 9]) and frequency-
selective MIMO channels (possibly IIR). We’d like to stress
that only the case of matrix operators has been considered in
the literature on uplink/downlink duality up to now. Due to
our general formulation, we can show in the next section that
the uplink/downlink duality also holds for many other cases,

2Note that Tr(•) has following properties. First, it is linear, i.e., Tr(aA+
bB) = aTr(A)+bTr(B). Second, the operators can be rotated inside Tr(•),
that is, Tr(AB) = Tr(BA). For finite dimensional operators, it is equal to the
trace of a matrix, i.e., the sum of the diagonal elements.
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Figure 2: Multiple Access Channel Model

e.g., frequency-selective channels, FIR precoders/equalizers,
and IIR precoders/equalizers. Note however that we have to
assume that the chain of any precoder, channel, and equalizer
has to be nuclear. Therefore, we restrict the channel opera-
tors to be nuclear and the filter operators to be bounded.

3. UPLINK/DOWNLINK DUALITY

In the BC (see Fig. 1), the MSE for thei-th data symbol of
userk can be written as

εBC
k,i = E

[

∣

∣sk,i − ŝk,i
∣

∣

2
]

= rk,i,i −
NH

∑
j=1

2Re
(

rk, j ,i〈GkHkPkak, j ,bk,i〉
)

+
K

∑
ℓ=1

〈GkHkPℓRsℓPℓHkGkbk,i ,bk,i〉

+ 〈GkRηkGkbk,i ,bk,i〉.

(4)

By definition, the correlation operator for thek-th data signal
fulfills Rskϕ = ∑NH

i=1 ∑NH

j=1 rk,i, j ak,i〈ϕ ,ak, j〉 for anyϕ(t).
We will show in the next subsections that the MAC de-

picted in Fig. 2 is dual to the BC in Fig. 1 with respect to the
MSE for the same sum transmit power. The transmit filter
of userk for the dual MAC is denoted byTk, thek-th user’s
channel isCk, and the respective receive filter isFk. Similar
to the BC, the data signal can be written as

sMAC
k (t) =

NH

∑
i=1

sk,ibk,i(t). (5)

The corresponding correlation operator fulfillsRMAC
sk

ϕ =

∑NH

i=1 ∑NH

j=1 rk,i, jbk,i〈ϕ ,bk,i〉, where E[sk,is∗k, j ] = rk,i, j , and the

estimate for thei-th symbol of userk is ŝMAC
k,i = 〈ŝMAC

k ,ak,i〉.
With above definitions, the MSE of thei-th data symbol for
userk in the dual MAC reads as

εMAC
k,i = E

[

∣

∣

∣
sk,i − ŝMAC

k,i

∣

∣

∣

2
]

= rk,i,i −
NH

∑
j=1

2Re
(

rk, j ,i〈FkCkTkbk, j ,ak,i〉
)

+
K

∑
ℓ=1

〈FkCℓTℓR
MAC
sℓ TℓCℓFkak,i ,ak,i〉

+ 〈FkRηFkak,i ,ak,i〉.

(6)
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3.1 Duality per Data Symbol

As their MSE duality is based on the SINR duality (e.g., [6]),
which was naturally shown for each data symbol separately,
Schubert et al. presented the MSE duality per data symbol in
[8]. We prove that the symbol-wise duality also holds for in-
finite dimensional operators without using any SINR result.
Note that we need the assumption for the symbol-wise du-
ality that the symbols are uncorrelated (rk,i, j = 0 for i 6= j).
Substituting this assumption into (4) and (6), we can infer
that it is useful forεBC

k,i = εMAC
k,i that following equality holds:

Re
(

rk,i,i〈GkHkPkak,i ,bk,i〉
)

= Re
(

rk,i,i〈FkCkTkbk,i ,ak,i〉
)

.
(7)

Fulfilling this first condition means that the desired symbol
sk,i experiences the same (or complex conjugate) total weight
in the BC and the dual MAC. As we will see later, the noise
power of the BC plays the same role as the transmit power
of the dual MAC and vice versa. Therefore, we set the noise
power of the BC (MAC) equal to the transmit power of the
MAC (BC), where we allow for a different power control in
the MAC (expressed by the scalarsξk,i ∈ R):

ξ 2
k,i〈GkRηkGkbk,i ,bk,i〉 = rk,i,i〈Tkbk,i ,Tkbk,i〉 (8)

ξ 2
k,i〈FkRηFkak,i ,ak,i〉 = rk,i,i〈Pkak,i ,Pkak,i〉. (9)

There are infinitely many choices for the operatorsTk,Ck,Fk
in the dual MAC, such thatεBC

k,i = εMAC
k,i , ∀k, i. However, we

choose the operators for the dual MAC such that they have
a close relationship to the operators in the BC and such that
the conditions (7)–(9) are fulfilled in order to end up with a
simple proof for the duality.

An obvious choice for the MAC precoders and the MAC
equalizers fulfilling (8) and (9) are

Tk = R
1/2
ηk

GkΘk

Fk = ΥkPkR
−1/2
η

(10)

respectively. Here, we have introduced the operatorΘk
whosei-th eigenvalue isξk,i/

√
rk,i,i with the eigenfunction

bk,i(t). Likewise,ak,i(t) is the eigenfunction corresponding
to the eigenvalue

√
rk,i,i/ξk,i of Υk. For (7), it suffices to set

Ck = R
1/2
η HkR

−1/2
ηk

. (11)

We denote the ‘square root’ operator of the positive corre-

lation operatorRx asR
1/2
x which is also an adjoint operator,

whereRxϕ = R
1/2
x R

1/2
x ϕ for arbitraryϕ(t). Clearly, phys-

ically meaningful noise operator must be invertible and so
their square root operators are invertible.

With the dual MAC operators in (10) and (11), the equal-
ity εBC

k,i = εMAC
k,i can be rewritten as

K

∑
ℓ=1

NH

∑
j=1

rℓ, j , jwℓ,k, j ,i + 〈GkRηkGkbk,i ,bk,i〉 =

=
K

∑
ℓ=1

NH

∑
j=1

ξ 2
ℓ, j

ξ 2
k,i

rk,i,iwk,ℓ,i, j +
rk,i,i

ξ 2
k,i

〈Pkak,i ,Pkak,i〉.

Here, we introducedwk,ℓ,i, j = |〈GℓHℓPkak,i ,bℓ, j〉|2 for nota-
tional brevity. Multiplying above equation withξ 2

k,i and col-
lecting all equations fork = 1, . . . ,K andi = 1, . . . ,NH , we
end up with the equation system

Wξ = p (12)

where the MAC power control parameters are put into

ξ =
[

ξ 2
1,1, . . . ,ξ

2
1,NH

,ξ 2
2,1, . . . ,ξ

2
K,NH

]T

and(•)T denotes transposition. Letu = (k− 1)NH + i and
v = (ℓ−1)NH + j. Then, theu-th element of the right-hand
side of (12) is

[p]u = rk,i,i〈Pkak,i ,Pkak,i〉

and theu-th element of thev-th column ofW is

[W ]u,v =







−rk,i,iwk,ℓ,i, j u 6= v

∑K
m=1 ∑NH

n=1 rm,n,nwm,k,n,i − rk,i,iwk,k,i,i

+〈GkRηkGkbk,i ,bk,i〉
u = v.

Clearly,W is (column) diagonal dominant for non-vanishing
noise in the BC, i.e.,[W ]v,v > ∑u6=v |[W ]u,v| for anyv. Thus,
the matrixW is always invertible. Moreover,W has a di-
agonal with positive entries and all other elements are non-
positive. Consequently, all entries ofW−1 are non-negative.
Since the right-hand sidep only contains non-negative num-
bers, the resultingξ has always non-negative elements. This
observation shows that we can always find a dual MAC with
the operators in (10) and (11) which lead to the same MSE
for all users and data symbols by applying the appropriate
power controlξk,i in the dual MAC.

When summing up the scalar equations of (12), the re-
sulting right-hand side is the total transmit power in the BC,
i.e.,∑K

k=1 ∑NH

i=1 rk,i,i〈Pkak,i ,Pkak,i〉. Due to

[W ]v,v + ∑
u6=v

[W ]u,v = 〈GkRηkGkbk,i ,bk,i〉

and (8), the resulting left-hand side is the total transmit power
in the dual MAC. Thus, the dual MAC leads to the same
MSEs as the BC for the same total transmit power.

With similar steps, it can be shown that the BC in Fig. 1
leads to the same MSEs for the same total transmit power as
the dual MAC in Fig. 2, if the BC operators fulfill (7)–(9) and
are chosen to be

Pk = R
1/2
η FkΥ

−1
k

Gk = Θ
−1
k TkR

−1/2
ηk

Hk = R
1/2
ηk

CkR
−1/2
η .

(13)

Therefore, we have proven that some MSEs for every
user and data symbol can be achieved in the BC for a given
total transmit power, iff the same MSEs can be achieved in
the dual MAC for the same transmit power, i.e., the BC and
the dual MAC have the same MSE region.
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3.2 Duality per User

Obviously, the duality of the BC and the MAC per data sym-
bol proven in the previous subsection implies that the BC and
the MAC are also dual per user, i.e., a set of user MSEs (sum
of the MSEs of every user’s data symbols) can be achieved
in the BC for some transmit power, iff the same user MSEs
are possible in the dual MAC. However, the transformation
between the dual MAC and the BC presented in the last sub-
section is very complex, since we need to solve an equation
system inKNH variables [see (12)].3 As we will see in the
following, this high complexity can be avoided, if we use
the duality per user instead, since the dimensionality of the
equation system reduces toK.

Contrary to the previous subsection, it is not necessary to
restrict thek-th user’s data symbols to be uncorrelated. For
notational brevity, we use the operatorsΨk andΓk which map
some orthonormal basisϕi(t), i = 1, . . . ,NH of H to thek-
th user’s signaturesak,i = Ψkϕi andbk,i = Γkϕi , respectively.
Thus, we have thatRsk = ΨkR

ϕ
skΨk and R

MAC
sk

= ΓkR
ϕ
skΓk,

whereR
ϕ
sky = ∑NH

i=1 ∑NH

j=1 rk,i, jϕi〈y,ϕ j〉 for anyy(t) ∈ H .
With above definitions, the sum over the data symbol in-

dexi in the total MSEs for the BC (εBC
k = ∑NH

i=1 εBC
k,i ) and for

the dual MAC (εMAC
k = ∑NH

i=1 εMAC
k,i ), which follow respec-

tively from (4) and (6), leads to traces Tr(•) of operators.
The total MSE of userk in the BC can be expressed as

εBC
k =

NH

∑
i=1

E
[

∣

∣sk,i − ŝk,i

∣

∣

2
]

= Tr
(

Rsk

)

−2Re
(

Tr
(

ΓkGkHkPkRskΨ
−1
k

))

+
K

∑
ℓ=1

Tr
(

ΓkGkHkPℓRsℓPℓHkGkΓk
)

+Tr
(

ΓkGkRηkGkΓk
)

whereas we get for the total MSE in the MAC:

εMAC
k =

NH

∑
i=1

E

[

∣

∣

∣
sk,i − ŝMAC

k,i

∣

∣

∣

2
]

= Tr
(

R
MAC
sk

)

−2Re
(

Tr
(

ΨkFkCkTkR
MAC
sk

Γ
−1
k

))

+
K

∑
ℓ=1

Tr
(

ΨkFkCℓTℓR
MAC
sℓ

TℓCℓFkΨk

)

+Tr
(

ΨkFkRηFkΨk
)

The three conditions (7)–(9) can be rewritten as

Re
(

Tr
(

ΓkGkHkPkΨkR
ϕ
sk

))

= Re
(

Tr
(

ΨkFkCkTkΨkR
ϕ
sk

))

ξ 2
k Tr

(

ΓkGkRηkGkΓk
)

= Tr
(

TkΓkR
ϕ
sk
ΓkTk

)

ξ 2
k Tr

(

ΨkFkRηFkΨk
)

= Tr
(

PkΨkR
ϕ
sk
ΨkPk

)

respectively. These conditions are fulfilled by

Tk = ξkR
1/2
ηk

GkΓkR
ϕ,−1/2
sk Γ

−1
k

Fk = ξ−1
k Ψ

−1
k R

ϕ,1/2
sk ΨkPkR

−1/2
η

Ck = R
1/2
η HkR

−1/2
ηk

.

(14)

3Note that we do not restrictNH to be finite.

Note that above conditions and the operators in (14) only en-
able a user-wise power control (theξk,k = 1, . . . ,K). Setting
εBC

k = εMAC
k leads to an equation system as in (12). Again,

the properties of the resulting equation system ensure the ex-
istence of a valid solution, summing up the equations shows
that the transmit powers of the BC and the dual MAC are
identical, and similar steps are possible for the transforma-
tion from the dual MAC to the BC. Therefore, a duality with
respect to the users’ MSEs is possible with a dramatically re-
duced number of duality parameters compared to the duality
per data symbol shown in the previous subsection. More pre-
cisely, we need to computeK instead ofNH parameters for
the transformation from the BC to the dual MAC and vice
versa.

3.3 Duality for Total MSE

With similar steps as in the previous two subsections, it can
be shown that a duality with respect to the total sum MSE
ε = ∑K

k=1 εk can be achieved with following operators

Tk = ξR
1/2
ηk

GkΓkR
ϕ,−1/2
sk Γ

−1
k

Fk = Ψ
−1
k R

ϕ,1/2
sk ΨkPkR

−1/2
η

Ck = R
1/2
η HkR

−1/2
ηk

(15)

where we setξk = ξ ,k = 1, . . . ,K compared to (14). Conse-
quently, the original BC problem can be solved in the dual
MAC and the transformation of the solution to the BC is just
a weighting of the operators with a scalar which follows from
the transmit power constraint.

4. APPLICATION OF DUALITY TO TXWF

The TxWF (see [14]) minimizes the total MSE of the BC un-
der a total transmit power constraint, where the equalization
operators are constrained to be weighted identity operators
and the weights have the same valueg∈ R for all receivers:

{PWF,1, . . . ,PWF,K ,gWF} = argmin
{P1,...,PK ,g}

K

∑
k=1

NH

∑
i=1

εBC
k,i

s.t.:
K

∑
k=1

Tr
(

PkRskPk
)

≤ Ptot Gk = gI, ∀k.

(16)

Unfortunately, the cost function of above TxWF optimization
is non-convex. However, a closed form expression for finite
dimensional operators has been given in [14] by solving the
original BC problem. With the duality for the total MSE, the
solution is obtained much easier than shown in [14].

Clearly, the dual MAC problem has precodersTk con-
strained to be [see (15)]:

Tk = τR
1/2
ηk

ΓkR
ϕ,−1/2
sk Γ

−1
k (17)

with τ = gξ ∈ R. Thus, the total transmit power constraint
(which can easily be shown to be always active) for the dual
MAC can be fulfilled by the appropriate choice for the com-
mon scalar MAC weight

τ =

√

Ptot

∑K
k=1Tr

(

ΓkRηkΓk
) . (18)
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With this result, the dual MAC optimization corresponding
to (16) transforms into an unconstrained minimization of the
total MSE with respect to the equalizersFk. Fortunately, the
problem falls apart intoK separate problems, one for each
Fk, which can be solved using the orthogonality principle:

E
[(

sk,i − ŝMAC
k,i

)∗
xMAC

]

= 0 i = 1, . . . ,NH (19)

wherexMAC(t) denotes the received signal for the dual MAC
(see Fig. 2). Since we have that

E
[

s∗k,ix
MAC

]

= CkTkR
MAC
sk

Γ
−1
k ϕi

E
[

ŝMAC,∗
k,i xMAC

]

=
K

∑
ℓ=1

CℓTℓR
MAC
sℓ TℓCℓFkΨkϕi +RηFkΨkϕi

and the orthogonality condition (19) must hold for alli, the
dual MAC equalizer reads as

Fk =
1
τ
Ψ

−1
k R

ϕ,1/2
sk ΓkHk

(

K

∑
ℓ=1

HℓΓℓΓℓHℓ +
1
τ2 I

)−1

R
−1/2
η .

(20)
Here, we took the expressions for the precoding operators
Tℓ from (17) and the channel operatorsCℓ from (15). By
employing (15) again, we can find the BC precoders:

Pk =
1
g

(

K

∑
ℓ=1

HℓΓℓΓℓHℓ +
1
τ2 I

)−1

HkΓkΨ
−1
k . (21)

The found precoders must fulfill the total transmit power con-
straint which can be used to find the receivers’ weight

g =

√

√

√

√

√

∑K
k=1Tr

(

∑K
ℓ=1

(

HℓΓℓΓℓHℓ + 1
τ2 I

)−2
HkR

MAC
sk

Hk

)

Ptot
.

(22)
The obtained solution for the TxWF operator has some inter-
esting properties.
• Due to the definition ofΨk and Γk, bk,i = ΓkΨ

−1
k ak,i

holds. Therefore, the BC data signal [see (1)] is first
transformed by the BC precodersPk to the dual MAC
data signal [see (5)]. With this transformation, the sig-
naturesbk,i employed at the receivers perfectly match the
signatures at the transmitter.

• The orthonormalized data signalsϕ
k = Ψ

−1
k sk propagates

over the total channelΓkHk. Therefore, we do not find
any occurence ofHk without the correspondingΓk in
above precoder solution (21).

• When creating an equivalent model for the orthonormal-
ized data signalsϕ

k (t), the operatorΓk is merged with the
channel operatorHk. Hence, the noise process in this
equivalent model must beΓkηk. We follow that the reg-
ularization parameter 1/τ2 [see (18)] is equal to the ra-
tio of the total noise power in the equivalent model over
the total transmit powerPtot, i.e., one over the signal-to-
noise-ratio in this equivalent model.

• For the special case, that the signatures at the trans-
mitter and at the receivers are identical, i.e.,ak,i(t) =
bk,i(t) ∀k, i, and the signatures are orthonormal the op-
eratorsΓk andΨk disappear. Then, the relationship to the
matrix-valued TxWF solution in [14] becomes evident.
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