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ABSTRACT
To minimize the risks involved in humanitarian demining requires a
sensitivity setting close to unity, resulting in a very high false alarm
rate. Nuclear quadrupole resonance detection, based on the spin
echoes from nuclear spin relaxation, is a promising example of a
highly speci�c detector that directly addresses the properties of the
explosive rather than the mine casing. However, the data aquisi-
tion time necessary to obtain a suf�ciently high sensitivity is long
due to the extremely poor signal-to-noise-ratio of the spin echoes.
Besides improvements in the hardware, it is important to pursue
better signal analytic techniques. We present a time-frequency ap-
proach based on the Wigner-Ville quasi-distribution for the analysis
of nuclear quadrupole resonance data. We calculate ROC curves
for real data obtained under laboratory conditions and show the
technique presents a substantial improvement over popular demod-
ulation techniques, especially for signals with poor signal-to-noise
ratio.

1. INTRODUCTION: LANDMINES AND NUCLEAR
QUADRUPOLE RESONANCE

In spite of all technological developments, the metal detector re-
mains the detector of choice for most �eld workers working in the
demining area. Even plastic mines can be found by the metal de-
tector, as the detonator always contains a small amount of metal.
However, to reliably detect even plastic landmines, sub-gram quan-
tities of metal must be registered. Because a former battle �eld is
often �lled with metal debris, this results in an unacceptably high
false alarm rate. On average 500 to 1000 objects are wrongly clas-
si�ed as potential mines for each real mine encountered. A promis-
ing solution consists of using nuclear quadrupole resonance (NQR)
techniques. A necessary condition for the use of NQR, is the pres-
ence of a substance with a nuclear quadrupole moment. All known
explosives contain the naturally stable nitrogen isotope 14N; (with
a natural abundance of 99.64 %) with nuclear spin 1, and with nu-
clear transitions in the frequency range between 0 and 6 MHz. The
transition frequencies depend mostly on the electric �eld gradient
tensor, which is in good approximation determined by the charge
distribution of the electrons that bind the nitrogen to the rest of the
explosive [1]. NQR signals are therefore highly speci�c with re-
spect to the chemical structure of the sample, which in turn yields
a very reliable classi�cation (very low false alarm rate). Because
of its high potential value in remote explosive detection, there is
renewed interest in NQR methods for landmine and unexploded
ordnance (UXO) detection, as well as for securing crowded high

risk areas such as airports by non-intrusive means. The main chal-
lenge for NQR techniques, is the extremely poor signal-to-noise-
ratio (SNR). To improve the SNR, many repetitions of the experi-
ment are necessary. The most popular method is to set up an appro-
priate sequence of RF pulses, and register the returned echo after
each such pulse. The rate at which repetition is physically infor-
mative, is bound from below in a fundamental way by the physical
parameters of the nuclear relaxation process, which is a result of
two different mechanisms, called the spin-spin relaxation and the
spin-lattice relaxation. The relaxation time that characterizes the
spin-lattice relaxation, denoted T1, determines the time necessary
for the system to regain its original thermal equilibrium state, and
gives a bound on how quickly a pulse sequence can be initiated after
another. The spin-spin relaxation time, denoted T2; is indicative of
the decoherence as a result of spin-spin interactions and determines
the length of the spin echo sequence. Spin-spin relaxation times are
generally (much) shorter than spin-lattice relaxation times. In prac-
tice, we can apply a pulse sequence of length T2; and repeat this
pulse sequence every T1. For most explosives, the relaxation times
are short enough so that NQR detection becomes feasible. Unfor-
tunately, this is not feasible for α�trinitrotoluene, better known as
TNT, the active compound of approximately 60% of the landmines,
because TNT has relaxation times that lead to prohibitively long
detection times within the operational limits of landmine detection
[2]. Because one cannot shorten the relaxation parameters of TNT,
much effort has gone into cleverly designing the emitted RF pulse
and increasing the sensitivity of the receiver. Besides these efforts, it
is worthwhile to pursue better signal analytic detection techniques.

2. THE NUCLEAR QUADRUPOLE RESONANCE SIGNAL

The cause of the NQR signal is the change in the magnetization
along the direction of the solenoid. In the case of 14N, we are deal-
ing with a spin-1 system so that the relevant quantum mechanical
subspace is spanned by just three orthogonal vectors. Different ori-
entations of the principle axis of the electric �eld tensor in the crys-
talline structure, as well as the high temperature, lead to classical
statistical mixtures of such spin 1 systems. To accommodate for this
fact, theoretical descriptions of NQR ([1], [3], and [5]), describe the
state of the system as a classical statistical mixture of pure quantum
states using a density operator ρ belonging to the class of linear,
positive operators that sum to one when they act upon a complete
set of eigenvectors. The dynamics of the density operator ρ is gov-
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erned by the unitary evolution that solves the Schrödinger equation

dρ(t)
dt

=� i
~
[H ;ρ(0)]:

Here ~ is the Plank constant divided by 2π;H is the Hamil-
tonian of the NQR subsystem and ρ(0) the initial density operator.
Data analysis for NQR experiments starts from the quadrature com-
ponents V (t), which are a result of the change in the magnetization
M: The expectation of the magnetization in the direction of the axis
of symmetry of the solenoid (say, the z-axis), is obtained by tracing
over the product of the state ρsys (the mixture of quadrupole active
spin-1 states) with the magnetization operator �Mz along that spatial
axis:

h �Mzi= Tr( �Mzρsys):

With N the number of turns in a solenoid of area A, µ the magnetic
permeability and Q the quality factor of the coil, we have

V (t) = QN
d(µMzA)
dt

:

As the two quadrature components are always 90 degrees out of
phase, they form a single complex quantity which can conve-
niently be expressed in a single real function, known as the Wigner-
Ville (time-frequency) quasi-distribution. We will also refer to
the Wigner-Ville quasi-distribution as the Wigner-Ville function, or
simply the Wigner function.

3. WIGNER FUNCTIONS

We will brie�y derive a few properties of Wigner functions in a
transparent way that will aid us in the subsequent analysis. Let
x(t);y(t) 2L2 be two complex valued, square integrable functions.
These functions could represent signals in signal analysis or states
in quantum mechanics. Let A :L2�L2�R!L1 be the bilinear
quantity

Aτ (x(t);y(t)) = x(t+ τ=2)y�(t� τ=2): (1)

The function A can be regarded as a parametrized version of the
sesquilinear product, which is recovered for τ = 0. The Wigner-
Ville joint time-frequency distribution of a temporal function x(t);
is de�ned as:

W [x](t;ν) =
Z
x(t+ τ=2)x�(t� τ=2)exp(�2πiντ)dτ: (2)

If we denote by Fτ [:] the usual Fourier transform with respect to τ

and de�ne
Wx�y � Fτ [Aτ (x;y)]:

Then we see that the Wigner function is the Fourier transform of
this τ�parametrized product:

Wx�x(t;ν) = Fτ [Aτ (x;x)](t;ν) =W [x](t;ν):

For any complex constant a; theWigner transform satis�es the prop-
erty

Wax�ax = aa�Wx�x

It is well-known that, because the Wigner transform is bilinear in its
arguments, it fails to be additive in general:

W
(x+y)�(x+y) 6=Wx�x+Wy�y

One can establish the Wigner transform for the sum of two signals,
by noting that, according to (1):

Aτ (x+ y;x+ y)
= Aτ (x;x)+Aτ (y;y)+Aτ (y;x)+Aτ (x;y)

So that the following rather nice distributive law holds:

W(x+y)�(x+y) = Fτ [Aτ (x+ y;x+ y)]
= Wx�x+Wy�y+Wx�y+Wy�x

Without additional knowledge, one cannot simplifyWx�x+Wy�y any
further., but the last two terms,Wx�y+Wy�x; can be simpli�ed using
(1) to obtain:

Wx�y+Wy�x = Fτ [Aτ (y;x)]+Fτ [Aτ (x;y)]

One can see from the de�nition of A; that it is invariant if we in-
terchange the order of the signals, invert the sign of τ and take the
complex conjugate:

Aτ (y(t);x(t)) = A��τ (x(t);y(t))

But for the Fourier transform of A we can say more because of
the re�ection properties of the Fourier transform. If we denote
Ft [ f (t)] = S(ω); then the re�ection properties are

Ft [ f (�t)] = S(�ω)

Ft [ f �(t)] = S�(�ω)

These last two equations can be combined to yield Ft [ f �(�t)] =
S�(ω) = Ft�[ f (t)]: Then

Fτ [A��τ (x;y)] = Fτ�[Aτ (x;y)]

and it then follows easily that

Wx�y+Wy�x = 2Re(Fτ [Aτ (x;y)])

and
W(x+y)�(x+y) =Wx�x+Wy�y+2Re(Wx�y) (3)

As is well-known, the Wigner function is not necessarily posi-
tive for all points in (t;ν) space [4], but it is always real. We see that
the non-linear structure of the addition gives rise to extra terms for
the resulting Wigner function. We note in passing that the Wigner-
Ville time-frequency (quasi) distribution, although formally identi-
cal to its quantum mechanical counterpart, has a radically different
meaning. In fact, the quantum version is not directly measurable
by a single measurement, nor by a repetition of that same exper-
iment. One way to determine the quantum Wigner function is to
obtain precise expectation values for a set of observables that form
a so-called quorum. Such a quorum has the property of being in-
formationally complete in Prugovecki's sense, in that it allows for a
unique determination of the quantum state of the system. Such a set
always contains at least two incompatible observables, whereas we
are here referring to the repeated measurement of a single observ-
able. For details, we refer to [7]. In this paper the Wigner function
is used in its signal-analytic sense, where it is used as a discrete
bilinear transform of the time series that allows for a joint repre-
sentation of time and frequency information of the signal. In the
signal-analysis research community much work has been devoted
to generate Wigner-Ville like functions without such "spurious",
"ghost" or "interference" peaks by means of appropriately chosen
integral kernels in the de�nition of the Wigner-Ville function, or by
convolution. This has given rise to a multitude of different distribu-
tions (Pseudo Wigner-Ville, s-Wigner-Ville, Choï-Williams, Born-
Jordan,...) depending on which properties one wants the resulting
distribution to have [4]. There are however deep theoretical reasons
for preferring the Wigner-Ville distribution [7]. While the interfer-
ence terms may complicate the interpretation of the function, they
also ensure the unitary character of the function regarded as a trans-
form. Unitarity, in turn, is a suf�cient condition for invertibility of
the transform. This means, in effect, that no information was lost
in transforming the signal. Rather than making an attempt to mini-
mize the interference terms, we will show they can be exploited to
our advantage for detection purposes.
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4. A DISTANCE MEASURE ON THE SPACE OFWIGNER
FUNCTIONS

We often encounter instances in the literature that employ heuristic
�distance measures� for Wigner-Ville functions, such as the Euclid-
ean distance between the �rst few singular values of the singular
value decomposition of the Wigner-Ville function. Of course the
Euclidean distance is a true metric in Euclidean space, but such
a measure, useful as it may be, fails to be a true metric for the
Wigner-Ville functions from which the singular values were cal-
culated. However, it is possible to derive a true distance measure
between two Wigner functions. It is well-known that the function

dR( �x; �y) = arccos jhx;yij: (4)

is the natural Riemannian metric between two rays �x and �y in a
Hilbert space H of which x and y are two unit vector representa-
tives. A Riemannian metric is a positive quadratic form on a Rie-
mann space (i.e., a space that is locally isomorphic to a Euclidean
space). Moreover, it is clearly invariant under unitary transforma-
tions because the de�ning feature of a unitary transformationU is:

hx;yi= hUx;Uyi

Vice versa, we have that every invariant metric that provides for
a distance between two elements of H , must be a function of
dR(x;y). Suppose that D(x;y) is another invariant metric and that u;
v 2H are arbitrary but such that dR(x;y) = dR(u;v): Because any
ray can be obtained from any other ray by a unitary transformation,
there exist a unitary transformationU1 such that x=U1(u): Because
U1 did not change the angle, there exists a second unitary transfor-
mation that leaves the ray u invariant and transforms v into y : y =
U2(v): If we setU =U1U2; thenD(u;v)=D(U(u);U(v))=D(x;y):
If D(x;y) = α(dR(x;y)); then we see that D(u;v) = α(dR(x;y)):
There is a beautiful and simple relation between the inner product of
two vectors and the overlap of two correspondingWigner functions,
called Moyal's formula [6]:Z Z

Wx�xWy�ydtdν = j
Z
x(t)y�(t)dtj2 = jhx;yij2: (5)

Moyal's relation allows to establish a distance measure on the
space of Wigner functions. A function d : X �X ! R is called a
distance measure if it is non-negative and �nite, zero only for two
identical elements of X , symmetrical in its arguments and satis�es
the triangle inequality. Because dR is a metric, we can quite simply
obtain a metric for the Wigner function. Substitution of (5) in (4),
we obtain:

d(Wx�x;Wy�y) = arccos
rZ Z

Wx�xWy�ydtdν : (6)

The former equation is to be understood for Wigner transforms
of the unit norm Hilbert space representatives. We note a dif-
ference with respect to the metric dR in L2; because dR(x;y) = 0
implies x(t) = eiαy(t): Hence, the space which becomes a metric
space through dR, is not the vector space directly, but rather the
space whose elements are equivalence classes of vectors of the kind
eiαy(t). In other words, it is a metric space with respect to the pro-
jective Hilbert space, or the rays in H . We see that this is not
the case for the Wigner function, which is the same function for all
members in any single equivalence class. For detection purposes,
it is suf�cient to use the overlap between two Wigner functions as
given in Moyal's formula (5), because arccos and square root are
monotone functions and do not alter the detection capabilities of a
threshold detector.

5. EXPERIMENTAL RESULTS

5.1 Set up and data acquisition
The data employed for our analysis was kindly provided by the
NQR group of King's College, London, under supervision of Pro-
fessor J.A.S. Smith. A pure monoclinic TNT sample with a weight

Figure 1: An improved demodulation detector using the three most
distinct peaks in the NQR spectrum. Depicted are echoes 5, 10, 15,
20 and 25. The deterioration of the signal as a function of the echo
number results in lower ROC curves.

typical of that found in an anti-personnel mine, is placed inside a
solenoidal coil which emits an RF-pulse of the order of a kilo watt.
The returned echo signal is routed through a hardware band-pass
�lter with a bandwidth of approximately 50 kHz and then sent to
a Tecmag Libra spectrometer yielding a complex discrete time se-
ries. Because of the ideal laboratory conditions under which the
signal has been obtained, the results will compare unrealistically
optimistic with respect to those obtained under �eld conditions. In
particular, the absence of RF interference and the use of a coil that
contains the sample in its entirety, must be taken into account when
attempting to compare the results of our analysis with those of data
obtained under more realistic conditions. The emitted RF signals
are pulsed, spin-locked echo signals with a mean excitation fre-
quency of about 841.5 kHz. The mean and width of the excitation
are such, that 4 spectral lines of TNT can be detected within the
frequency range of the band pass �lter. Because the same coil is
used for the emission of the RF signal (which has a mean power
of several kilo watts), as for the reception of the echo (which is ex-
tremely weak), the returned echo contains so-called antenna ringing
effects, which are cancelled using a phase cycling technique well-
known from NMR. The phase cycling technique requires forming
an appropriate sum of four signals. The signals used for the analy-
sis, are the sum of 5 such phase-cycled sums and hence consist of
20 repeated data acquisitions, averaged to improve signal to noise
ratio. The sampling time is 5µs and each set has 8192 data points,
which consists of 32 sequential echo signals, each containing 256
data points. The pulse sequence is of the type

π� τ�π�2τ�π�2τ�π�2τ� :::

Here π denotes the RF pulses and the 1280 µs of data (256
times 5 µs) for each echo signal is acquired during the 2τ periods
between the pulses. Algorithms are programmed in MATLAB 7 on
a 2,2 GHz PC with 512 MB RAM and in all cases calculation time
was less than one order of magnitude below the necessary data ac-
quisition time. The calculation time necessary for the classi�cation
of a single echo requires 0.4 s for the Wigner-Ville method, whereas
the improved demodulation technique requires 0.35 s.

5.2 The improved demodulation technique
The most simple and popular detection technique for NQR, is the
so-called demodulation technique which �rst estimates the power
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Figure 2: The Wigner-Ville function of the time series of the sec-
ond spin echo. One can clearly see the signal is well-localized in
the time-frequency plane. The maximum in time, as well as in fre-
quency, is in the centre of the graph. Blue colors indicate negative
values of the function.

spectral density S(ν) of the signal s(tn); by taking the modulus
squared of the fast (or discrete) Fourier transform of the discrete
time series. If we call νmax the frequency νmax = arg(max(S(ν)))
where one expects the spectral line with the highest intensity in
presence of TNT at a given temperature, the estimated power spec-
tral density σ(νmax) at this frequency νmax; is the test statistic for a
threshold detector. If σ(νmax) exceeds a given threshold, the pres-
ence of TNT is accepted, if not, it is rejected. Sometimes the aver-
age under σ(νn) over a few frequency bins is taken as a statistical
test parameter to account for drift in the transition frequencies as a
result of the temperature dependence of the NQR spectrum. All our
experimental samples are taken at the same temperature, hence we
see no improvement in the ef�ciency of the method, whether we use
σ(νmax); or a sum of values ∑σ(νmax) surrounding the relevant
frequency bin. However, a considerable improvement is obtained
when we allow for the demodulation technique to sample multiple
peaks simultaneously. The results that we present here use this im-
proved demodulation algorithm exploiting knowledge of the three
dominant resonance frequencies of TNT within a range of a few
tens of kHz around the mean excitation frequency 841.5 kHz. To
calculate experimental ROC curves, we have taken 100 data sam-
ples with TNT, and 100 data samples without TNT. ROC curves are
obtained by selecting a threshold value and calculating the sensitiv-
ity and speci�city for that threshold and taking the convex hull of
the resulting curve. The performance of the three peak demodula-
tion technique can be inspected from the ROC curves depicted in
1. We see the �rst few echoes deliver a very reliable detector, but
the statistical performance diminishes rapidly with increasing echo
number.

5.3 The Time-Frequency method

To obtain a time-frequency perspective on this problem, we �rst
calculate the Wigner-Ville distributionW (t;ν) of the complex dis-
crete time series s(t), averaged over a great number of experiments,
which in our case was 99 time series. We will denote this Wigner
function for the averaged signal by hW (t;ν)i. Note that no smooth-
ing kernel or convolution of any kind has been applied. The re-
sult for the second spin echo can be seen in Figure 2. Due to the
pulse scheme applied, the �rst spin echo is slightly different, but
subsequent spin echoes deliver very similar, albeit less pronounced
�gures due to the poorer SNR.

Visual inspection of this graph shows the Wigner-Ville function
is rather well-localized in the time-frequency plane. A projection of
the function is shown at the bottom of Figure 2, but the distinct lin-

Figure 3: A projection of Figure 2 on the time-frequency plane
yields a two-dimensional contour plot. As before, blue colors de-
note large negative values of the function, whereas orange-red col-
ors indicates large positive values. We see theWigner-Ville function
has a strongly linear structure along single frequencies, oscillating
along the time axis.

ear features can be better appreciated in a separate contour plot, as
shown in Figure 3.To exploit the evident linear structure of the time-
frequency quasi-distribution, we take three sections of the Wigner-
Ville function at the location of the strongest oscillating frequen-
cies, corresponding to the three frequencies used in the improved
demodulation technique.

φ i(t) =W (t;ν i); i= 1;2;3

From Figure 3 we see that two of the φ functions oscillate more
rapidly than the third φ : The frequency of oscillation of the inter-
ference terms in (3) is known [4] to depend on the time-frequency
distance between the separate contributions. As can be inspected
in Figure 3, the two fast oscillating modes are much closer to each
other than the third one, explaining this behavior. To obtain a de-
tector, we use the overlap between two Wigner functions (5), as
this is a monotone function of the distance function (6) between the
(three) φ i obtained for a great number of measurements and the ac-
tually measured one in a single experiment. Our test statistic is then
simply given by the discretized version of the overlap (5):

λ =
256

∑
k=1

φ1(tk)hφ1(tk)i+φ2(tk)hφ2(tk)i+φ3(tk)hφ3(tk)i

We have written hφ1i as an abbreviation for hW (t;ν i)i;where it
is understood that, for the purpose of testing data batch i , we have
excluded the actually measured value φ i from the batch of mea-
surements used to calculate the average value hφ ii to avoid cross-
contamination of the results. The results are given as ROC curves
obtained by varying the threshold for the test statistic and are de-
picted in Figure 4. We see the method delivers an informative de-
tector even for high echo numbers for which the SNR is about two
orders of magnitude lower than necessary for a near perfect detec-
tor. For example, the time-frequency detector performs nearly as
good for echo 25, as echo 15 for the improved demodulation de-
tector.As the �rst echo already yields a perfect detector for both
methods, there seems no obvious incentive to improve the detec-
tion capabilities. However, the spin-lattice relaxation constrains the
time between the spin-locked pulses to a minimum of the order of
10 seconds. Hence the necessary data acquisition time for the each
single data sample, is approximately 20 acquisitions*10 seconds =
200 seconds. In actual demining applications, the necessary acqui-
sition time will further increase as a result of RF interference, other
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Figure 4: A time-frequency detector using three slices of the
Wigner-Ville function at the three frequencies that correspond to
the three frequencies used in the improved demodulation detector.
Depicted are echoes 5, 10, 15, 20 and 25. Again we see the dete-
rioration of the signal as a function of the echo number resulting
in lower ROC curves. One can clearly see the time-frequency de-
tector yields considerably better ROC curves than the demodulation
technique, especially for higher echo numbers.

NQR active soil constituents such as piezoelectric ceramics, and the
fact that only single sided (as opposed to the sample being within
the coil, as is the case for our data), remote acquisition is possi-
ble. However, one can substantially decrease this acquisition time
by combining the information in the different echoes. It is hence
of vital importance to improve the detector performance for all the
echoes in the pulse sequence.

6. CONCLUDING REMARKS

We have taken a time-frequency perspective on the analysis of data
from NQR experiments in our search for increased sensitivity, or
better still, a shorter acquisition time for NQR detectors used to
remotely establish the presence of TNT. To evaluate the results
a comparison was made with the popular demodulation detector.
Because our method uses three slices of the Wigner-Ville quasi-
distribution, we improved the demodulation technique accordingly
by incorporating the intensities of the three dominant peaks in the
experimentally obtained spectrum, leading to a substantially better
ROC curves with respect to single frequency demodulation. Both
the improved demodulation technique and the time-frequency ap-
proach are very fast and easy to implement. Our results indicate
that even the improved demodulation technique yields substantially
lower ROC curves than the proposed time-frequency analysis. Es-
pecially for signals of poor SNR, we see the demodulation tech-
nique performs comparable to the time-frequency approach used on
signals with an SNR that is about a factor �ve lower. Handling sig-
nals with a low SNR is important, as one expects a deterioration of
the already poor SNR inherent in NQR measurements in real-life
demining applications.
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