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ABSTRACT 
The aim of this paper is robust identification of a lightly 
damped flexible beam model with parametric and non-
parametric uncertainties. We examined two main approaches 
for robust identification which are based on deterministic 
and stochastic assumptions on uncertainties. In the first case 
uncertainties are assumed to be unknown but bounded which 
is known as “Set Membership” method (SM), while stochas-
tic assumptions lead to the so-called “Stochastic Embed-
ding” method (NSSE).  In order to proper handling with the 
high magnitude non-parametric uncertainties the proposed 
methods are compared and it is shown that the combination 
of set membership approach with model error modelling 
techniques will result in superior results. 

1. INTRODUCTION 

Robust control theory plays an important role in the appli-
cation of control theory in practical problems. The main 
concept is to consider a physical system as an uncertain 
model which may be represented as a family of mathemati-
cal models. Using robust control techniques, all models in 
this family will be stabilized in an appropriate manner. This 
family is described by a nominal model and a bounded un-
certainty. Thus it is customary to identify not only a nomi-
nal model, but also an uncertainty bound associated to this 
nominal model. Identification methods producing a nominal 
model and its associated uncertainty are known as “Robust 
Identification” or “(Robust) Control-Oriented Identifica-
tion” methods. Because of the outspread use of robust con-
trol techniques in practical problems, robust identification 
is an area which has received a growing interest of re-
searchers since beginning of 1990’s due to the weakness of 
classical identification methods to produce suitable models 
for robust control theory. Robust identification algorithms 
use a priori information on system and its input-output data 
(posteriori information) to produce a nominal model and its 
associated uncertainty.  
Two main philosophies for description of model’s uncer-
tainties have been used. The first one is based on statistical 
assumptions and produces so-called “soft bound” on 
model’s uncertainty. Second approach is based on determi-
nistic hypothesizes and gives “hard bound” on uncertainty. 

Indeed in this approach, uncertainties are assumed to be 
“Unknown but Bounded” (UBB) [1].  Deterministic hy-
pothesis on model’s uncertainties, leads to set membership 
identification methodologies.  
In all system identification problems, perturbation are po-
tentially arise form two main sources: a variance error due 
to the measurement noises and a bias term due to effect of 
unmodeled dynamics (dynamics that have not been in-
cluded by nominal estimated model- also known as model 
error). The nature of these two error types is quite different. 
Variance error generally uncorrelated with the input signal 
(in open loop data collection case), but bias error is strongly 
depends on nominal model’s structure and identification 
experiment input signal [1].  
Three main approaches for robust identification have been 
addressed in the literature, namely: 

1. Stochastic Embedding (SE) 
2. Model Error Modeling (MEM) 
3. Set Membership (SM) 

SE is a frequency domain method based on statistical hy-
pothesizes about uncertainties. This method potentially has 
the ability of handling both variance and bias errors but is 
mostly used for the aim of non-parametric uncertainties 
modeling [2, 14, 15]. This approach to robust identification 
was first introduced by Goodwin in [14]. Later in [15] this 
method was modified by using maximum likelihood tech-
nique for the estimating of parameters. To alleviate the 
problems associated with the identification procedure in 
[15], in [2] unmodeled dynamics relevant uncertainties are 
represented by a non stationary stochastic process whose 
variance increases with frequency. This method which is 
known as “Non-Stationary Stochastic Embedding”, has a 
high ability of capturing typical cases of non-parametric 
uncertainties, including systems with unmodeled lightly 
damped modes [2].   
MEM is indeed a model validation tool but is also used for 
the purpose of robust identification [3, 4]. In comparison 
with other methods, MEM is more general in the sense that 
it is a time domain method that can handle both statistic and 
deterministic assumptions on uncertainties. It can be shown 
that the advantage of MEM method is its ability to making 
separation between noise and unmodeled dynamics. 
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Finally SM is a time/frequency domain method, based on 
deterministic assumptions on system’s perturbations. In fact 
uncertainties deem to be unknown but bounded by a suit-
able norm. In the first works the idea is used for state esti-
mation [5, 6].   Later, SM theory is employed for the aim of 
system identification [7, 8]. Because of its deterministic 
framework, this approach to robust identification is more 
popular than SE and other statistical based approaches. 
Both parametric and non-parametric uncertainties can be 
accounted in SM identification problem. In [7], [8], and [9] 
just parametric uncertainties are considered while [1], [4], 
[10], and [11] deal with parametric and non-parametric 
uncertainties.  
Fundamentally lightly damped flexible structures are dis-
tributed parameter systems and thus have infinite dimen-
sional analytic models. In order to design a controller one 
has to have a finite dimensional model. Using truncated or 
reduced order model, “spill over effect” is a possible phe-
nomenon. To fulfill this problem robust controller is a 
beneficial tool. So, robust identification of lightly damped 
flexible structures is an evident necessity. 
Because of lightly damped nature of the model and its con-
sidered uncertainties, having a good identification of in-
bandwidth modes as well as including high amplitude 
modes uncertainties in the identified model is not a straight 
forward task. In this paper this problem is addressed and the 
above approaches are applied and compared.  
In the next section we introduce the main concepts of SM, 
MEM and NSSE identification methods with respect to our 
problem. Section 3 presents the robust identification results 
for a lightly damped flexible beam and section 4 concludes 
the paper. 

2. ROBUST IDENTIFICATION PROBLEM 
FORMULATION 

2.1. The Set Membership Approach  
Suppose that N samples of input-output data that have been 
generated by real system G(q) are available: 
 
  )()()()( kvkuqGky mm +=  (1) 
where v(k) is the measurement noise and is bounded by a 
suitable norm: 
 
  )()( kkv δ

β
≤  (2) 

It is possible to represent the real system as follow: 
 
  )(),()( qGqGqG ∆+= θ  (3) 
where ),( θqG  is the parameterized nominal model and 

)(qG∆  stands for possible unmodeled dynamics and is also 
bounded by suitable norm in the space of transfer functions. 
More details on deriving bound of )(qG∆  can be found in 
[11]. For our identification problem we choose ∞-norm. 
Using this, the effect of the frequency response amplitude 
of unmodeled dynamics can be considered effectively.  

Regarding (3), the input-output relationship (1) can be pre-
sented as: 
 
  )()()](),([)( kvkuqGqGky mm +∆+= θ  (4) 
  )()()()(),()( kvkuqGkuqGky mmm +∆=− θ  (5)                  
As it has been addressed earlier, we choose L∞ and H∞ 
norms for noise and unmodeled dynamics respectively, so: 
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where 
1

)(qG∆ and 
∞

)(kv are nonparametric and paramet-

ric perturbation bounds respectively and come from a priori 
information on system to be identified. Let: 
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Thus (8) can be expressed as: 
 
  km wkuqGky ≤−

∞
)(),()( θ  (9) 

Another way in determination of perturbation bound for set 
membership problem is to use a constant upper bound in-
stead of variable bound. In order to do this, we can choose 
the maximum value of the variable perturbation bound over 
all N samples and consider it in (9) for all data samples.  
Now we have to determine structure of ),( θqG  in order to 
complete the set membership inequality in (9). Different 
model structures are available for nominal model. Among 
them, output error (OE) structure is a popular model struc-
ture. To avoid high computational complexity due to 
nonlinear optimization in the process of parameter estima-
tion and to obtain linear in model structure, we use the lin-
ear combination of orthonormal basis functions for OE 
model structure. This choice has another advantage in the 
way that much more a priori information can be imported to 
the identification algorithm by proper choice of basis func-
tions. In other words by selecting basis functions whose 
dynamics are close to the dynamics of the real system, it 
will be conceivable to estimate the nominal model by 
minimum number of parameters [12]. Because of resonant 
nature of our system, we use so-called “Kautz” or two-
parameter basis functions [13]: 

 

  ∑
=

=
n

i
ii qqG

1
)(),( ψθθ  (10) 

 
where n is the order of nominal model and )(qiψ is Kautz 
basis function [13]. Now by (9) and (10): 
  km

T
m wkqky ≤−

∞
),()( xθ  (11) 
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where ),( kqmx  is the regression(information) vector and 
computed as: 
 

)]()(...)()()()([),( 21 kuqkuqkuqkq mnmmm ψψψ=x  
                                                                                      (12) 
And T

n ]...[ 21 θθθθ =  is the vector of parameters. For 
each time stamp (k=1, 2,…, N), (11) produces a so-called 
strip in the space of parameters. By intersecting these strips, 
“Feasible Parameter Set” (FPS) will be obtained as follow:  

 

  
N

k
km

T
m wkqky

1

}),()(:{
=

∞
≤−=Θ xθθ  (13) 

In fact, Θ is the set of all parameters compatible with input-
output data, a priori information on system and the uncer-
tainty bounds. For the case that inequalities are linear in pa-
rameters, as (13), the FPS is a convex polytope in the space 
of nominal model’s parameters. The aim of set membership 
robust identification problem is to compute the FPS and de-
termine an optimal point in FPS (in some sense) as the nomi-
nal model’s parameters. It is possible to outbound the FPS by 
simple geometrical shapes like “Ellipsoid” and “Paral-
lelotope” and consider their center as the parameters of 
nominal model [7, 8, 11]. Because of the greater DOF (De-
gree of Freedom) of the parallelotopes, they can outbound 
the FPS more tighten than ellipsoids. 
 
2.2. Model Error Modelling Technique 
“Model Error Modelling” (MEM) is a time domain technique 
with various applications in the area of system identification 
such as model validation and direct model error modelling 
(i.e. combination simple models to obtain a suitable model of 
system and its uncertainties), which will be used in this pa-
per. More details about various respects of MEM can be 
found in Ljung’s survey paper [3].  
Consider (1) and let ),( *θqG be the nominal estimated model 
of the system in (1). Although it is possible to obtain this 
model by several identification methods, but in this paper 

),( *θqG  is estimated using SM Method as mentioned in pre-
vious subsection.  
Let “residual” sequence to be computed as follow: 
 
  )(),()()( * kuqGkyk mm θε −=  (14) 

It is possible to consider the “Error System” whose input 
and output are respectively mu andε :  

 
  )()()()( kvkuqGk me +=ε  (15) 

where )(kv is the measurement noise as in (1). eG  is also 
known as Model Error Model and is the estimate of unmod-
eled dynamics relevant error. As for nominal model, eG can 
be identified by any identification method. Here, in this pa-
per, eG  is identified again by SM technique. In other words, 
using a priori information of system, it is possible to define a 
suitable parametric model structure for eG . Then by input-

output data in (14), the model error model and its associated 
uncertainty will be determined. It is a simple fact that if the 
uncertainty region of eG contains zero element, the nominal 
estimated model ),( *θqG  will be unfalsified. Having sys-
tem’s nominal model ),( *θqG  and eG along with its uncer-
tainty, it is possible to obtain a complete model of the system 
in (1). This can be done by adding up the nominal model and 
the uncertainty bound of eG . This complete model can dem-
onstrate the system in (1) and its uncertainties in a suitable 
manner. It is easy to verify that MEM technique has the abil-
ity of separating bias and variance errors completely. Due to 
this fact, recently this approach to robust identification at-
tracts some interests [1, 4].  
 
2.3. Non-Stationary Stochastic Embedding Technique 
Our approach in this section is similar to [2], which can be 
present as follow:  
Suppose that the true system’s frequency response is given 
as: 
 
  )()()( 0 ωωω jGjGjG ∆+=  (16) 
where )(0 ωjG is the nominal model that we want to estimate 
and  )( ωjG∆ is a stochastic process independent of nominal 
model whose variance increases with frequency and is stand 
for model errors. Let kĜ to be the noisy observations of the 
true system at certain frequency: 
 
    mkvjgG kkk ,..,2,1;)(ˆ =+= ω  (17) 
where kv is the measurement noise. One way to estimating the 
nominal model is to parameterize it using some orthonormal 
basis as [12]: 
 

  θ)()(
1

0
T

i

n

i
i qbqG B== ∑

=

θ  (18) 

where T
nbbb ]...[ 21=B is the vector of basis functions and θ  

is the vector of parameters. It is also possible to use this 
structure to determine )( ωjG∆ . So (16) can be represented as 
follow: 
 
  Λ+= θθ TTG BB  (19) 
where Λ  is the (integrated) random walk process over fre-
quency. Now by (16) and (17): 
  k

TT v+Λ+= θθˆ BBG  (20) 
So the non-stationary stochastic embedding robust identifica-
tion process cab be stated as follow: 
1. Point-wise least square estimation of the transfer function 
at certain frequencies. The input u for this purpose must be 
sum of sinusoids. This step delivers a raw estimation of the 
real transfer function at certain frequencies which is consid-
ered as kĜ .  Additionally, statistical properties of the noise 
are calculated assuming Gaussian white noise.  
2. Choice of basis functions B.  
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3. Estimation of the parameter θ  and the (integrated) random 
walk process Λ  in (20) based on the frequency function 
point estimation kĜ according to following procedure: 
a) Least square estimation of θbased on frequency point 
estimation kĜ . 
b) Using this estimate for model error parameterization as 
shown in (19). 
c) Computation of an unbiased estimate of the variance of the 
(integrated) random walk process. 
d) Quantification of the model error for any frequency (cal-
culation of its statistical properties).      

3. SIMULATION RESULTS 

This section presents the identification results for a lightly 
damped simply-supported flexible beam. The flexible beam 
which is considered in this work is assumed to be out of 
steal. The identification experiment has been simulated us-
ing a “Finite Element” model of the beam. The input and 
output time domain signals for identification are force and 
displacement, respectively. The input signal is the combina-
tion of 180 sinusoidal with excitation frequencies that have 
been picked according to the a priori information of system 
which in this case is the rough estimate of beam’s FRF (Fre-
quency Response Function) (fig. 1).  Distribution of these 
frequencies is a key point in the experiment design. The 
output signal has been corrupted by a normally distributed 
Gaussian random signal with the variance of 1%. 
Our aim is to identify the two first modes of system and con-
sider the two last modes as non-parametric uncertainty. First 
we examine the SM algorithm that has been introduced in the 
last section. We use Kautz basis functions for this purpose, 
which their parameters have been tuned with respect to the 
system’s FRF. We also use two different outbounding algo-
rithms for approximation of FPS. The result for paral-
lelotopic approximation is shown in fig. 2 which is better 
than ellipsoidal approximation. Secondly, NSSE algorithm 
described in section 2 with both random walk and integrated 
random walk processes has been utilized. For the identifica-
tion of the first two modes, two continuous-time Kautz basis 
functions are selected whose parameters are tuned based on 
the FRF of the beam. Fig. 3 shows the point estimation of the 
FRF of the beam used in NSSE algorithm. The estimated 
model and its uncertainty cloud using random walk process 
and with 99.99% confidence level are plotted in fig. 4. The 
same results for integrated random walk are shown in fig. 5. 
Athough the results are improved rather than the previous 
method, but it has not offered a good compromise between 
robust stability and performance of the controller. The quality 
of estimation is increased by using the MEM method for 
better handling of non-parametric uncertainties. This method 
has been introduced in section 2. In order to identify of the 
non-parametric uncertainties, we use SM method and Kautz 
basis functions again. This method can be known as combi-
nation of SM and MEM. The result of this approach is shown 
in fig. 6. As it is evident the uncertainty bound has a good 
tightness and also the real system is included by this bound in  

 
Figure 1 – FRF of the beam under study  
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 Figure 2 – Nominal identified model and its associated uncertainty 

(parallelotopic approximation)   

 
Figure 3 –Point estimation of the FRF of the beam 

 
all frequencies. Using such a model for robust controller de-
sign will result in a good performance/stability results. 
 

4. CONCLUSION 

In order to design robust controllers one has to have a suit-
able model which consists of the nominal model and some 
measure of its uncertainties. Robust identification methods 
provide such models that are indicate the real uncertainties of 
the system. SM method is one of these techniques that is 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



based on deterministic assumptions on uncertainties. This 
type of uncertainty representation is greatly adopted by vari-
ous robust control methods. In this paper this method is used 
for the purpose of robust identification of a lightly damped 
flexible beam. 

 
Figure 4 –Estimated model (dashed line) and its uncertainty 

band for random walk process (yellow cloud) 
 

 
Figure 5 –Estimated model (dashed line) and its uncertainty 

band for integrated random walk process (yellow cloud) 
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Figure 6– Nominal identified model and its associated uncer-

tainty (SM/MEM method) 
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