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ABSTRACT
We address the phase noise and the superresolution problem in
Toeplitz matrix-based spectral estimates. The Toeplitz autocorre-
lation (AC) matrix approach in spectral estimation brings in an or-
der of magnitude computational advantage while the price paid is
the phase noise that becomes effective at high signal-to-noise ra-
tios (SNR). This noise can be mitigated with windowing the data
though some concomitant loss in resolution occurs. The trade-offs
between additive noise SNR, resolvability of sinusoids closer than
the resolution limit, and behavior of the estimated AC lags and tone
frequencies are investigated.

1. INTRODUCTION

Model-based frequency estimation methods are used extensively
due to their computational advantages and high resolution property.
Especially, for short data records model-based spectral estimation
techniques show superior performance under adequate signal-to-
noise ratio (SNR) conditions. Many of these techniques make use
of autocorrelation (AC) matrix and its eigendecomposition. The
AC matrix is usually generated using the covariance method of lin-
ear prediction [1]. Computing the eigenvalues and eigenvectors of
such symmetric arbitrary real matrices, is of O � M3 � complexity [3],
where the notation O ��� � denotes the order of required complex mul-
tiplications and M is the size of the AC matrices. On the other
hand, if the AC matrix is generated using the AC method of linear
prediction resulting in a Toeplitz structure, the complexity of the
eigendecomposition process is of order O � M2 � [2]. This complexity
differential motivates us for subspace-based frequency estimators
utilizing Toeplitz AC matrix estimates. However, linear prediction
based on Toeplitz AC matrices suffer from the “phase noise” phe-
nomenon. This phenomenon reveals itself at high SNR values as a
“noise floor” effect. In other words, even though the influence of
the additive noise has been reduced to a negligible level, the accu-
racy of the frequency estimate does not improve proportional to the
ever increasing SNR. However, in high SNR conditions, for exam-
ple, in time of arrival (TOA) and time difference of arrival (TDOA)
estimation in order to determine the position of a mobile terminal,
frequency estimators like non-Toeplitz AC matrix-based Multiple
Signal Characterization (or Classification) (MUSIC) are successful
[7]. In a previous work [4], we showed that in the frequency estima-
tion of a single sinusoid in additive white Gaussian noise (AWGN)
from short data records based on Toeplitz AC matrices, data win-
dowing can mitigate the limitations caused by phase noise. In this
work, we extend that study to the case of multiple sinusoids where
we consider the interesting particular case of two close sinusoids.

In Section 2, the sinusoidal frequency estimation problem and
the utilized frequency estimator, namely, MUSIC frequency estima-
tor is briefly visited. In Section 3, for the case of two closely spaced
sinusoids observed in AWGN the pdf of AC lags are found both
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by histograms of simulation experiments and through semi-analytic
computations, and the similarities and differences with the single
sinusoid case is discussed. Section 4 covers the experimental study
of the resolution capability of the MUSIC frequency estimator for
the windowed and non-windowed data. In Section 5, we investigate
the joint distribution of two AC lags, in order to clarify the mech-
anism of success in phase noise mitigation for data windowing for
the considered two close sinusoids problem. Conclusions are given
in Section 6. Finally, the derivation of the pdf of AC lags for the
windowed data for small sample sizes which also takes the phase
noise into account is given in the appendix.

2. FREQUENCY ESTIMATION PROBLEM AND MUSIC
FREQUENCY ESTIMATOR

The signal model under consideration consists of multiple real si-
nusoids observed in AWGN, i.e.,

xk � sk � nk � K

∑
i 	 1



2Ai cos �ωikT � φi � � nk k � 1 
 2 
������ N (1)

where Ai, φi and ωi are the non-random amplitude, the random
phase angle uniformly distributed on ��� π 
 π � and the angular tone
frequency of the ith real sinusoid, respectively, and T is the sam-
pling period, � nk � is a real white Gaussian noise sample sequence
with zero mean and power σ 2

n and N is the number of data sam-
ples. We are interested only in the angular frequency parameter.
The other parameters are considered as nuisance factors. We as-
sume without loss of generality that the number of sinusoids is
either known or can be estimated from the data. In this work
we assess a widely used frequency estimator which uses high di-
mensional noise-subspace resulting in well resolved frequency es-
timates, namely, MUSIC, which we will define briefly. We will
assume T � 1 throughout the paper in order to simplify the nota-
tion.

To obtain the MUSIC frequency estimator first the Toeplitz
sample estimate of the M � M AC matrix is built as ��� M � i 
 j � �
r ��� i � j � � 
 i 
 j � 1 
�������
 M � where r � k � denotes the kth autocorrela-
tion coefficient of the input samples and it is estimated as:

r � k � � 1
N � k

N � k

∑
i 	 1

xixi � k � (2)

The MUSIC power spectrum is given as:

MUSIC � ω � � 1
∑m

k 	 2K � 1 � p† � ω � vk � 2 (3)

where the set ��� i 
 i � 2K � 1 
�������
 M � contains the M-dimensional
noise subspace eigenvectors corresponding to the M � 2K
smallest eigenvalues of the AC matrix estimate and
p† � ω � � � 1 e � jω ����� e � j � M � 1  ω � � The estimated tone frequency
(or frequencies) is (are) found by picking the K peak-pairs of this
power spectrum which correspond to K real tones.
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Figure 1: Pdf of ry � 1 � , a: histogram (non-windowed data), b: pdf
(semi-analytic compution, non-windowed data), c: histogram (win-
dowed data), d: pdf (semi-analytic compution, windowed data)
(ω1 � π ! 2 rad, ω2 � π ! 2 � π ! 25 rad, ω2 � ω1 � π ! N � DFT
resolution limit, SNR � 10 dB, N � 50, M � 20, 100 000 noise
realizations, raised cosine window [6])

3. BEHAVIOR OF AC LAGS FOR WINDOWED DATA

For small sample sizes the AC lags can be represented as a sum
of two assumably independent random variables, a phase noise-
dependent component and an AWGN-dependent component with
a deterministic shift. Then, the pdf of AC lags becomes a convolu-
tion of the individual pdfs and its shape will be dominated by the
component of larger support which is the Gaussian and phase noise-
dependent component at low and high SNR values, respectively. In
[4] a direct dependence between the supports of the pdfs of AC lag
and frequency estimates was observed and it was shown that data
windowing helps shrinking the support of the pdfs of phase noise-
dependent AC lag component and frequency estimates, and in turn
decreases the variance lower bound caused by phase noise. The cost
of windowing will be a power loss of typically 2 dB in SNR due to
the increased equivalent noise bandwidth [1, 6] in the case of a sin-
gle sinusoid. This same effect is observed in the the case of well
resolved sinusoids where the frequency difference of the sinusoids
is much larger than the Fourier resolution limit of 2π ! N. If the dis-
tance of two peaks in the power spectrum gets smaller, the spectral
broadening caused by data windowing can be expected to make the
two peaks interact earlier due to the accompanying loss in resolu-
tion. However, as it will be shown in the subsequent sections data
windowing helps the frequency estimator even at high resolution
requiring frequency constellations.

In Figure 1 we plotted the pdfs of ry � 1 � for the windowed and
non-windowed data together with the histograms obtained as a re-
sult of simulations with 100,000 independent runs of two sinusoids
in AWGN where ω1 � π ! 2 rad, ω2 � π ! 2 � π ! 25 rad, N � 50 and
the subscript “y” in ry � 1 � denotes the association with windowed
data. The pdfs are computed semi-analytically as described in the
appendix. The frequency difference of the sinusoids is equal to the
Fourier resolution limit 2π ! N and SNR = 10 dB. The windowing
function is the raised cosine window which showed a good compro-
mise of contradicting phase noise reduction and small power loss
requirements, in the case of a single sinusoid in AWGN. The fig-
ure depicts that there is close matching of the histograms and the
computed pdfs. This validates our assumptions related to the sum-
mands in (5). But, Figure 1 depicts that windowing does not shrink
the support of the pdf of phase noise in the case of two close si-
nusoids. Then there should be another mechanism by which data
windowing contributes to the resolution ability of the considered
frequency estimators, if there is any. We will consider this after in-
vestigating the frequency estimation performance with and without
data windowing.
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Figure 2: Joint histograms of the two MUSIC frequency estimates
for non-windowed data (ω1 � 1 � 5708 rad, ω2 � 1 � 6336 rad, ω2 �
ω1 � π ! N rad (half of the DFT resolution limit), SNR � 40 dB,
N � 50, M � 20, 100 000 noise realizations)

4. EXPERIMENTAL STUDY OF THE RESOLVING
CAPABILITY

When data windowing is applied in the case of two close sinusoids,
one should consider the price paid for the phase noise reduction,
that is, the spectral broadening and the concomitant loss of reso-
lution. As a criterion to measure the resolution capability of the
estimators we adopt the resolution probability where it is required
that the inequality

� ω̂1 � ω1
� 2 � � ω̂2 � ω2

� 2 " min #$� ω̂1 � ωmid
� 2 � � ω̂2 � ωmid

� 2 

2 � ω2 � ω1

� 2 % (4)

is satisfied in order to consider two frequencies resolved, where� ω̂i 
 i � 1 
 2 � and ωmid denote the estimates and the arithmetic av-
erage of the sinusoidal frequencies � ωi 
 i � 1 
 2 � , respectively, and
min ����
�� � denotes the minimum of it’s arguments. The first argument
of the min ����
�� � function assures that the estimated peaks are not both
located in the vicinity of ωmid whereas the second argument is to re-
ject the outliers in the histograms.

In the simulations, the data window is the raised cosine window
which achieves moderate phase noise reduction at a small expense
in the estimation variance.

4.1 Histograms of frequency estimates
In order to focus on the effect of phase noise in the resolution per-
formance of the frequency estimators, firstly we investigate the his-
tograms of the estimated frequencies in the case of two sinusoids
with a frequency difference of π ! N and where SNR = 40 dB.
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Figure 3: Joint histograms of the two MUSIC frequency estimates
for windowed data (ω1 � 1 � 5708 rad, ω2 � 1 � 6336 rad, ω2 � ω1 �
π ! N rad (half of the DFT resolution limit), SNR � 40 dB, N � 50,
M � 20, 100 000 noise realizations)

In Figures 2 and 3 we plot the joint histograms of the two
MUSIC frequency estimates for the non-windowed and windowed
data, respectively. The location of the true sinusoidal frequencies,
ω1 � π ! 2 � 1 � 5708 rad and ω2 � π ! 2 � π ! 50 � 1 � 6336 rad, is
shown with a vertical line segment in the figures. In the non-
windowed case sinusoids are resolved in 57 % of realizations and
windowing increases this ratio to 84.8 % even at this frequency dif-
ference of the sinusoids which is equal to the half of the Fourier
resolution limit.

Figure 2-I depicts that without windowing the majority of the
resolved frequency estimates are located at ω1 & 1 � 51 rad and
ω2 & 1 � 69 rad which corresponds to a large bias in the frequency
estimates whereas the majority of the resolved frequency estimates
are in the 0.01 rad approximity of their true values in the windowed
case as shown in Figure 3-I and all of the frequency estimates are
symmetrically distributed around the average value of the true fre-
quency parameters.

It is shown in Figure 2-II that for the non-windowed case the
frequency estimates are labelled “unresolved” when one of them is
in large error. Actually, only one sinusoid is detected in this case
with the frequency around the average of the two sinusoids and for
the frequency of the other sinusoid, MUSIC finds another frequency
determined according to the severe phase noise in the AC lag esti-
mates. On the other hand, for the windowed case the unresolved
estimates are either on one side of the average of the true frequen-
cies corresponding to the two small peaks in Figure 3-II or located
symmetrically and somewhat far from the true frequencies.

Figures 2 and 3 show that the adopted criterion successfully
classifies the frequency estimates into resolved and unresolved sets
as shown by the histograms and data windowing is beneficial even
in the case of very closely spaced sinusoids.
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Figure 4: Resolution probability of the MUSIC frequency estima-
tors versus SNR, a: rectangular window (Toeplitz AC matrix), b:
raised cosine window (Toeplitz AC matrix), c: rectangular window
(non-Toeplitz AC matrix) (ω1 � 1 � 57 rad, N � 50, M � 20)

4.2 Resolution Probabilities

In Figures 4-I, II and III, we plot the resolution probabilities of MU-
SIC frequency estimator with and without data windowing against
SNR, for two sinusoids where their frequency difference is 4π ! N
rad, 2π ! N rad and π ! N rad, respectively, going from a well re-
solved case towards a case with a frequency difference of half of
the Fourier resolution limit. In these figures we plot the resolution
probabilities of the non-windowed, windowed, and non-Toeplitz
AC matrix-based variants of the MUSIC frequency estimator.

4.2.1 Twice DFT Resolution Limit Separation:

Since the sinusoids are well resolved, the phase noise variance is
ineffective on the resolution of the frequency estimator and the use
of a data window only decreases the resolution probability of the
frequency estimator. At a resolution probability of 0.9, MUSIC fre-
quency estimator based on the non-Toeplitz AC matrix estimate and
the one utilizing the raised cosine window require approximately
1.6 dB and 2.4 dB more signal power as compared to no data win-
dowing.
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Figure 5: Joint histograms of the ry � 1 � and ry � 2 � estimates for non-
windowed data (ω1 � 1 � 5708 rad, ω2 � 1 � 6965 rad, ω2 � ω1 �
2π ! N rad (DFT resolution limit), SNR � 40 dB, N � 50, M � 20,
100 000 noise realizations)

4.2.2 Separation Equal to DFT Resolution Limit:

When the frequency difference equals 2π ! N, the phase noise re-
jection becomes more effective than the spectral broadening caused
by the data window, at SNRs higher than 5 dB and the windowed
MUSIC frequency estimator attains unity resolution probability at
an SNR of 10 dB whereas the non-windowed estimator can only
achieve a resolution probability of 0.78 asymptotically. Despite the
spectral broadening caused by the data window the resolution per-
formance of the non-Toeplitz AC matrix-based estimator is about
2.5 dB inferior to that of the windowed estimator for resolution
probabilities greater that 0.5. This is due to the fact that the inferior-
ity of the non-Toeplitz AC matrix-based frequency estimators with
respect to their Toeplitz AC matrix based counterparts at low SNRs
increases as the frequency difference of the sinusoids decreases and
this effect is higher when compared to the resolution loss due to
data windowing.

4.2.3 Separation of half of the DFT Resolution Limit:

Figure 4-III depicts that when the frequency difference of the sinu-
osoids is half of the Fourier resolution limit, the windowed MUSIC
frequency estimator can no longer attain unity resolution probabil-
ity and saturates at a level of 0.87 whereas the non-Toeplitz AC ma-
trix based frequency estimator achieves this at SNR � 35 dB. The
asymptotic resolution probability for the non-windowed Toeplitz
AC matrix based frequency estimator is as low as 0.58, in this case.

5. EXPERIMENTAL STUDY OF THE JOINT
DISTRIBUTION OF AC LAGS

In order to understand the mechanism by which data windowing
helps to improve the resolution performance of the considered fre-
quency estimators we investigate the joint distribution of the AC
lags. In Figures 5 and 6 we plot the joint histograms of ry � 1 �
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Figure 7: Joint histograms of the ry � 1 � and ry � 2 � estimates, a:
non-windowed data (resolved frequencies), b: non-windowed data
(unresolved frequencies), c: windowed data (resolved frequencies)
(ω1 � 1 � 5708 rad, ω2 � 1 � 6965 rad, ω2 � ω1 � 2π ! N rad (DFT
resolution limit), SNR � 40 dB, N � 50, M � 20, 100 000 noise
realizations)

and ry � 2 � for the two sinusoids case when ω1 � π ! 2 � 1 � 5708 rad
and ω2 � π ! 2 � π ! 25 � 1 � 6965 rad which corresponds to a fre-
quency difference equal to Fourier resolution limit and when SNR
= 40 dB. The location of the true AC lags, ry � 1 � � � 0 � 12538 and
ry � 2 � � � 1 � 9686, is shown with a vertical line segment in the fig-
ures.

Figure 5-I shows that in the non-windowed case the support of
the joint histogram corresponding to resolved frequency estimates
constitutes the sides of a triangle and the one corresponding to un-
resolved frequency estimates constitutes one vertice of this triangle
as shown in Figure 5-II. Data windowing changes this shape of the
support drastically. Figure 6 depicts that the joint histogram of ry � 1 �
and ry � 2 � has a linear support which means that the marginal pdfs
of ry � 1 � and ry � 2 � have a similar shape which is a double hunched
form as the curve “d” in Figure 1.

In Figure 7, we plot the supports of the joint histograms shown
in Figures 5 and 6 to show their relations. In this figure the “trian-
gular” shape belongs to the joint histogram of ry � 1 � and ry � 2 � corre-
sponding to the resolved frequency estimates in the non-windowed
case and the vertice of that triangle on the symmetry axis of the tri-
angle corresponds to the unresolved frequencies in that case. The
approximately linear support in the figure belongs to the joint his-
togram corresponding to the resolved frequency estimates in the
windowed case. Actually, in that case all of the frequency esti-
mates are resolved for the considered frequency difference of 2π ! N
in these simulations.

We also studied the joint histograms of other AC lag combina-
tions and observed similar behavior.
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6. CONCLUSIONS

In this study we considered the phase noise problem specific to
the sinusoidal frequency estimation using Toeplitz AC matrix es-
timates. In particular we investigated the phase noise mitigation
ability of data windowing in the case of two close sinusoids. Our
main conclusions can be listed as follows:' The Toeplitz AC matrix estimates can be modeled as a sum of

two independent variables, a phase-dominated term and a noise-
dominated term, shifted by a deterministic constant. The pdf of
the lag coefficient, computed as the convolution of the pdfs of
the two random variables, matches very well the experimentally
determined histogram as in the case of a single sinusoid [4].' In the multiple sinusoids case data windowing is beneficial in
resolving closely spaced sinusoids. For a spacing equal to DFT
resolution limit data windowing makes the estimator attain unity
resolution probability whereas in the non-windowed case an
asymptote at 0.78 exists. It is worth noting that for such a fre-
quency spacing a 2 dB SNR advantage is obtained for a spe-
cific resolution probability when compared to non-windowed
and non-Toeplitz AC matrix-based estimation.' Investigation of the joint histograms of the AC lags reveals that
the success of data windowing in contributing to resolve close
sinusoids is accompanied by the linear dependence of the AC
lags obtained by data windowing.

We should note that explaining the cause of the windowing in lin-
earizing the mutual dependence of AC lags requires further study
which we will consider in a future work.
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A. DERIVATION OF THE PDF OF AC LAGS FOR
WINDOWED DATA

Let yk � wkxk where � wk 
 k � 1 
 2 
�������
 N � represents a data window
[6]. Consider the sample AC coefficients of the windowed data,
obtained via the AC method as in (2). The AC lag estimates can be
written as

ry � l � � ry (m � l � � ry ( h � l � � ry ( g � l � for l � 0 
�������
 N � 1 � (5)

For two sinusoids case the summands are determined as

ry ) m * l +-, 1
N . l

N / l

∑
k 0 1

wkwk 1 l 2 A1 cos * ω1l +�3 A2 cos * ω2l +�3 σ2
n δl ) 0 4�5

ry ) h * l +-, A1

N . l 2 cos * 2φ1 + C1 * N 5 l +6. sin * 2φ1 + S1 * N 5 l + 43 A2

N . l 2 cos * 2φ2 + C2 * N 5 l +6. sin * 2φ2 + S2 * N 5 l + 4

387 A1A2

N . l 2 * cos * ω2l 3 φ2 . φ1 +�3 cos * . ω1l 3 φ2 . φ1 +9+ C3 * N 5 l +. * sin * ω2l 3 φ2 . φ1 +�3 sin * . ω1l 3 φ2 . φ1 +9+ S3 * N 5 l + 43 7 A1A2

N . l 2 * cos * ω2l 3 φ2 3 φ1 +�3 cos * . ω1l 3 φ2 3 φ1 +9+ C4 * N 5 l +. * sin * ω2l 3 φ2 3 φ1 +�3 sin * . ω1l 3 φ2 3 φ1 +9+ S4 * N 5 l + 4:5
and

ry ) g * l +;, 7 A1

N . l

N / l

∑
k 0 1

wkwk 1 l 2 cos * ω1k 3 φ1 + nk 1 l 3 cos * ω1 * k 3 l +�3 φ1 + nk 4
3 7 A2

N . l

N / l

∑
k 0 1

wkwk 1 l 2 cos * ω2k 3 φ2 + nk 1 l 3 cos * ω2 * k 3 l +�3 φ2 + nk 4
3 1

N . l

N / l

∑
k 0 1

wkwk 1 lnknk 1 l <
which denote the deterministic component, the phase noise and the
Gaussian component, respectively, with the definitions:

C1 * N 5 l +=, N / l

∑
k 0 1

wkwk 1 l cos * ω1 * 2k 3 l +9+ 5
C2 * N 5 l +=, N / l

∑
k 0 1

wkwk 1 l cos * ω2 * 2k 3 l +9+ 5 (6)

C3 * N 5 l +>, N / l

∑
k 0 1

wkwk 1 l cos *9* ω2 . ω1 + k + 5
C4 * N 5 l +?, N / l

∑
k 0 1

wkwk 1 l cos *9* ω2 3 ω1 + k + 5
where δl ( 0 denotes Kronecker delta and � Si � N 
 l � 
 i � 1 
 2 
 3 
 4 � are
obtained replacing the cos ��� � function of � Ci � N 
 l � 
 i � 1 
 2 
 3 
 4 � in
(6) with sin ��� � . The large sample statistics of rx � l � � r � l � was de-
rived in [5] where it was shown to be Gaussian distributed. With a
direct generalization to windowed data the large sample statistics of
ry � l � will be also Gaussian with mean ry (m � l � and variance

σ2
y * l +;, σ2

n* N . l + 2 @�A 2 * A1 3 A2 +�3 σ2
n * 1 3 δl ) 0 +CB N / l

∑
k 0 1

w2
k w2

k 1 1 (7)

3 2
N / 2l

∑
k 0 1

wkw2
k 1 1wk 1 2l * A1 cos * 2ω1l +�3 A2 cos * 2ω2l +D+FE 5

for l � 0 
�������
 N � 1.
Among the three summands of ry � l � given in (5), the first one

is deterministic and the others are stochastic components. In the
study [4] with a single sinusoid we neglected that the phase noise-
dependent component ry ( h � l � and the AWGN-dependent component
ry ( g � l � depend on eachother and furthermore we assumed that in
ry ( g � l � the additive noise components dominate this term and that
the effects of phase are secondary. These assumptions were shown
to be successful. In this study, we make the same assumptions.
So, the pdf of ry � l � as a sum of independent random variables will
be a convolution of the individual pdfs of ry ( h � l � and ry ( g � l � shifted
by the deterministic quantity ry (m � l � . Here, we make an additional
assumption that ry ( g � l � will also have approximately the Gaussian
distribution valid for the large sample case with mean ry (m � l � and
variance σ2

y � l � in the small sample size case.
For the considered two sinusoids case the computation of the

pdf of phase noise, f � l  Ry G h � ry ( h � , is not analytically tractable. That’s
why we adopt a semi-analytic procedure where we obtain the his-
togram of ry ( h � l � through Monte Carlo experiments with indepen-
dent realizations of φ1 and φ2. Then we fit a parametric function
to this histogram using Levenberg-Marquardt method [3] to ob-
tain a closed form expression for the pdf. Finally, the pdf of ry � l � ,
f � l  Ry

� ry
� , is obtained as the convolution f � l  Ry

� ry
� � f � l  Ry G h � ry ( h � ry (m �IH

f � l  Ry G g � ry ( g � . The windowing causes a bias in the AC lag estimates.

This bias will be removed by replacing ry � l � with � N � l  ry � l  
∑N J l

k K 1 wkwk L l
�
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