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ABSTRACT 
This paper investigates a number of issues having an impact 
on the performance of an approximated multiplierless DCT, 
which include: types of inverse transforms; types of nor-
malizations; algorithm structures; and assignment of signed 
digits for approximating constants. Based on our experiment 
results, we have the following findings: (1) a transform 
based on a reversible inverse generally performs better than 
a version based on a traditional inverse; (2) a transform 
with a delayed or post normalization can achieve a much 
better performance; (3) uniform normalization can be con-
sidered a useful feature; (4) a lifting structure transform can 
achieve better accuracy than a non-lifting structure version; 
(5) an optimized configuration for the assignment of  signed 
digits to the constants could help to boost the performance 
of the approximated DCT. It is believed that such findings 
should provide useful insights into making the proper design 
choices when converting a fast DCT into a multiplierless 
version. 

1. INTRODUCTION 

The Discrete Cosine Transform (DCT) [1] can be considered 
the most widely used transform in image and video compres-
sion. It has been adopted in various compression standards 
such as JPEG, MPEG, H.264, etc. In signal processing, 1-D 
and 2-D DCT have been used extensively. Many fast algo-
rithms have been proposed for both 1-D and 2-D DCTs [2-6]. 
Since 2-D DCT is separable, it can be implemented in 1-D 
only, using the row-column approach. Though a direct 2-D 
DCT [7] implementation is more efficient than the one based 
on the row-column approach, it requires much effort to de-
rive the required fast algorithms.  

Recently, the approximation or implementation of mul-
tiplierless DCT algorithms has attracted much research inter-
est [8-10]; since a multiplierless implementation involves 
only shift-and-add operations, it requires a more simple hard-
ware design; and thus such algorithms could reduce power 
consumption in mobile devices. By using the method pro-
posed in [8], any fast DCT can be converted into a multiplier-
less version by replacing each multiplication constant with a 
sum-of-power-of-two (SOPOT) representation. However, the 
conversion could introduce approximation errors. In [11], 
Chokchaitam, et. al.  provide an  analysis of approximation 
error in multiplierless DCTs.  

Chan and others [8-10] proposed similar methods to ap-
proximate fast DCT algorithms. Their methods could ap-
proximate only DCT algorithms with planer rotation (or but-
terfly) structures; they all first decompose each planer rota-
tion structure to several lifting structures, and then convert 
the multiplications in each lifting structure into shift-and-add 
operations. By changing a planar rotation structure into lift-
ing structures, the approximation error of the multiplierless 
algorithm could be reduced.  

The normalization in a DCT algorithm may belong to 
one of two types: (i) Uniform normalization – all constants 
used have the same value or factor. The underlying fast DCT 
algorithms are said to be of non-scalded type.  (ii) Non-
uniform normalization – some or all of the constants used are 
different. Then the fast DCT algorithms are said to be of the 
scaled type. If uniform normalization constants are used, the 
normalization step can be delayed in both the forward and 
inverse transforms of a 2-D DCT if it is implemented in 1-D 
DCT based on the row-column approach. The normalization 
constants are usually 1/√8. Thus, after combining the nor-
malization constants in the row-column approach, they 
would become 1/8. Then the constants need not be approxi-
mated since the normalization can be replaced simply by a 
right shift operation. However, in the case of scaled type 
DCTs, the non-uniform normalization constants multiplica-
tion could not be delayed when implementing a 2-D DCT in 
1-D DCT using the row-column approach since matrix vector 
multiplication is not commutative. Thus, after applying 1-D 
DCT to each row of the input matrix; we must approximate 
the non-uniform constants and perform the normalization to 
obtain a temporary DCT matrix; and after applying 1-D DCT 
to each column of the temporary DCT matrix, another nor-
malization should be performed using the approximated con-
stants. Clearly, approximation errors could be introduced in 
the above two normalizations.  Thus, the approximation of 
the constants in the multiplierless DCT algorithms can intro-
duce a certain amount of errors.  

Tran [9] converted two sample fast DCT algorithms, 
with uniform normalization constants, into their multiplier-
less versions; the butterfly structures were replaced by lifting 
steps, and the resulting approximated fast algorithms become 
having a non-uniform normalization. Thus the approximate 
fast 1-D DCT cannot be used to implement 2-D DCT with its 
normalization step delayed. Though the conversion of butter-
fly structures into to lifting structures could improve the ap-
proximation of the algorithms in some way, the resulting 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



non-uniform normalization could make further improvement 
in approximation precision difficult.  

Another issue having an impact on the performance of 
the approximated DCT is the assignment of the number of 
non-zero digits to the constants in their SOPOT representa-
tion. In general, using more digits to represent a constant 
could reduce the approximation error. However, using more 
digits will increase the algorithm complexity. So there 
should be a trade-off between accuracy and algorithm com-
plexity. Chan et. al. [8] proposed a random assignment 
method to determine the number of digits for the constants; 
however, this method is not systematic. A more systematic 
method known as the quasi-coordinate descent algorithm 
has been proposed in [10]. However, it is not clear how op-
timal an assignment, obtained by using the foregoing meth-
ods, could be for minimizing the approximation error. The 
section below introduces how the choice of transform in-
verses could also affect the approximation errors.  

2. INVERSE AND REVERSE TRANSFORMS 

A fast forward DCT algorithm involves a polyphase matrix 
multiplication of a number of matrices obtained by the fac-
torization of the forward transform matrix.  Thus, the for-
ward transform can be written as: 
  1 2 1...n nC NC C C− −=  (1) 

where 1 1... nC C −  are the factorized matrices which together 
form the kernel of the transform, and N is the normalization 
matrix related to the normalization step in a fast algorithm. 
 As DCT is an orthogonal transform, the transform ma-
trix should have its inverse equal to its transpose. Mathe-
matically, if the forward transform matrix is C , then 

1 TC C− = . We can have two different versions of inverse 
transforms for a fast DCT algorithm, derived respectively 
from the inverse, and the transpose of the forward transform 
matrix.  We have: 
  1 2 1 1 2 1( ... ) ...T T T T T T

n n n nC NC C C C C C N− − − −= =  (2) 

and  1 1 1 1 1 1
1 2 1 1 2 1( ... ) ...n n n nC NC C C C C C N− − − − − −
− − − −= =  (3) 

In general 1TN N −≠ and 1T
i iC C−≠ . The inverses of all the 

factorized matrices should exist since C is unitary and or-
thogonal. In this paper, the inverse of a forward DCT algo-
rithm, obtained based on (2), is referred to as a  traditional 
inverse transform; and the inverse obtained based on (3) is 
referred to as a reversible inverse transform since the inverse, 
when applied to the transformed matrix, has the effect of 
reversing the operations performed by the forward transform 
matrix. Consider the multiplication 1CC− involving forward 
transform matrix C, defined in (1), and the inverse 1C− , de-
fined in (3), the first operation in (3) reverses the last opera-
tion of (1) and thus cancel out each other. Similarly, other 
operations in (3) can reverse the corresponding operations in 
(1). 
It makes no difference in using either one of the two inverse 
transforms in floating point based fast DCT algorithms since 
they would still yield the same result as there is almost no 
loss in precision in the underlying floating point computa-

tions. However, in multiplierless fast DCT algorithms, the 
choice of inverse transform could have an impact on the ap-
proximation error. It can be shown that using the reversible 
inverse transform could give less error.  

A number of research workers [8-10] proposed recently 
different methods to convert fast DCT algorithms into multi-
plierless versions, which involve replacing the butterfly 
structures by lifting structures. A lifting structure can be 
formed via the decomposition of invertible matrices which 
represent a butterfly structure. The inverse of the lifting 
structure also has two forms: the traditional inverse transform 
version and the reversible inverse transform version. In sec-
tion 4, we shall show a performance comparison between 
traditional inverse transform and reversible inverse transform. 

Since DCT is a separable transform, 2-D DCT can be 
implemented in 1-D DCT based on the row-column approach. 
There are two normalization steps in both the forward and 
inverse transforms. It is desirable to delay the normalization 
step as much as possible in order to avoid the amplification 
of the approximation error caused by error propagation dur-
ing the transform. However, only those multiplierless DCT 
algorithms with uniform normalization constants can have 
the two normalization steps combined into a single step 
which can be delayed and performed as the last step of the 
transform. We cannot combine the normalizations with non-
uniform constants. In this case, the normalization steps can-
not be delayed. The forward 2-D DCT can be written as: 
  TY CXC=  (4) 
and its inverse transform can be written as: 
  ' TX C YC=   (5) 
or  ' 1X C YC−=  (6) 
where X, C, Y, and X’ are the original input matrix, the trans-
form matrix, the transformed matrix, and the reconstructed 
input matrix respectively. From (1), (2) and (4), we have: 

  1 2 1 1 2 1

1 2 1 1 2 1

( ... ) ( ... )

( ... ) ( ... )

T
n n n n

T T T T
n n n n

Y NC C C X NC C C

NC C C X C C C N
− − − −

− − − −

=

=
 (7) 

If N is uniform, we can combine N and NT,  and (7) becomes 
  1 2 1 1 2 1(( ... ) ( ... ))T T T T

n n n nY C C C X C C C NN− − − −=  (8) 
Equation (8) is said to have a delayed normalization since 
the two normalization steps can be combined and carried out 
after the row and the column computations during the trans-
form. Similarly, from (1), (2), and (5), we can obtain the 
following:  
  '

1 2 1 1 2 1(( ... ) ( ... ))T T T T
n n n nX C C C Y C C C NN− − − −=  (9) 

And from (1), (3), and (6), the following derivations can be 
performed: 

  

' 1

1 1 1 1
1 2 1 1 2 1

1 1 1 1
1 2 1 1 2 1

1 1 1
1 2 1 1 2 1

( ... ) ( ... )

(( ... ) ( ... ))

(( ... ) ( ... ))

n n n n

n n n n

n n n n

X C YC

C C C N Y NC C C

C C C Y C C C NN

C C C Y C C C I

−

− − − −
− − − −

− − − −
− − − −

− − −
− − − −

=

=

=

=

 (10) 

where I is the identity matrix. In this case, we need not ap-
proximate the normalization constants for the multiplierless 
transform. 
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The normalizations in (8) and (9) can be further combined to 
form (NNTNNT); this combined normalization, which can be 
performed after the forward and inverse transforms, is re-
ferred to as a post normalization. Similarly, from (8) and (10) 
for a transform using a reversible inverse, we can obtain the 
post normalization 1( )TNN NN − which can be simplified 
to TNN . With post normalization, we can avoid any propaga-
tion of errors while performing the transforms by the multi-
plierless DCT. However, such a multiplierless DCT is not 
compatible with a standard 2-DDCT. The section below 
introduces an optimized assignment of signed digits for ap-
proximating transform matrix constants, which could have a 
great impact on the performance of the resulting transform. 

 

3. ASSIGNMENT OF SIGNED DIGITS TO 
CONSTANTS 

The accuracy of an approximated DCT could be more sensi-
tive to the approximation errors of some of its constants. So 
we should assign more digits to represent the sensitive con-
stants in SOPOT representations in order to reduce their 
errors. However, assigning more digits to a constant can 
increase the complexity of the approximated algorithm. So 
we should develop a method to find an optimized assign-
ment of digits to the constants in order to minimize the ap-
proximation error of the algorithm for a given complexity.  
We present here a method to assign a number of non-zero 
digits to each constant (approximated by a sum of power-of-
two terms), based on the constraint on the total number of 
additions for a given transform. We use MSE, defined in [9], 
as the metric for measuring the performance of the approxi-
mated DCT. The algorithm below finds an optimized signed 
digits configuration for the constants of an approximated 
algorithm. 

Suppose there are n constants C1, C2, …and Cn in a fast 
DCT algorithm and they are assigned d1, d2, …and dn signed 
digits respectively. Then (d1, d2, …dn) is called a signed digits 
configuration of the algorithm being approximated. The total 
number of the signed digits is defined as the length of the 
configuration. The complexity of the algorithm depends 
partly on the length of its signed digits configuration. Two 
different configurations should correspond to the same com-
plexity of an algorithm as long as they have the same length. 
However, two different configurations with the same length 
may lead to different MSEs. The reason is that the MSE of an 
algorithm can be more sensitive to some constants and less 
sensitive to others. If a configuration assigns more digits to 
the sensitive constants and fewer to those less sensitive ones, 
we can get a smaller MSE. It is not easy to know which con-
stants are sensitive, however, they could be searched by ex-
amining all possible configurations of a given length and 
compute the MSEs. Then we can find an optimized configu-
ration with the smallest MSE. However, this exhaustive 
search approach could be infeasible especially when there are 
many constants. The algorithm outlined below can be shown 
capable of finding an optimized configuration. 

 
 

Algorithm for finding an optimized configuration with length 
L for a DCT algorithm having n constants 

1. Let P=(d1, d2, …dn) be the initial signed digits configuration 
and  its length is L; e = MSE of algorithm with configuration P; 
/* Number of additions contributed by configuration P would 
be L-n. Assume the target complexity of the algorithm allows 
only L-n additions from the signed digits configuration. */ 

2. for each {1... }i N∈ ; Qi = P; increment di of Qi by 1; compute 
MSE ,P ie  of algorithm with Qi;   /* no. of additions from Qi = 
L-n+1. */ 

3. find the minimum ,P ie ; let  Q = Qi;  
4. for each {1... }i N∈ ; let Qi=Q;  decrement di of Qi by 1; com-

pute MSE ,Q ie of algorithm with Qi;  /* no. of additions from 
Qi : L-n */ 

5. find the minimum ,q ie ; let P = Qi;  

6. if (e not equal to ,Q ie ) then {e = ,Q ie ; goto 2;}  
7. exit   /* minimum MSE: e; optimized configuration: P with 

length L  */ 
 

4. SAMPLE MULTIPLIERLESS DCT  

To convert floating-point based fast DCT algorithms into 
their multiplierless versions, we applied the conversion 
method proposed by Chan [8] and Chen [10]. Chan et. al. [8] 
proposed a method to convert each multiplication constant 
into a sum-of-power-of-two (SOPOT) representation. Since 
each power-of-two term is dyadic, we can implement the 
multiplication by shift-and-add operations only. Then the 
complexity can be measured by the number of additions and 
the number of shifts. As the shift cost is relatively low, algo-
rithm complexity could then be measured by the number of 
additions.  Chen et. al. [10] proposed a method to convert 
planer rotation structures into lifting structures. This conver-
sion makes the constants become less than unity; so the sub-
sequent approximation of the constants will introduce a 
smaller error. In summary, in designing a multiplierless DCT 
algorithm for achieving improved performance, we need to 
consider the following choices: (i) lifting or non-lifting 
structures; (ii)  traditional inverse or reversible inverse trans-
form; (iii) uniform normalization or non-uniform normaliza-
tion; (iv) non-delayed normalization, delayed normalization, 
or post normalization; (v) optimized or non-optimized 
signed digits configuration.  

We shall use the well known LLM’s [3] fast DCT algo-
rithms to illustrate the above important design issues having 
an impact on the performance of an approximated multi-
plierless DCT. To address the above issues, we consider 
different versions of the transform as outlined below. Con-
cerning algorithm structures, the fast DCT has two versions: 
original transform (non-lifting structures) and lifting struc-
ture transform. Each forward transform could have two ver-
sions for the two different inverses: traditional inverse trans-
form and reversible inverse transform. Therefore the fast 
DCT has six versions altogether, namely: original forward 
(OF) transform, original inverse (OI) transform, original 
reversible inverse (OR) transform, lifting structure based 
forward (LF) transform, lifting structure based inverse (LI) 
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transform, and lifting structured based reversible inverse 
(LR) transform. While the original LLM algorithms (with 
non-lifting structures) have the uniform normalizations, the 
lifting structure versions have non-uniform normalizations. 
So the above non-uniform normalization versions can be 
converted into various uniform normalization versions: uni-
form normalization based forward transform (UF), uniform 
normalization based inverse (UI) transform, and uniform 
normalization based reversible inverse transform (UR). To 
make a non-uniform normalization version become a uni-
form normalization version, we can replace the non-uniform 
normalization matrix Ni by the multiplication of 1( )i uN N −  
and uN , where Nu is the target uniform normalization matrix. 
Further, for each the above uniform normalization versions, 
we can create two other versions: delayed normalization and 
post normalization versions. 

2
)4/sin(π

2
)8/3sin( π

)8/3sin(2
1
π

2
1

2
1

2
)4/sin(π

22
1

22
1

 
Figure 1 – LLM’s forward DCT algorithm with lifting steps 

 
The original LLM DCT algorithms have their uniform nor-
malization constants all equal to 1/√8. After converting the 
original version into a lifting structure based version [9], the 
normalization constants become non-uniform.  
 Figure 1 shows the signal flow diagram of LLM’s lift-
ing version of the forward fast DCT algorithm. The four 
normalizations constants for X[0], X[4], X[7] and X[1] all 
have the same value 1/√8. We can further change the non-
uniform normalization constants for X[2], X[3], X[5], X[6] 
to 1/√8, and obtain a uniform normalization based lifting 
version. Then the number of multiplications in the kernel 
becomes 12 which is smaller than the total number of multi-
plications (equal to 14) in the original lifting version. 

Table 1 shows the optimized signed digits configurations, 
obtained via the algorithm presented in section 3, for LLM’s 
lifting structure based forward DCT algorithm with different 
complexities.  

5. RESULTS 

We used the Lena image to assess the performance, in terms 
of PSNR, of various versions of LLM’s DCT algorithms. 
The results are as shown in Table 2. As expected, a higher 
PSNR can be obtained when using a higher algorithm com-
plexity. 

By comparing the PSNRs in rows (OF1 OI1) and (LF1 
LI1) of Table 2, the lifting structures based fast DCT outper-

formed the non-lifting structures based version. The reason 
could be that the constants in the lifting structure version are 
smaller than 1 in magnitude, which could be approximated 
with a smaller error when the same number of signed digits 
is used.  
 
Table 1: The assignment of signed digits for each constant in the 

lifting version of the LLM forward transform and the corre-
sponding MSE. 

Number of non-zero digits  Total
Adds ρ1 µ1 ρ2 µ2 ρ3 ρ4 µ3 ρ5 N0 N4 N2 N6 N7 N1 MSE

28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8.29e-2
*28 1 0 1 1 1 1 0 0 3 1 1 1 1 2 3.19e-3

42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3.56e-3
*42 2 2 1 2 2 1 2 2 4 2 1 2 2 3 1.63e-4

54 2 2 3 3 3 3 3 3 3 3 3 3 3 3 2.75e-4
*54 3 3 2 3 2 2 2 3 5 3 2 3 3 4 1.08e-5

66 3 3 3 3 4 4 4 4 4 4 4 4 4 4 2.92e-5
*66 4 4 3 3 3 3 3 3 5 5 3 4 4 5 3.07e-7
 – non-optimized configuration, * – optimized configuration 

 
By comparing the relevant rows, in general, the fast DCT 
based on a reversible inverse performed better than the ver-
sion based the traditional inverse. The foregoing can be ob-
served by comparing the sample results shown in rows (OF1 
OI1) and (OF1 OR1).   

The results in rows (OF2 OI2) and (OF2 OR2) indicate 
that the delayed normalization versions of traditional inverse 
based fast DCT and those of the reversible inverse based fast 
DCT performed exactly the same. Further, similar observa-
tion can be made from the results in rows (OF3 OI3) and 
(OF3 OR3) for the post normalization versions of traditional 
inverse based fast DCT and those of the reversible inverse 
based fast DCT. The above results can be explained by the 
fact that the above mentioned DCT transforms differ only in 
the normalization steps. For the delayed normalization ver-
sions, both transforms would perform exactly the same ker-
nel operations. However, their delayed combined normaliza-
tions would then involve essentially the same multiplication 
of a factor equal to 1/8. This explains why they had exactly 
same performance. For the post normalization versions, the 
combined normalizations are performed after the forward 
and inverse transforms. Other than the normalization matri-
ces, the traditional inverse and reversible inverse transforms 
have exactly the same kernels. Further, the combined nor-
malizations for the two versions both involve the multiplica-
tion of a factor equal to 1/64. Thus, both the traditional in-
verse and reversible inverse transforms have the same per-
formance.  

As shown in rows (LF1 LI1) and (UF1 UI1), the lifting 
structure version of LLM’s fast DCT with a non-uniform 
normalization outperformed the fast DCT with uniform nor-
malization.  The relatively low performance of the uniform 
normalization version could be caused by the introduction of 
four additional scaling constants while converting the non-
uniform normalization into a uniform one. However, only the 
fast DCT with uniform normalization can be converted into a 
version with delayed normalization or a version with post 
normalization. So, uniform normalization can be considered 
a desirable feature. The results in rows (LF1 LI1), (UF1 UI1), 

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



and (UF2 UI2) show that the delayed normalization version 
performed substantially better than both the non-uniform 
normalization and uniform normalization versions. Further, a 
post normalization version of the fast DCT outperformed a 
delayed normalization version of the transform, as shown by 
the sample results in rows (UF2 UI2) and (UF3 UI3).  

Table 2 also shows that the fast DCTs based on the op-
timized signed digits assignment configurations generally 
performed better than the corresponding versions based on 
the non-optimized configurations.   
 

Table 2: PSNRs of the approximated LLM’s fast DCT algo-
rithms with  different complexities 

LLM’ fast algo. Number of Additions 
Configurations 

Forward 
transform 

Inverse 
transform 42 *42 66 *66

Approx. norm. OF1 OI1 16.90 21.72 28.90 34.85
Delayed norm. OF2 OI2 42.79 43.43 46.69 46.70

Post norm. OF3 OI3 43.03 43.91 49.78 49.82
Approx. norm. OF1 OR1 16.93 21.81 29.84 36.19
Delayed norm. OF2 OR2 42.79 43.43 46.69 46.70

Post norm. OF3 OR3 43.03 43.91 49.78 49.82
Approx. norm. LF1 LI1 17.66 33.32 37.82 39.19
Approx. norm. LF1 LR1 17.65 33.94 40.73 45.69
Approx. norm. UF1 UI1 17.61 34.42 29.30 36.48
Delayed norm. UF2 UI2 46.90 47.09 48.54 48.54

Post norm. UF3 UI3 47.64 48.48 50.34 50.34
Approx. norm. UF1 UR1 17.63 23.30 29.96 43.81
Delayed norm. UF2 UR2 45.99 46.84 47.52 47.52

Post norm. UF3 UR3 47.38 49.22 50.28 50.28
Keys: OF – original forward, OI – original traditional inverse, OR – origi-
nal reversible inverse;  LF – lifting forward, LI – lifting traditional inverse, 
LR – lifting reversible inverse, UF – uniform forward, UI – uniform tradi-
tional inverse, UR – uniform reversible inverse. 

 – non-optimized configuration, * – optimized configuration 
 

6. CONCLUDING REMARKS 

In this paper, we investigated a number of issues having an 
impact on the performance of an approximated multiplier-
less DCT. The findings from the work provide useful in-
sights into taking the appropriate design decisions when 
developing approximate multiplierless DCT algorithms. 
Such multiplierless fast DCT algorithms are normally ob-
tained from a given fast DCT algorithm via a conversion 
method. The issues examined include: (1) structures of DCT 
algorithms; (2) types of inverse transforms; (3) types of nor-
malizations in a transform; and (4) using an appropriate 
number of signed digits to approximate each constant in the 
transform. 

In order to assess the impact of the above issues on the 
approximate multiplierless DCT, we implemented different 
versions of multiplierless DCT converted from LLM’s fast 
DCT. By examining the results obtained from the different 
versions of multiplierless transforms, we have the following 
findings. (i) A fast DCT with lifting structures outperformed 
the version with non-lifting structures. Thus, when develop-
ing multiplierless DCT, we should convert any available pla-
nar rotation or butterfly structures into lifting structures. (ii) 
An approximate fast DCT based on a reversible inverse per-
formed better than the version based on the traditional in-

verse since a reversible inverse could introduce a smaller 
propagation error. (iii) Uniform normalization is a good fea-
ture since it can be exploited to implement an approximated 
fast DCT with delayed normalization or post normalization; 
such delayed or post normalization versions could achieve 
substantially improved performance. Thus, we should try to 
convert a non-uniform normalization into uniform one.  (iv) 
The approximate DCTs based on an optimized configuration 
of signed digits for approximating the transform matrix con-
stants have been shown to perform better than those versions 
based on a non-optimized configuration. So, the algorithm 
developed in this paper could be exploited to find an opti-
mized configuration for approximating the transform matrix 
constants. 
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