
MIMO-ISI CHANNEL EQUALIZATION –
WHICH PRICE WE HAVE TO PAY FOR CAUSALITY

Holger Boche and Volker Pohl

Technische Universität Berlin, Heinrich Hertz Chair for Mobile Communications
Werner-von-Siemens Bau, Einsteinufer 25, 10587 Berlin, Germany

phone: +49-30-314-28459, fax: +49-30-314-28320, email: {holger.boche, volker.pohl}@mk.tu-berlin.de

ABSTRACT
In the investigation of equalizers and precoders for multiple-
input multiple-output systems with intersymbol interference,
completely new phenomena appear if the causality of theses
filters is required. Both, for transmit as well as for receive
filters, the stability norm is an important performance mea-
sure which is connected to several performance criteria in
communications. The paper shows that the optimal causal
precoder with minimal stability norm is linear but time vari-
ant, in general. It is time invariant only if the channel is flat
fading. Moreover, it is discussed that there exist causal pre-
coders or equalizers for which the stability norm grows ex-
ponential with the minimum number of transmit and receive
antennas of the MIMO system, whereas the stability norm of
the optimal non-causal inverse is always independent from
the dimensions of the MIMO system.

1. INTRODUCTION

The use of multiple antennas at both sides of a wireless
link is considered as a promising way to achieve high data
rates in future communication systems. If the channel is
frequency selective, appropriated equalizing techniques have
to be used to mitigate the intersymbol interference (ISI).
There exist several approaches for this equalization (or pre-
equalization) of the multiple-input multiple-output (MIMO)
channel. Most popular are multicarrier techniques like or-
thogonal frequency division multiplexing (OFDM) [1]. In
single carrier systems, block transmission [2] or the equal-
ization via finite impulse response (FIR) filters [3] are typ-
ically used. In all these approaches the causality constraint
is bypassed in a certain way, such that the determination of
the optimal receive or transmit filter is a comparatively sim-
ple task. Under causality constraints, on the other hand, we
have a completely different situation with totally new phe-
nomena which are unknown in the non-causal case. Such
phenomena are discussed and investigated in this paper and
compared with the better known non-causal case. The un-
derstanding of these phenomena will also be important for
the design of non-linear receives such as decision-feedback
equalizers, since also in these equalizers linear filters are em-
ployed.

2. MOTIVATION AND PROBLEM STATEMENT

2.1 System model

Consider a time discrete, linear, frequency selective MIMO
systemS with N inputs andM outputs. The input-output
relation ofS can be written in general as

yn = ∑∞
k=−∞ Hkxn−k +νn . (1)

Therein,{xk}k∈Z and{yk}k∈Z are the sequences of the input
and output symbols, respectively. Eachxk ∈CN andyk ∈CM

is an element of the commonN- andM-dimensional Euclid-
ean vector space over the complex numbersC, respectively.
The sequence{νk}k∈Z with νk ∈ CM describes additional
disturbances (e.g. noise) at the receiver. Finally, the sequence
{Hk}k∈Z of complexM×N matrices (i.e.Hk ∈ CM×N for
all k) is called theimpulse responseof the linear systemS .
The systemS is said to becausalif Hk = 0 for all k < 0.

Equation (1) can be expressed equivalently in the fre-
quency domain

y(eiω) = H(eiω)x(eiω)+ν(eiω) , ω ∈ [−π,π) (2)

in which H(eiω) is the matrix transfer function(MTF) of
S given by the discreteFourier transformof the channel
impulse response{Hk}k∈Z

H(eiω) = ∑∞
k=−∞ Hkeikω . (3)

Conversely, the single elementsHk of the impulse response
are equal to theFourier coefficientsof H(eiω) given by

Hk = 1
2π

∫
π

−π
H(eiω)e−ikω dω . (4)

Similarly, the vector functionsxk(eiω), yk(eiω), andνk(eiω)
are given by the Fourier transform of the corresponding se-
quences{xk}, {yk}, and{νk}, respectively.

2.2 Signal and operator norms

Let 1≤ p≤∞, thenLp(CN) denotes the space of all measur-
able vector functionsx : T → CN defined on the unit circle
T := {z∈C : |z|= 1} with values inCN for which the norm

‖x‖p =
(

1
2π

∫
π

−π

∥∥x(eiω)
∥∥p

CN dω
)1/p

, p < ∞ (5)

or

‖x‖∞ = sup
ω∈[−π,π]

‖x(eiω)‖CN

is finite. Therein,‖ ·‖CN denotes the usual euclidean norm in
CN. Of particular interest will be the spaceL2(CN) since it
is Hilbert space under the scalar product

〈x,y〉= 1
2π

∫
π

−π

〈
x(eiω),y(eiω)

〉
CN dω .

Again,〈x(eiω),y(eiω)〉CN = yH(eiω)x(eiω) denotes the usual
scalar product inCN. Note that the energy of a signal vector
can be identified with the square of itsL2(CN)-norm.
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Throughout this paper, it is always assumed that the sig-
nal vectorsx, y and the noiseν in (2) have finite energy, i.e.
that they belong to the correspondingL2-space. Then, the lin-
ear MIMO systemS represents an operatorS : L2(CN)→
L2(CM). It is clear that these operators can be identified
with matrix transfer functionsH(eiω) onT with values in the
space of complexM×N matrices, and the adjoint operator
S ∗ can be identified with the complex-conjugate, transposed
matrixH∗(eiω) for all ω ∈ T. TheL2-norm of the signals in-
duces a corresponding (energy) norm for the operatorsS by

‖S ‖E := sup
x∈L2(CN)

‖S x‖2

‖x‖2
. (6)

This norm describes the maximal amplification of the signal
energy by the linear systemS . It is called thestability norm
of S and can be expressed as the supremum norm of the
MTF H of S , i.e. it holds‖S ‖E = ‖H‖∞ with

‖H‖∞ = esssup
ω∈[−π,π)

√
λmax[HH(eiω)H(eiω)] . (7)

The space of allM×N matrix transfer functionsH for which
‖H‖∞ < ∞ is denoted byL∞(CM×N).

Every functionH in Lp(CN) or L∞(CM×N) with arbitrary
dimensionsN andM has a Fourier series representation (3)
with the Fourier coefficients given by (4). The subspaces of
Lp(CN) andL∞(CM×N) of all functions for which the Fourier
coefficients with negative indexk< 0 are zero are denoted by
H p(CN) andH∞(CM×N), respectively. Each element in these
spaces may be interpreted as an analytic function inside the
unit diskD := {z∈C : |z|< 1} with values inCN or CM×N,
respectively:

H(z) = ∑∞
k=0Hk zk .

Conversely, each analytic function inD can be identified with
its boundary valuesH(eiω) since limr→1H(reiω) = H(eiω)
almost everywhereω ∈ [−π,π) [4]. The spaceH∞(CM×N)
can be identified with the space of all linear operatorsS :
H2(CN)→ H2(CM). Similarly as above, theL2-norm of the
signals inH2(CN) induces an operator norm (6), but know
the supremum has to be taken over allx∈ H2(CN).

2.3 Problem statement

Assume that a causal and stable linear MIMO systemS with
N inputs andM ≤ N outputs and with the transfer function
H ∈ H∞(CM×N) is given. The input output relation is given
by (2), in whichx∈ H2(CN) andy∈ H2(CN). We consider
the following three problems:

Problem 1 (LTI - Inverses):We are looking for the transfer
function G ∈ H∞(CN×M) of a linear, time-invariant (LTI),
stable, and causal right inverse which satisfies

H(eiω)G(eiω) = IM for all ω ∈ [−π,π) .

It is known that such a right inverse exists, ifH satisfies the
condition

H(z)HH(z)≥ δ
2IM for all |z|< 1 . (8)

If such a right inverse is known, it can be used as a pre-
equalizer for the linear system with MTFH which deter-
mines the necessary transmit signalx = Gu such that the
desired signalsu ∈ H2(CM) are received at the output of
the channely = HGu+ ν = u+ ν . Practically, the trans-
mit power is upper bounded by a certain valuePmax, i.e.
‖x‖2

2 ≤ Pmax. But this transmit power restriction yields a re-
duction in the effective receive power, because the relation

‖x‖2
2 = 1

2π

∫
π

−π
uH(eiω)GH(eiω)G(eiω)u(eiω)dω ≤ Pmax

implies that‖u‖2
2 ≤ Pmax/‖G‖2

∞, which shows that the ef-
fective receive power‖u‖2

2 decreases as theH∞-norm ofG
increases. Since there exists in general more that one right
inverse, it is desirable to find a right inverse with the least
supremum norm. Such an optimal right inverse is denoted
by Ĝ, and the minimal norm by

CLTI(H) = ‖Ĝ‖∞ = inf ‖G‖∞

where the infimum is taken over all possible right inverses
G ∈ H∞(CN×M). Moreover, it can be shown that there actu-
ally exists a causal LTI inversêG for which the infimum on
the right hand side is achieved.

Problem 2 (Linear Inverses):In the second problem, we
look for linear right inversesRI : H2(CM) → H2(CN) such
thatHRI = IH2(CM). Thus, compared to Problem 1 we now
do not require that the right inverse is time invariant. Again,
we are interested in the right inverse with the least stability
norm, which will be denoted bŷRI , and the minimal norm is
denoted by

ON(H) = ‖R̂I‖∞ = inf ‖RI‖∞

in which the infimum is again be taken over all possible lin-
ear right inverseRI : H2(CM) → H2(CN). In Section 3 the
optimal solutionR̂I will be given explicitly, which will show
that the infimum is actually achieved.

Problem 3 (Non-linear Inverses):Finally, we drop also the
requirement of linearity on the right inverses. Then, to every
required receive signalu ∈ H2(CM), we ask for the corre-
sponding transmit signalx∈ H2(CN) such thatu = Hx and
which has minimal energy. Thus, to a givenu∈H2(CM), we
look for anxu ∈ H2(CN) with minimal H2(CN)-norm, i.e.
such that

‖xu‖2 = inf
{
‖x‖2 : x∈ H2(CN) , u = Hx

}
The corresponding optimal operator norm is then given by

OI(H) = sup
{
‖xu‖H2(CN) : ‖u‖H2(CM) ≤ 1

}
.

From the above three problems, it is immediately clear

OI(H)≤ ON(H)≤CLTI(H) .

Thus, the norm of the LTI-inverse is always larger (or equal)
as the norm of the non-linear inverse, since the set of all LTI
inverses is a subset of all (possibly non-linear) inverses.
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2.4 Riesz projection and Toeplitz operators

This section, shortly reviews some known fact from func-
tional analysis and gives some important operators with some
of their properties which are needed subsequently.

Assume that(H1, 〈·, ·〉1) and(H2, 〈·, ·〉2) are two Hilbert
spaces with a corresponding scalar product and letL : H1 →
H2 be a linear operator with the domainD(L). Recall, that
theadjoint L∗ of L is uniquely defined by the equation

〈Lx,y〉2 = 〈x,L∗y〉1 for all x∈ D(L) .

Let x ∈ L2(CN) be of the formx(eiω) = ∑∞
k=−∞ xkeikω .

The orthogonal projectionP+ : L2(CN)→H2(CN) is defined
as (P+x)(eiω) = ∑∞

k=0xkeikω and it is called theRiesz pro-
jection. As every orthogonal projection,P+ is self-adjoint,
i.e. 〈P+x,y〉 = 〈x,P+y〉 for all x,y ∈ L2(CN). In the same
way, P− denotes the orthogonal projection fromL2(CN)
onto the orthogonal complement ofH2(CN): (P−x)(eiω) =
∑−1

k=−∞ xkeikω .
Let Φ ∈ L∞(CM×N). Then themultiplication operator

MΦ : L2(CN)→ L2(CM) is given by

(MΦx)(eiω) := Φ(eiω) ·x(eiω) , ω ∈ [−π,π) . (9)

The adjoint operator is obviously given byM∗
Φ = MΦ∗ , and

the operator norm is‖MΦ‖= ‖Φ‖∞.
Let Φ ∈ L∞(CM×N), then theToeplitz operator(with

symbolΦ) TΦ : H2(CN)→ H2(CM) is defined by

TΦx := P+(MΦx) .

The adjoint operator is given byT∗
Φ = TΦ∗ = P+MΦ∗ , and for

the operator norm it can be shown that‖TΦ‖= ‖Φ‖∞.

3. INVERSES

3.1 Causal inverses

This section investigates the three problems formulated in
Section 2.3. Given a causal and stable MTFH∈H∞(CM×N).
Without loss of generality, we always assume that‖H‖∞ ≤ 1.
Using the notations of Section 2.4, Problem 3 can be re-
formulated as: To everyu ∈ H2(CM) we look for anxu ∈
H2(CN) such that

THxu = u (10)

and such thatxu has the minimal norm among allx∈H2(CN)
which satisfy (10). Since the spacesH2(CN) andH2(CM)
are Hilbert spaces, the non-linear Problem 3 can be lead back
to a linear optimization problem. It has a solution, if and only

inf
‖u‖H2(CM )=1

‖P+(H∗u)‖H2(CN) = δc > 0 . (11)

If this condition is satisfied, the solution of (10) with minimal
norm is given by

xu = (TH)†u = T∗
H(THT∗

H)−1u . (12)

Thereby, the operator(TH)† is called thegeneralized inverse
or pseudo-inverseof the operatorTH. This solution is well
known, and a strict proof may be found e.g. in [5, Chap-
ter 8]. Here, we shortly give only a formal way, how this

solution may obtained. Thereby, the interrseting point will
be that the behavior ofT∗

H is directly related to the condition
(11). Therefore (11) can be used to analyze the impact of the
restriction to causal inverses.

It is known that the range ofT∗
H is equal to the orthogonal

complement of the null-space ofTH: R(T∗
H) = N(TH)⊥. For

a fixedu∈ H2(CM), the pre-imagexu with minimal norm is
an element of theN(TH)⊥ and thereforexu∈R(T∗

H). But this
means that there exists awu ∈ H2(CM) such thatxu = T∗

Hwu
and consequentlyu = THT∗

Hwu. Since, because of (11)

〈THT∗
Hu,u〉= 〈T∗

Hu,T∗
Hu〉= ‖T∗

Hu‖H2(CN) > δ . (13)

The operatorTHT∗
H is a bijective mapping fromH2(CM)

onto H2(CM). Therefore, its inverse exists, and one gets
wu = (THT∗

H)−1u and finally (12).
So, (12) gives the solution to the non-linear Problem 3.

It is notable that the optimal solution is given by alinear
mapping(TH)†. Consequently, (12) solves also Problem 2 in
Section 2.3, and the optimal operator norms are equal in both
cases:OI(H) = ON(H). Moreover, from (12) follows

‖xu‖H2(CN) ≤
∥∥T∗

H

∥∥ ·∥∥(THT∗
H)−1u

∥∥
H2(CM) (14)

≤
∥∥(THT∗

H)−1
∥∥

H2(CM)→H2(CM) · ‖u‖H2(CM)

= sup
‖u‖H2(CM )=1

1
‖T∗

Hu‖H2(CN)

where for the last line (13) was used. It can be shown that
this bound is sharp. Therefore one gets

OI(H) = ON(H) = sup
‖u‖H2(CM )=1

1
‖T∗

Hu‖H2(CN)

=
1

inf‖u‖H2(CM )=1
‖T∗

Hu‖H2(CN)
=

1
δc

.

However, even though the solution (12) is linear, it is time
variant. Thus, it is not a solution of Problem 1 in Section 1.
Only in the case of a flat fading channel, (12) is time invari-
ant. Moreover, it can be shown thatCLTI(H) = ON(H) =
OI(H), in general. However, this is not trivial. Thus, the
H∞-norm of an optimal right inversêG is determined by the
constantδc.

3.2 Comparison with non-causal inverses

If no causality on the inverse is required, the problem (10)
would be written as

MHxu = u (15)

in which MH : L2(CN) → L2(CM) is simply the multiplica-
tion operator (9). Similar as in the causal case, we obtain the
optimalxu which satisfies (15) and has minimal norm by the
generalized inverse ofMH

xu = (MH)†u = M∗
H(MHM∗

H)−1u . (16)

The operator norm of this non-causal inverse is given by∥∥(MH)†
∥∥

L2(CM)→L2(CN) =
1

δnc
.
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with

δnc = inf
‖u‖L2(CM )=1

‖M∗
Hu‖L2(CN) (17)

It can be shown thatδnc is the largest constant for which
(8) holds. Next, we will show that this constantδnc, which
determines the norm of the generalized inverse is always
larger or equal than the corresponding constantδc in the
causal case. For everyu∈ H2(CM) holds

‖M∗
Hu‖2

L2 = ‖MH∗u‖2
L2 = ‖P+(MH∗u)+P−(MH∗u)‖2

L2

= ‖P+(MH∗u)‖L2 +‖P−(MH∗u)‖2
L2

≥ ‖P+(MH∗u)‖2
L2 = ‖TH∗u‖2

H2 (18)

where for the second line the Pythagoras formula was ap-
plied. Therewith, it follows immediately from (11) and (17)
that δc ≤ δnc and consequently that‖(TH)†‖ ≥ ‖(MH)†‖.
Thus, the operator norm of the non-causal pseudoinverse is
always smaller or equal than the norm of the causal pseudoin-
verse. Of course, this is what we would expect. However the
considerations in (18) show where this loss in the causal case
comes from. Due to the projection onto the causal part in
the operatorT∗

H, the anti-causal part‖P−(MH∗u)‖2
L2 is com-

pletely lost compared to the non-causal part. This truncation
of the non-causal part of the signal reduce the constantδc and
therefore increases the norm of the right inverse.

The symbolu is causal. However, due to the multiplica-
tion with the anti-causal MTFH∗, some parts ofu are trans-
formed to the negative part of the time axis. This anti-causal
part is cut of by the projectionP+. The corresponding signal
energy can not be used. The loss due the causality constrain
is obviously as larger as more signal energy is shifted on the
anti-causal part by the non-causal MTF.

Finally, we will have a closer look on the causal
pseudoinverse (12). As it was shown above, the operator
(THT∗

H)−1 is an one-to-one mapping of the whole signal
spaceH2(CM) onto itself. However, this operator is respon-
sible for the enhancement of the operator norm compared to
the non-causal case. Because the subsequent multiplication
with T∗

H in (12) is only a mapping onto the "larger" space
H2(CN). But since‖T∗

H‖= 1, this mapping changes not the
signal energy (cf. (14)).

3.3 Structure of the left- and right inverse

There exist several different approaches to study the be-
havior of the causal left and right inverses. Here some
of these approaches are considered for left inverses. Let
H∈H∞(CM×N) be an MTF withM ≥N and for which there
exists a constantδnc > 0 such that

H∗(z)H(z)≥ δ
2
ncIN , for all |z|< 1 (19)

whereδnc is understood to be the largest constant for which
(19) holds. Note, that because of the assumed normaliza-
tion ‖H‖∞ ≤ 1, the constantδnc is always smaller or equal
than 1. It is known that there always exists a so calledinner-
outer factorizationof H

H = Hin ·Hout

in which Hout ∈ H∞(CN×N) is an invertible matrix which
causes no problems, in general. Because from (19) follows

immediately thatH∗
out(z)Hout(z)≥ δ 2

ncIN for all |z|< 1, and
therefore‖H−1

out‖H∞ ≤ 1/δnc. So only the behavior of the
inner factorHin has to investigated. Therefore,H can be
assumed to be inner in the following.

1) One method to investigate the behavior of the left in-
verses is based on a parametrization of all possible left in-
verses via an extension matrix ofH [6, 7]: If condition (19) is
satisfied, then there exist matricesE ∈ H∞(CM×(M−N)) such
that the extended matrixHE := [H E] ∈ H∞(CM×M) is in-
vertible. Note that the matrixE can be chosen to be inner.
However, the resultingHE is not unitary. The inverse

H−1
E =

[
G
R

]
gives a complete parametrization of all left inversesG ∈
H∞(CN×M). Every left inverse defines a projectorPG =
HG, and the complementary projectorQG = I−PG is given
by QG = ER. Thus, it holdsHG+ER = IM.

2) Also the second method for the investigation of the left
inverses is based on an extension of the given matrixH [8].
TherebyHT is analyzed. If condition (19) is satisfied, the
null spaceN(HT) can be parametrized by an inner matrix
V ∈ H∞(CM×(M−N)) such that

N(HT(z)) = V(z) CM−N (20)

for all |z|< 1 and|z|= 1 almost everywhere. Because of the
representation (20) of the null space, one has

N(HT(z)) =
(
V(z) CM−N)⊥

.

Therewith the unitary matrixHV(z) = [H(z) V(z)] can be
defined. Note thatHV does not belong toH∞(CM×M). The
matrixHV is invertible, and therefore we have

H−1
V HV =

[
G
GV

]
· [H V] =

[
GH 0

0 GVV

]
= I . (21)

It should be noted that there exists a direct relation between
the extension byV and the method described under 1) using
the projectorsPG and QG. It can be shown that the null
space ofHT is parametrized byPT

G. Moreover, if the inner
function ofPT

G is used, one obtains the extension matrixV.
Interesting is now that this extension ofH by V can be

used to get a better understanding of the constantδc in (11)
which determines the operator norm of the optimal causal
inverse. In [8], it was shown that the norm of the best left
inverse ofH is equal to the norm of the best left inverse
of V. There, the caseM = N + 1 was considered, and the
considerations in [8] show that the constantδc has a com-
pletely different behavior forM > N than for the quadratic
caseM = N. In the caseM = N + 1, V is a column vector
with N + 1 entries. IfV would also satisfy a condition like
(19):

V∗(z)V(z) = ∑N+1
k=1 |Vk(z)|2 ≥ δ 2

nc , for all |z|< 1

then it would be possible to give an upper bound on the norm
of the left inverse. However, due to the construction (20) of
V, it is not possible to control the infimum ofV∗(z)V(z).
Moreover, in [8] examples where given such that

inf|z|<1 ∑N+1
k=1 |Vk(z)|2 ∼ δ 2N

nc (22)
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with a constant 0< δnc < 1. Thus the coercive constant de-
creases exponential with the dimensionN. For all V ob-
tained from the construction (20) holds 1= GVV(z), by
(21). Using Cauchy-Schwartz inequality gives therefore

∑N+1
n=1 |[GV(z)]n|2 ·∑N+1

n=1 |Vn(z)|2 ≥ 1 .

With the example (22), one gets

∑N+1
n=1 |[GV(z)]n|2 ≥ 1

δ 2N
nc

.

As mentioned, it was shown in [8] that the minimal norm
among all left inversesG is equal to the minimal norm
among all left inverses of the corresponding extension ma-
tricesV. Therefore, the last inequality shows that there exist
(N+1)×N channel matricesH for which the stability norm
‖G‖∞ of all left inverses is proportional toδ N

nc in whichδnc is
the smallest constant for which (19) holds. Of course, similar
examples can be constructed for any case withM > N.

3.4 Consequences and discussions

1) Thus, if frequency selective MIMO systems are consid-
ered with more outputs than inputs (M > N). Then, there al-
ways exist causal and stable matrix transfer functionsH ∈
H∞(CM×N) such that for the stability norm of all causal
left inverses hold‖G‖∞ ∼ δ−N

nc . Thus, the stability norm
of the optimal left inverse depends on the dimension of the
MIMO system, in general and grows exponential with the
smallest dimension min(N,M). In the quadratic case, i.e. if
M = N, the norm of the inverse is independent on the dimen-
sionN but depends only on the coercive constantδnc in (19):
‖G‖∞ ∼ 1/δnc. Moreover, compare these results again with
the non-causal inverses. There, the optimal left inverse with
minimal norm is simply the generalized inverse (16) with the
operator norm‖H†‖∞ ∼ 1/δnc independent on the dimension
N andM.

In random matrix theory, often the ratioK = M/N of the
(flat fading) matrix transfer functionsH is held fixed, and
then the limitN → ∞ is considered (e.g. [9]). In this limit
and under the causality constrain, it is possible to find in-
finite many MTF’sH which satisfy (19), but for which no
causal left inverse exists. However, since these MTF’s sat-
isfy (19) a non-causal inverse (16) will exist. It should be
noted, that also the introduction of an arbitrary delayd > 0
such thatG(z)H(z) = zdI, will not eliminate this problem.
Also in this case no stable and causal left inverse exists. Also
the restriction to finite impulse response (FIR) systemsH,
will not resolve this problem. If such an FIR-MTF satisfies
(19), there will exist a causal left inverseG, but its norm
‖G‖∞ may become arbitrary large, and even ifM andN are
finite this norm may still becomes very large, dependent on
M andN.

2) Above, we always assumed that the MTFH belongs to
H∞(CM×N). The question is, whether it is possible to find a
subspace of "good behaving" function such that the norms of
the inverses does not show a dependency on the dimensions
of the MTF as inH∞. To this end, the authors considered
spaces of smooth transfer functions [10, 11], in particular the
spaceAα(CM×N) of Hölder continuous MTF of orderα for

which

‖H‖
α

:= ‖H‖∞ + sup
z1,z2∈T
z1 6=z2

‖H(z1)−H(z2)‖
|z1−z2|α

< ∞.

where considered. It can be shown that for 1/2 < α < 1
the norm of the optimal causal inverse does not depend on
the dimension of the MTF. This means, that there exists a
constantC1(α) such that for allM,N ∈ N with M > N and
for all H ∈ Aα(CM×N) with ‖H‖∞ ≤ 1 alwaysCLTI(H) ≤
C1(α)/δc holds, where the right hand side does not depend
explicitly on the dimensionsM,N. The technique to show
this can not be used for the case that 0< α ≤ 1/2. So it is an
interesting question, whether or not there exist dimensional
effects for 0< α ≤ 1/2. However, this question is still open.
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