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ABSTRACT Therein,{x}kez and{y, }«kez are the sequences of the input

In the investigation of equalizers and precoders for multipleand output symbols, respectively. Eaghe CN andy, € CM
input multiple-output systems with intersymbol interference;is an element of the comma+ andM-dimensional Euclid-
completely new phenomena appear if the causality of thesean vector space over the complex numliigrsespectively.
filters is required. Both, for transmit as well as for receiveThe sequencédvy}yez with v € CM describes additional
filters, the stability norm is an important performance meadisturbances (e.g. noise) at the receiver. Finally, the sequence
sure which is connected to several performance criteria ifHk}kez Of complexM x N matrices (i.e.Hy € CM*N for
communications. The paper shows that the optimal causall K) is called thempulse responsef the linear systeny”.
precoder with minimal stability norm is linear but time vari- The system? is said to becausalif Hy = 0 for allk < 0.

ant, in general. It is time invariant only if the channel is flat ~ Equation [(1) can be expressed equivalently in the fre-
fading. Moreover, it is discussed that there exist causal preguency domain

coders or equalizers for which the stability norm grows ex- . ) . )

ponential with the minimum number of transmit and receive  Y(€°) = H(€“)x(€®)+v(€®), we|[-mx) (2
antennas of the MIMO system, whereas the stability norm of .

the optimal non-causal inverse is always independent frorit which H(€®) is the matrix transfer functiofMTF) of

the dimensions of the MIMO system. < given by the discret&ourier transformof the channel

impulse responsgH ez,
1. INTRODUCTION

- , , H(€%) = 37 H .. 3
The use of multiple antennas at both sides of a wireless

link is considered as a promising way to achieve high dat@onversely, the single elemerf of the impulse response
rates in future communication systems. If the channel isire equal to th€ourier coefficientof H(€®) given by
frequency selective, appropriated equalizing techniques have

to be used to mitigate the intersymbol interference (ISI). H, = ziffﬂH(eiw)e—ikwdw. (4)
There exist several approaches for this equalization (or pre- d

equalization) of the multiple-input multiple-output (MIMO) ' simijiarly, the vector functiong,(€%), y,(€®), andvi(€?)
channel. Most popular are multicarrier techniques like orare given by the Fourier transform of the corresponding se-
thogonal frequency division multiplexing (OFDM)I[1]. In quenceqx}, {y,}, and{vy}, respectively.

single carrier systems, block transmissibh [2] or the equal-

ization via finite impulse response (FIR) filtefs [3] are typ-2 2  Signal and operator norms

ically used. In all these approaches the causality constraint

is bypassed in a certain way, such that the determination &€t 1= P =, thenLP(C") denNotes the space of all measur-
the optimal receive or transmit filter is a comparatively sim-able vector functions : T — C d.eflrsled on the unit circle
ple task. Under causality constraints, on the other hand, wé := {Z€ C : |2/ = 1} with values inC™ for which the norm
have a completely different situation with totally new phe- _ 1

nomena which are unknown in the non-causal case. Such Xl = (2 /™% ||x(e"")||fc’N dw)”?, p<w  (5)
phenomena are discussed and investigated in this paper and

compared with the better known non-causal case. The u®¥

derstanding of these phenomena will also be important for

. - . . _ i
the design of non-linear receives such as decision-feedback Xl =sup [[X(€)cn
equalizers, since also in these equalizers linear filters are em- wel-m.7]
ployed.

is finite. Therein|| - ||cn denotes the usual euclidean norm in

N . . . N . .
2. MOTIVATION AND PROBLEM STATEMENT C". Of particular interest will be the spatg(CN) since it
is Hilbert space under the scalar product

2.1 System model

1 . .
Consider a time discrete, linear, frequency selective MIMO (xy) = ijﬂ <x(e'“’),y(e'“’)>CN do.

system. with N inputs andM outputs. The input-output i o o - o

relation of.# can be written in general as Again, (x(€®),y(€®))cn =y (€°) x(€®) denotes the usual

scalar product it N. Note that the energy of a signal vector
Yo =Sk oHiXn k+Vn. (1)  can be identified with the square of t(CN)-norm.
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Throughout this paper, it is always assumed that the sigf such a right inverse is known, it can be used as a pre-
nal vectors, y and the noise in (2) have finite energy, i.e. equalizer for the linear system with MTH which deter-
that they belong to the correspondingspace. Then, the lin- mines the necessary transmit signak Gu such that the
ear MIMO system¢ represents an operatof : L(CN) —  desired signalsi € H2(CM) are received at the output of
L2(CM). 1t is clear that these operators can be identifiedhe channey = HGu+ v = u+v. Practically, the trans-
with matrix transfer function®I(¢®) onT with values inthe ~ Mit power is upper bounded by a certain valgga i.e.
space of comple x N matrices, and the adjoint operator ||x||§ < Pmax But this transmit power restriction yields a re-
* can be identified with the comglex—conjugate, transposeduction in the effective receive power, because the relation
matrix H*(€®) for all ® € T. TheL=-norm of the signals in- _ . _ .
duces a corresponding (energy) norm for the operatoisy HXH% = % [T Ut (@2)GH ()G (€?)u(é?) dw < Prax

17l = sup 12Xz )  implies that||u[3 < Prax/ [ G2, which shows that the ef-
xeL2(cN) X[l fective receive poweju||3 decreases as th¢”-norm of G

. . : L _ increases. Since there exists in general more that one right
This norm describes the maximal amplification of the signajerse, it is desirable to find a right inverse with the least

energy by the linear systerf. Itis called thestability norm  g,;nremum norm. Such an optimal right inverse is denoted
of . and can be expressed as the supremum norm of the '

MTF H of .7, i.e. it holds|.||¢ = ||H]|., with y G, and the minimal norm by
— CLTI(H) = || G|l = inf |G
|H., = esssupy/Ama]HH (€0)H(€2)].  (7)
wE[-7,7) where the infimum is taken over all possible right inverses

G € H*(CN*M), Moreover, it can be shown that there actu-

ally exists a causal LTI invers@: for which the infimum on
the right hand side is achieved.

The space of aM x N matrix transfer function¥l for which
|[H||,, < o is denoted by.®(CM*N),

Every functionH in LP(CN) or L*(CM*N) with arbitrary
dimensionsN andM has a Fourier series representation (3)Problem 2 (Linear Inverses)in the second problem, we
with the Fourier coefficients given bly](4). The subspaces ofook for linear right inverse®, : H2(CM) — H?(CN) such
LP(CN) andL*(CM~N) of all functions for which the Fourier - thatH R = Ly2cm). Thus, compared to Problefh 1 we now
coefficients with negative indék< 0 are zero are denoted by do not require that the right inverse is time invariant. Again,
HP(CN) andH*(CM*N), respectively. Each element in these we are interested in the right inverse with the least stability

spaces may be interpreted as an analytic function inside the, ., \which will be denoted bR, . and the minimal norm is
unit diskD := {z€ C : |z < 1} with values inCN or CM*N, denot'g:/j tljy W . n I

respectively:

o ON(H) = | R [Joo = inf || Ry [|eo

H() = 52 2 () = | R [l = inf | R |
. . . e , in which the infimum is again be taken over all possible lin-

Conversely, each analytic functionlincan be identified with o5, right inverse, : H2(CM) — H2(CN). In Sectiorﬂ% the

its boundary value®¥I(€) since lim_1 H(re'®) = H(?) PN

almost everywhere € [, ) [4]. The spaceH®(CM*N)

cazn b’\? identizfiedeith. the space of all Iineazlr operatefs

H%(C") — H(C™). Similarly as above, the°-norm of the  proplem 3 (Non-linear Inverses)inally, we drop also the

signals inH?(CN) induces an operator norf| (6), but know requirement of linearity on the r;\%ht inverses. Then, to every

optimal solutionR, will be given explicitly, which will show
that the infimum is actually achieved.

the supremum has to be taken ovena] H2(CN). required receive signal € H?(CM), we ask for the corre-
sponding transmit signad € H?(CN) such thaiu = Hx and
2.3 Problem statement which has minimal energy. Thus, to a gives H?(CM), we

Assume that a causal and stable linear MIMO systémith 100k for anx, € H#(CN) with minimal H2(CN)-norm, i.e.
N inputs andM < N outputs and with the transfer function such that

H ¢ H*(CM*N) is given. The input output relation is given _ _ ” N

by (3), in whichx € H?(CN) andy € H?(CN). We consider [IXall2 = inf {[|X]|z : x € HS(CY) , u=Hx}

the following three problems: The corresponding optimal operator norm is then given by

Problem 1 (LTI - Inverses)We are looking for the transfer
function G € H*®(CN*M) of a linear, time-invariant (LTI), Ol(H) = sup{ [Xullzeny @ llUllpzemy < 1} .
stable, and causal right inverse which satisfies
: : From the above three problems, it is immediately clear
H(E?)G(E?)=1Iy foralloe[-n,7).
OI(H) <ON(H) <CLTI(H) .
It is known that such a right inverse existsHf satisfies the
condition Thus, the norm of the LTl-inverse is always larger (or equal)
as the norm of the non-linear inverse, since the set of all LTI
H(2H"(2) > %Iy forall|7 <1. (8) inversesis a subset of all (possibly non-linear) inverses.
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2.4 Riesz projection and Toeplitz operators

This section, shortly reviews some known fact from func-
tional analysis and gives some important operators with so

of their properties which are needed subsequently.
Assume that.#, (-,-),) and(4, (-,-),) are two Hilbert
spaces with a corresponding scalar product and iet7 —
3 be a linear operator with the domadL). Recall, that
theadjoint L* of L is uniquely defined by the equation

(Lx,y), = (x,L"y); forall xeD(L).

Let x € L?(CN) be of the formx(€?) = T, xek®.
The orthogonal projectioR; : L?(CN) — H?(CN) is defined
as (P, x)(€?) = T o x€k® and it is called theRiesz pro-
jection As every orthogonal projectio®;. is self-adjoint,
i.e. (Poxy) = (x,P.y) for all x,y € L?(CN). In the same
way, P_ denotes the orthogonal projection frobf(CN)
onto the orthogonal complement BP(CN): (P_x)(€®) =
S e .

Let @ ¢ L*(CM*N). Then themultiplication operator
Mg : L2(CN) — L?(CM) is given by

(Max)(d®) := ®(d?)-x(d?), we|-m 7). (9)

The adjoint operator is obviously given b} = Mg+, and
the operator norm igMg || = || P ||e-

Let & ¢ L®(CM*N), then theToeplitz operator(with
symbol®) Tp : H?(CN) — H?(CM) is defined by

Tex:= P (MaX) .
The adjoint operator is given by, = Tg+ = P Mg+, and for
the operator norm it can be shown th{ak || = || P||c.
3. INVERSES

3.1 Causal inverses

m

solution may obtained. Thereby, the interrseting point will
be that the behavior ai;; is directly related to the condition
({I1). Therefore[(1I1) can be used to analyze the impact of the
réstriction to causal inverses.

Itis known that the range 4§ is equal to the orthogonal
complement of the null-space f;: R(Ty;) = N(Ti)*. For
a fixedu € H2(CM), the pre-image, with minimal norm is
an element of th&l(Te )~ and therefore, € R(Ty;). But this
means that there existsxg € H2(CM) such that, = Tgyw
and consequently = Ty Ti;W,. Since, because df (JL1)

(TarTiu, ) = (T, T0) = [ Tiulluzeny > 6. (13)
The operatorTyTy; is a bijective mapping fromH2(CM)
onto H2(CM). Therefore, its inverse exists, and one gets
wy = (T Tyy) ~tu and finally [T2).

So, [12) gives the solution to the non-linear Probfgm 3.
It is notable that the optimal solution is given byliaear
mapping(Ti)T. Consequently[ (12) solves also Prob@m 2in
Sectiorf 2.B, and the optimal operator norms are equal in both
casesOI(H) = ON(H). Moreover, from[(IP) follows

ullzeny < [Tl (1T TeD) " ullyoem, (14)
< H(THT;I)71HH2((CM)ﬁH2(CM) ‘ HUHHZ(CM)
1
= sup ——————
2 cmy_y | TERUIH2EN)

where for the last lind (13) was used. It can be shown that
this bound is sharp. Therefore one gets

1
OI(H)=ONH) = sup Tl
HUHHZ(CM>:1 H HZ(CN)
1 1

ianUHHZ<CM):l HTﬁu”HZ(CN) N Oc '

This section investigates the three problems formulated in

Sectior] 2.8. Given a causal and stable MHE H*(CM*N).
Without loss of generality, we always assume {{at|., < 1.

However, even though the solutign12) is linear, itis time
variant. Thus, it is not a solution of Problém 1 in Secfidn 1.

ant. Moreover, it can be shown thatTI(H) = ON(H) =

Using the notations of Secti4, Probl&in 3 can be reOnly in the case of a flat fading channgl, (12) is time invari-
(C

formulated as: To every € H
H2(CN) such that

) we look for anx, €

TgXy=U (10)

and such that, has the minimal norm among alk H2(CN)
which satisfy [[IP). Since the spaceg(CN) andH?(CM)

are Hilbert spaces, the non-linear Probfgm 3 can be lead ba
to a linear optimization problem. It has a solution, if and only

inf 1||P+(H*U)HH2((CN) - 5C > 0 . (11)

HUHHZ(CM>:

If this condition is satisfied, the solution ¢f {10) with minimal

norm is given by

xu = (Te)Tu= Ty (T Tep) tu. (12)

OI(H), in general. However, this is not trivial. Thus, the

H®-norm of an optimal right invers@ is determined by the
constan®.

3.2 Comparison with non-causal inverses

If no causality on the inverse is required, the problénj (10)
uld be written as
MaXy=u (15)
in which Mg : L2(CN) — L?(CM) is simply the multiplica-
tion operator[(P). Similar as in the causal case, we obtain the
optimalx, which satisfie[(115) and has minimal norm by the
generalized inverse &flyy

Xo = (Mg)Tu= Mjz(MaM;j;) u. (16)

Thereby, the operatdffy )" is called thegeneralized inverse g operator norm of this non-causal inverse is given by

or pseudo-inversef the operatoiy;. This solution is well

known, and a strict proof may be found e.g. lin [5, Chap-
ter 8]. Here, we shortly give only a formal way, how this

1
H(MH)THB(cM)ﬂLZ(cN) = e
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with immediately that(z) Hou(2) > 82In for all |z < 1, and
therefore||Hgk |l < 1/8,.. So only the behavior of the
inner factorHj, has to investigated. Therefor®l can be
assumed to be inner in the following.

It can be shown tha is the largest constant for which 1) One method to investigate the behavior of the left in-

(®) holds. Next, we will show that this constasi, which verses is based on a parametrization of all possible left in-

determines the norm of the generalized inverse is alway¥'S€S via an extension matrixHf[6l 7]: If condition [19)is

larger or equal than the corresponding consi@ntn the satisfied, then there exist matridBs= H*(C*M~N)) such
causal case. For evenye H2(CM) holds that the extended matrMe := [H E] € H*(C"*M) is in-
vertible. Note that the matri¥s can be chosen to be inner.

Onc = inf ”MI*—IUHLZ(CN) 17)

”uHLZ(CM )=1

|||\/|I*_IuHE2 = ||MH*U||EZ = ||P: (Mg+U) + P_(Mg+ U)HEZ However, the resultingle is not unitary. The inverse
= P (Me-u)l2 + [IP- (M- 0) |22 — { G ]
L=
> P (M U)lIZ = [ Ter-ul e (18) R

where for the second line the Pythagoras formula was ag!Ves ’\a‘axlaomplete parametrization of all left invers@sc
plied. Therewith, it follows immediately fronj (11) ar@l?) H®(C™™). Every left inverse defines a projectbc =
that & < 8nc and consequently that(Tg)'(| > |(Mg)Tl. ~ HG, and the complementary projecQi =I—Pgis given
Thus, the operator norm of the non-causal pseudoinverse & Qe = ER. Thus, itholdsHG + ER =1Iy.

always smaller or equal than the norm of the causal pseudoin- 2) Also the second method for the investigation of the left
verse. Of course, this is what we would expect. However th&Verses |sTb_ased on an extension of the given mairig].
considerations i (18) show where this loss in the causal casg'erebyH " is gnalyzed. If condition (19) is satisfied, the
comes from. Due to the projection onto the causal part iUl spaceN(H") can be parametrized by an inner matrix
the operatofly;, the anti-causal paftP- (Mg-u)|[%, is com- V€ H*(CV*(M-V) such that

pletely lost compared to the non-causal part. This truncation T M—N

of the non-causal part of the signal reduce the consizantd NH (2)=V(®C (20)
therefore increases the norm of the right inverse.

The symbolu is causal. However, due to the multiplica-
tion with the anti-causal MTH*, some parts ofi are trans-
formed to the negative part of the time axis. This anti-causal T = M—N L
part is cut of by the projectioR, . The corresponding signal N(H' (7)) = (V(Z) c ) :
energy can not be used. The loss due the causality constra?

for all |z < 1 and|z] = 1 almost everywhere. Because of the
representatiorj (20) of the null space, one has

erewith the unitary matridly (z) = [H(z) V(2)] can be
efined. Note thaHy, does not belong té1®(CM*M). The
Finally, we will have a closer look on the causal MatrixHy isinvertible, and therefore we have
pseudoinversd (12). As it was shown above, the operator e o GH 0
(TuTg) "t is an one-to-one mapping of the whole signal H,'Hy = { Gy } -HV]= [ 0 GuV ] =1.(21)
spaceH?(CM) onto itself. However, this operator is respon- v
sible for the enhancement of the operator norm compared t® should be noted that there exists a direct relation between
the non-causal case. Because the subsequent multiplicatigie extension by and the method described under 1) using
with Tg; in (I2) is only a mapping onto the "larger" spacethe projectorsPg and Qg. It can be shown that the null
H?(CN). But since|| Ty || = 1, this mapping changes not the space offI" is parametrized b L. Moreover, if the inner

is obviously as larger as more signal energy is shifted on th
anti-causal part by the non-causal MTF.

signal energy (cf[(14)). function of P{ is used, one obtains the extension mawix
o Interesting is now that this extension Hf by V can be
3.3 Structure of the left- and right inverse used to get a better understanding of the consiaint (TT)

There exist several different approaches to study the bavhich determines the operator norm of the optimal causal
havior of the causal left and right inverses. Here somdnverse. Inl[8], it was shown that the norm of the best left
of these approaches are considered for left inverses. L#&tverse ofH is equal to the norm of the best left inverse
H € H*(CM*N) be an MTF withM > N and for which there of V. There, the cas®! = N + 1 was considered, and the

exists a constard,. > 0 such that considerations in_|8] show that the constdégthas a com-
pletely different behavior foM > N than for the quadratic
H*(2H(2) > 821y, forall|z <1 (19) caseM = N. In the caseM = N+1, V is a column vector

) ~with N+ 1 entries. IfV would also satisfy a condition like
wherednc is understood to be the largest constant for whic ):

(I9) holds. Note, that because of the assumed normaliza-

tion ||[H||,, < 1, the constandy is always smaller or equal V*(2)V(2) = 3Nt W(2))? > 82,, forall|z] <1
than 1. Itis known that there always exists a so caitheer- ) i ,
outer factorizatiorof H then it would be possible to give an upper bound on the norm
of the left inverse. However, due to the construct{ori (20) of
H=H;, -Hyy V, it is not possible to control the infimum &f*(2)V (z).

Moreover, in[8] examples where given such that
in which Hoy € H*(CN*N) is an invertible matrix which

causes no problems, in general. Because ffor (19) follows inflz 1 SR V(@)% ~ 63 (22)
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with a constant &< 8,c < 1. Thus the coercive constant de- which
creases exponential with the dimensidn For all V ob-

tained from the constructiori (20) holds=1 Gy V(2), by IH]|, = [H].+ sup HH(Zl)—HO(tZZ)H o
(27)). Using Cauchy-Schwartz inequality gives therefore 2.2€T |z — 22|
n#2
SN Gy (@l SN (2P > 1. where considered. It can be shown that fg2k o < 1
the norm of the optimal causal inverse does not depend on
With the example[(32), one gets the dimension of the MTF. This means, that there exists a
constaniC; () such that for alM,N € N with M > N and
St Gy (@hnl® > 5 - for all H € Ay (CM*N) with |H|l» < 1 alwaysCLT I(H) <

Ci()/6c holds, where the right hand side does not depend

As mentioned, it was shown ifl[8] that the minimal norm eXplicitly on the dimension#/,N. The technique to show
among all left inversesG is equal to the minimal norm this can notbe used for the case that @ < 1/2. So itis an

among all left inverses of the corresponding extension maltéresting question, whether or not there exist dimensional
tricesV. Therefore, the last inequality shows that there exisgffects for 0< a <1/2. However, this question is still open.
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