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ABSTRACT

Design of doubly-selective linear equalizers for multiuser
frequency-selective time-varying communications channels
is considered using superimposed training and without
first estimating the underlying channel response. Both
the time-varying channel as well as the linear equalizers
are assumed to be described by a complex exponential
basis expansion model (CE-BEM). User-specific periodic
(non-random) training sequences are arithmetically added
(superimposed) to the respective information sequences at
the transmitter before modulation and transmission. There
is no loss in information rate. Knowledge of the super-
imposed training specific to the desired user and proper-
ties of the other training sequences are exploited to design
the equalizers. An illustrative simulation example is pre-
sented.

1. INTRODUCTION

Multiple access schemes allow multiple users to share a com-
mon channel. Random access methods provide each user a
flexible way of gaining access to the channel whenever the
user has information (packets) to be sent. In random access,
typically when two packets collide, they are discarded and
then have to be retransmitted. In wireless ad hoc networks
(also called mobile ad hoc networks – MANETs), absence
of base stations limits the use of traditional MAC protocols
[3]. In ad hoc networks one needs some sort of distributed
MAC requiring some form of random access which makes
avoiding collisions difficult. Collisions arising from uncoor-
dinated users decrease system throughput and worsen delay
performance. Multiple packet reception (MPR) capability
(or signal separation) is one way to resolve packet colli-
sions and thereby enhance throughput, by using signal pro-
cessing to separate multiple received signals [9]. Recently
wireless ad hoc networks with asynchronous transmissions
have been considered in [2], [7] and [8]. The approaches
of [7] and [2] use user-specific modulation induced cyclo-
stationarity coupled with receive antenna array to achieve
MPR for frequency-selective time-invariant channels. In [8]
user-specific superimposed training signals (also called hid-
den pilots or implicit training) have been used for MPR for
frequency-selective time-invariant channels. The objective
of this paper is to investigate approaches using user-specific
superimposed training signals for MPR in MANETs for
transmissions over doubly selective (frequency- and time-
selective) channels, with emphasis on asynchronous net-
works.

Consider a time-varying MIMO (multiple-input multiple-
output) FIR (finite impulse response) linear channel with
M inputs (users) and N outputs (receiver array with N ele-
ments at the destination node). Let {sm(k)} denote the m-
th user’s information sequence which is input to the MIMO
doubly-selective channel with the m-th user’s discrete-time
impulse response {hm(k; l)} (N -vector channel response at
time k to a unit input at time k − l). Consider a typi-
cal (one-hop) MANET structure in an asynchronous mode.
Assume M active users with a packet length of S symbols,
in the coverage area of the node under evaluation. Each
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node is equipped with N (≥ 1) receive antennas and re-
ceiver node processes a data record block of size T (≥ S)
symbols. Various packets can be located anywhere within
this observation block. Using a sliding block approach (as
in [7] and [2]), we assume that the packet of interest is to-
tally within the observation block. [An energy detector or
related approaches can be used to ensure this [7],[2].] The
noisy received (baseband-equivalent, symbol-rate) signal at
the node-of-interest at time k is an N -column vector y(k),
k1 ≤ k ≤ k1 + T − 1, given by (k1 is the “initial” time of
the observation block)

y(k) :=

M
∑

m=1

L
∑

l=0

hm(k; l)sm(k − l) + v(k), (1)

In superimposed training-based approaches, for user m,
one takes

sm(k) = bm(k) + cm(k) (2)

in (1) where {bm(k)} is the information sequence and
{cm(k)} is a user-specific non-random periodic training (pi-
lot) sequence. Exploitation of the periodicity of {cm(k)} al-
lows identification (and equalization) of the multiuser chan-
nel without allocating any explicit time slots for training.
Note that there is no bandwidth expansion or information
rate reduction as a consequence of superimposed training;
there is a reduction in effective SNR since power allocated
to training could otherwise have been allocated to informa-
tion sequence.

In a complex exponential basis expansion representation
it is assumed that [5]

hm(n; l) =

K/2
∑

q=−K/2

hmq(l)e
jωqn (3)

where the N -column vectors hmq(l) are time-invariant.
Such models have been used in [1] and [5], among others;
see Sec. 2 for details.

Objectives and Contributions: The main problem
considered here is: how to design an equalizer to estimate
{b1(n)}, the information sequence of user 1 (the desired
user), when one knows only {c1(n)} but not (obviously)
{b1(n)} and one does not also have (frame) synchronization
with {c1(n)} at the receiver. We will design an equalizer to
estimate {c1(n)} with a delay d. We will then show that this
equalizer is a scaled version of the corresponding equalizer
designed to estimate {b1(n)} with a delay d provided that
{cm(n)} satisfy certain properties.

Notation: Superscripts H, ∗ and T denote the com-
plex conjugate transpose, the complex conjugation and the
transpose operations, respectively. δ(τ) is the Kronecker
delta and IN is the N × N identity matrix.

2. SYSTEM MODEL

Consider a time-varying channel with continuous-time,
baseband received signal x(t) and transmitted signal s(t)
(with symbol interval Ts sec.) related by impulse response
h(t; τ) (response at time t to a unit impulse at time t− τ).
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Let τd denote the (multipath) delay-spread of the channel
and let fd denote the Doppler spread of the channel. If x(t)
is sampled once every Ts sec. (symbol rate), then by [5] (see
also [1]), for t = nTs +t0 ∈ [t0, t0+TTs), the sampled signal
x(n) := x(t)|t=nTs+t0 has the representation

x(n) =

L
∑

l=0

h(n; l)s(n − l) (4)

where

h(n; l) =

K/2
∑

q=−K/2

hq(l)e
jωqn, L := bτd/Tsc, (5)

wq =
2πq

T
, K := 2dfdTTse. (6)

The above representation is valid over a duration of TTs sec.
(T samples). Eqn. (1) arises if we follow (4) and consider
an SIMO model per user arising due to multiple antennas
at the receiver.

Each user is assigned (or selects) a user-specific training
sequence. Ref. [7] uses (at the risk of some confusion we use
m as the user index as well as the training sequence index)

cm(k) = σcmej2π[fk2+αmk], (7)

f = T−1
f , αm =

m − 1

D
, m = 1, 2, · · · , D ≥ M (8)

and [8] uses the same set. The above sequence is periodic
with period P = DTf where D, Tf and σcm are design pa-
rameters (D and Tf are coprime). Different users are char-
acterized by different αm’s and distinct sequences are mu-
tually orthogonal and individually periodic white. [There
is a common codebook at each node of size D containing
the possible values of αm. During the “initial contact” pe-
riod, a given node searches for all possible D signals.] In
a different context, in [6] and [10], we have proposed the
following choice. Let

c0(k) = c0(k + nP̃ ), ∀k, n (9)

be a maximal length pseudo-random binary sequence (m-
sequence). Then we design

cm(k) := ej2π(m−1)k/P c0(k) = cm(k + nP ), (10)

m = 1, 2, · · · , D ≥ M, P := DP̃ . (11)

The above sequences are periodic with period P , mutually
orthogonal and individually “nearly” periodic-white with
period P̃ .

Given the knowledge of the time-varying channel de-
scribed by CE-BEM, design of (serial) time-varying FIR
equalizers has been discussed in [1]. Direct design of time-
invariant FIR equalizers based on superimposed training,
for time-invariant channels, has been investigated in [8]. In
this paper we investigate direct design of time-varying FIR
linear equalizers for doubly selective channels using super-
imposed training and without first estimating the underly-
ing channel response. We exploit the prior results of [1] and
[8].

3. TIME-VARYING FIR EQUALIZERS

We will restrict ourselves to serial linear equalizers instead
of block linear equalizers, since as shown in [1], the latter
are computationally prohibitive (compared with the for-
mer). We look for a time-varying linear equalizer g(n; l)
(l = 0, 1, · · · , Le) over the same time-block as the received
data with channel model (3). We note that for an arbi-
trary time-varying impulse response g̃(n; l), the following
is always true

g̃(n; l) =

(T−1)/2
∑

q=−(T−1)/2

g̃q(l)e
jωqn, n = 0, 1, · · · , T − 1. (12)

We would like to use a more parsimonious (but approxi-
mate) representation for g̃(n; l), denoted by g(n; l), given
by

g(n; l) =

Q/2
∑

q=−Q/2

gq(l)e
jωqn, n = 0, 1, · · · , T − 1, (13)

where Q � (T − 1). In order to estimate the input se-
quence of the desired user (user 1, with no loss of gener-
ality) {s1(n)} (see (1)), we may seek a linear time-varying
FIR estimator to yield an estimate with equalization delay
d

ŝ(n − d) =

Le
∑

i=0

g
H(n; i)y(n − i). (14)

Existence of a zero-forcing linear equalizer (for M = 1)
has been discussed in [1]. Their conclusion is that if N
is at least 2, then with probability one, one has a zero-
forcing solution for sufficiently large Le and Q. For linear
MMSE solution, existence is not an issue, although MMSE
equalizer performance can be expected to be “good” if zero-
forcing equalizers exist [1]. In this paper we will seek a least
squares solution g(n; l) to minimize a cost such as

1

T

T−1
∑

n=0

|s1(n − d) − ŝ1(n − d)|2 . (15)

4. LINEAR LEAST-SQUARES FIR CE-BEM
EQUALIZERS

We first state the underlying model assumptions.

(H1) The information sequence {bm(n)} is zero-mean,
i.i.d. (independent and identically distributed), with
E{|bm(n)|2} = σ2

bm. They are also independent across
users (m = 1, 2, · · · , M).

(H2) The measurement noise {v(n)} is zero-mean
(E{v(n)} = 0), white, independent of {bm(n)}, with
E{[v(n + τ)][v(n)]H} = σ2

vINδ(τ).

(H3) The superimposed training sequence cm(n) = cm(n +
kP ) ∀k, n is a non-random periodic sequence with pe-

riod P . Let σ2
cm := (1/P )

∑P

n=1
|cm(n)|2. The se-

quences are chosen as (7)-(8) or (9)-(11).

(H4) Record length T and period P satisfy TP−1 > K and

TP−1 is an integer. Moreover, P̃ > L + Le − d where
d (≥ 0) is the desired equalization delay and P̃ = Tf

in (8), or as in (9).

It then follows that ([8], [10])

P−1

P−1
∑

n=0

cm(n)c∗k(n− τ) = γm(τ)δ(τ mod P̃ )δ(m−k) (16)
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where

γm(τ) =

{

σ2
cmej2πmτ/D for (7) − (8)

σ2
cmej2πτ(m−1)/P for (9) − (11).

(17)

4.1. Equalizer for Training Estimation

The periodic training sequence can be written as

cm(n) =

P−1
∑

p=0

cmpejαpn (18)

where αp := 2πp
P

. To design the time-varying linear equal-
izer to estimate a delayed version of the desired user’s train-
ing sequence c1(n − d) (0 ≤ d ≤ Le):

ĉ1(n − d) =

Le
∑

i=0

g
H
d (n; i)y(n − i) (19)

where we assume that

gd(n; i) =

Q/2
∑

q=−Q/2

gq(i)e
jωqn. (20)

Choose gq(i)’s to minimize the time-averaged cost

Jc :=
1

T

T−1
∑

n=0

|c1(n − d) − ĉ1(n − d)|2 (21)

=
1

T

T−1
∑

n=0

∣

∣

∣

∣

∣

∣

c1(n − d) −

Le
∑

i=0

Q/2
∑

q=−Q/2

g
H
q (i)e−jωqn

y(n − i)

∣

∣

∣

∣

∣

∣

2

.

(22)
By taking the derivative and setting it to be zero, we have

0 =
∂Jc

∂g∗

q1(i1)
= −

1

T

T−1
∑

n=0

e−jωq1
n
y(n − i1)

×



c∗1(n − d) −

Le
∑

i=0

Q/2
∑

q=−Q/2

ejωqn
y

H(n − i)gq(i)





(23)
for i1 = 0, 1, · · · , Le and q1 = −Q/2, 1−Q/2, · · · , Q/2. This
leads to

Le
∑

i=0

Q/2
∑

q=−Q/2

[

1

T

T−1
∑

n=0

ej(ωq−ωq1
)n

y(n − i1)y
H(n − i)

]

gq(i) =

1

T

T−1
∑

n=0

c∗1(n − d)e−jωq1
n
y(n − i1) =: Rc(q1, i1). (24)

4.2. Equalizer for Data Estimation

To design the time-varying linear equalizer to estimate the
desired user’s information sequence b1(n− d) (0 ≤ d ≤ Le),

b̂1(n − d) =

Le
∑

i=0

ḡ
H
d (n; i)y(n − i) (25)

where we assume that

ḡd(n; i) =

Q/2
∑

q=−Q/2

ḡq(i)e
jωqn. (26)

Choose ḡq(i)’s to minimize

Jb :=
1

T

T−1
∑

n=0

∣

∣b1(n − d) − b̂1(n − d)
∣

∣

2
. (27)

Mimicking the results for the superimposed training
sequence-based equalization, we have

Le
∑

i=0

Q/2
∑

q=−Q/2

[

1

T

T−1
∑

n=0

ej(ωq−ωq1
)n

y(n − i1)y
H(n − i)

]

ḡq(i)

=
1

T

T−1
∑

n=0

b∗1(n − d)e−jωq1
n
y(n − i1) =: Rb(q1, i1). (28)

4.3. When Are The Two Equalizers Equal?

Comparing (24) and (28), we see that (ignoring the equal-
izer coefficients) the left-sides of the two are identical
whereas the right-sides are different. We now seek to es-
tablish that for large T , Rc(q1, i1) = βRb(q1, i1) ∀ q1, i1,
for some scalar β, so that gq(i) = βḡq(i) ∀ i.

It is shown in the Appendix that (γ̃1 :=
∑L

l=0
γ1(d− i1−

l)δ((d − i1 − l)mod P̃ ))

lim
T→∞

Rc(q1, i1)
m.s.
=

{

γ̃∗

1e−jωq1
i1h1q1((d − i1) mod P̃ ) if |q1| ≤ K/2

0 otherwise
(29)

for i1 = 0, 1, · · · , Le and q1 = −Q/2, 1 − Q/2, · · · , Q/2. It
is also shown that for i1 = 0, 1, · · · , Le and q1 = −Q/2, 1 −
Q/2, · · · , Q/2 but |q1| ≤ K/2,

lim
T→∞

Rb(q1, i1)
m.s.
= h1q1(d − i1)e

−jωq1
i1σ2

b1. (30)

If P̃ > L + Le − d, then (29) equals (30) (within a scale
factor) and γ̃1 = σ2

c1. Therefore, for “large” T , Rc(q1, i1) =
βRb(q1, i1) ∀ q1, i1 with β = σ2

c1/σ2
b1; hence gq(i) = βḡq(i)

∀ i.

4.4. Desired Equalizer Design

We execute the following steps:

(i) Pick Le and d (= Le

2
in Sec. 5). Pick Q ≥ K, P̃ >

L + Le − d.

(ii) Solve (24), given data y(n), for gq(i) where 0 ≤ i ≤ Le

and −Q
2
≤ q ≤ Q

2
. Then

gd(n; i) =

Q/2
∑

q=−Q/2

gq(i)e
jωqn. (31)

(iii) The equalized output is then given by

e1(n) =

Le
∑

i=0

g
H
d (n; i)y(n−i) ≈ α1c1(n−d)+α2b1(n−d)+ṽ(n)

(32)
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where ṽ(n) is the equalized noise plus multiuser inter-
ference. Estimate α1 as

α̂1 =
1
T

∑T−1

n=0
e1(n)c∗1(n − d)

1
T

∑T−1

n=0
|c1(n − d)|2

=
1
T

∑T−1

n=0
e1(n)c∗1(n − d)

σ2
c1

.

(33)

(iv) Define

e2(n) = e1(n)−α̂1c1(n−d) ≈ α2b1(n−d)+ṽ(n). (34)

Then we hard-quantize e2(n) to estimate b1(n − d).

5. SIMULATION EXAMPLE

We consider a random frequency-selective Rayleigh fad-
ing channel. We took N = 1, 2, 3 or 4 (receiver an-
tennas), M=3 users, and L = 2 in (1) with hm(n; l)
mutually independent for all m, l and all components,
zero-mean complex-Gaussian with equal variance, follow-
ing Jakes’ model with specified Doppler spread for each tap
component. We consider a system with carrier frequency
of 2GHz, data rate of 40kB (kB= kilo-Bauds), therefore,
Ts = 25× 10−6 sec., and a varying Doppler spread fd. Ad-
ditive noise was zero-mean complex white Gaussian. The
SNR refers to the energy per bit over one-sided noise spec-
tral density with both information and superimposed train-
ing sequence counting toward the bit energy. Information
sequences for each user were BPSK (binary). We took the
superimposed training sequences’ period P = 15 (D = 3,
Tf = 5) or P = 52 (D = 4, Tf = 13). The average trans-
mitted power in cm(n) was equal to the power in bm(n),
leading to a training-to-information power ratio (TIR) of
1.0 . All simulations results presented herein are based on
500 Monte Carlo runs.

Fig. 1 shows the BER results vs Doppler spread for
P = 15 and Fig. 2 shows the same for P = 52, both for
an SNR of 25dB. In Fig. 1 we had a fixed Q = 4 whereas in
Fig. 2 we picked Q = K, as given by (6) as a function of fd.
Fig. 3 shows the BER results vs equalizer length. It is seen
that performance improves with N . In Figs. 1-3 we consid-
ered the asynchronous case where the observation window
fully contains the desired user’s signal and the other two in-
terfering signals (m = 2, 3) occupy window [tm, tm + T − 1]
where tm is uniformly distributed in [−(T − 1), T − 1]; tm

changes from run-to-run. It is seen that while BER deteri-
orates with increasing Doppler spread fd, it is “gradual.”

Finally we also simulated “oversampled” (in the Doppler
domain) equalizers ([4]) where we take

go(n; l) =

Q̄/2
∑

q=−Q̄/2

goq(l)e
jωqn/2, n = 0, 1, · · · , T − 1, (35)

Q̄ = 2Q and Doppler frequency resolution is now 1/(2T )
instead of 1/T . [It is known that (critically sampled) CE-
BEM has significant modeling errors which can be allevi-
ated via oversampled CE-BEM [4].] A distinct improve-
ment can be seen in Fig. 4. An analysis of this case has yet
to be done.

The BER in all these figures is rather high. This can
be alleviated by error-correction coding and by nonlinear
equalizers such as decision-feedback equalizers where both
forward and feedback parts are approximated by CE-BEM.
Such extensions are currently underway.
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Figure 1. BER for varying number N of receive antennas and
varying Doppler spreads. No. of users M = 3, asynchronous
case, T = 810. Equalizer length Le=4, d = 2, Q = 4 and
P = 15. Each channel tap component follows Jakes’ model (not
CE-BEM).
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Figure 2. As in Fig. 1 except P = 52 and Q = K, as in (6).
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6. APPENDIX

We have

Rc(q1, i1) =
1

T

T−1
∑

n=0

c∗1(n − d)e−jωq1
n

×

{

M
∑

m=1

L
∑

l=0

hm(n − i1; l)sm(n − i1 − l) + v(n − i1)

}

=

M
∑

m=1

K/2
∑

k=−K/2

L
∑

l=0

P−1
∑

p1=0

P−1
∑

p2=0

c∗1p1
cmp2

ejαp1
de−jαp2

(i1+l)

×e−jωki1hmk(l)A0 +

M
∑

m=1

K/2
∑

k=−K/2

L
∑

l=0

P−1
∑

p1=0

c∗1p1
ejαp1

de−jωki1

×hmk(l)A1m +

P−1
∑

p1=0

c∗1p1
ejαp1

d
A2 (36)

where

A0 :=
1

T

T−1
∑

n=0

ej(−αp1
+αp2

−ωq1
+ωk)n

A1m :=
1

T

T−1
∑

n=0

ej(−αp1
−ωq1

+ωk)nbm(n − i1 − l)

A2 :=
1

T

T−1
∑

n=0

e−j(αp1
+ωq1

)n
v(n − i1).

Under the condition TP−1 > K (then (αm + ωq) = (αn + ωk)
iff m = n and q = k), we have

A0 = δ(p1 − p2)δ(q1 − k). (37)

Furthermore we have
E

{

|A1m|2
}

=
1

T 2

T−1
∑

n1=0

T−1
∑

n2=0

ej(−αp1
−ωq1

+ωk)(n1−n2)σ2
bmδ(n1−n2) =

σ2
bm

T
.

(38)
Similarly, it follows that

E
{

‖A2‖
2
}

=
Nσ2

v

T
. (39)

In the mean-square sense (and thus in probability), we then have
the following two limits

lim
T→∞

A1m
m.s.
= 0 and lim

T→∞

A2
m.s.
= 0. (40)

Thus for “large” T , we have (after some manipulations)

lim
T→∞

Rc(q1, i1)
m.s.
=

M
∑

m=1

K/2
∑

k=−K/2

L
∑

l=0

P−1
∑

p=0

c∗1pcmp

×ejαp(d−i1−l)e−jωki1hmk(l)δ(q1 − k). (41)

Using (16) and (18), it follows that
P−1
∑

p=0

c1pc∗mpejαpτ = γm(τ)δ(τ mod P̃ )δ(m − 1). (42)

We then have (29).
Turning to (28), we have

Rb (q1, i1) =

M
∑

m=1

K/2
∑

k=−K/2

L
∑

l=0

P−1
∑

p=0

cmphmk(l)e−jαp(i1+l)

×e−jωki1A3 +

M
∑

m=1

K/2
∑

k=−K/2

L
∑

l=0

hmk(l)e−jωki1A4m + A5 (43)

where

A3 :=
1

T

T−1
∑

n=0

ej(αp−ωq1
+ωk)nb∗1(n − d)

A4m :=
1

T

T−1
∑

n=0

ej(ωk−ωq1
)nbm(n − i1 − l)b∗1(n − d)

A5 :=
1

T

T−1
∑

n=0

e−jωq1
n
v(n − i1)b∗1(n − d).

We can show (as before) that

lim
T→∞

A3
m.s.
= 0 and lim

T→∞

A5
m.s.
= 0. (44)

Consider

A6 :=
1

T

T−1
∑

n=0

ej(ωk−ωq1
)n [b1(n − i1 − l)b∗1(n − d)

−σ2
b1δ(d − i1 − l)

]

. (45)

It then follows (after some manipulations) that

E
{

|A6|
2
}

=
1

T

[

E
{

|b1(n)|4
}

− σ4
b1

]

δ(d − i1 − l). (46)

Therefore, we have limT→∞ A6
m.s.
= 0, and consequently

lim
T→∞

A4m
m.s.
=

1

T

T−1
∑

n=0

ej(ωk−ωq1
)nσ2

b1δ(d − i1 − l)δ(m − 1)

= σ2
bmδ(d − i1 − l)δ(q1 − k)δ(m − 1). (47)

Hence, for “large” T , we have limT→∞ Rb (q1, i1)
m.s.
=

K/2
∑

k=−K/2

L
∑

l=0

h1k(l)e−jωki1σ2
b1δ(d − i1 − l)δ(q1 − k). (48)

We therefore have (30).
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