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ABSTRACT

In this work, a minimum mean-squared error (MMSE) itera-
tive equalization method for a severe time dispersive MIMO
channel is proposed. To mitigate the severe time dispersive-
ness of the channel single carrier with cyclic prefix (SCCP) is
employed and the equalization is performed in the frequency
domain. The use of cyclic prefix (CP) and equalization in
the frequency domain simplifies the challenging problem of
equalization in MIMO channels due to both the inter-symbol-
interference (ISI) and co-antenna interference (CAI). The
proposed iterative algorithm works in two stages. The first
stage estimates the transmitted frequency domain symbols
using a low complexity MMSE equalizer. The second stage
finds the a posteriori probabilities of the estimated symbols
to find their means and variances to use in the MMSE equal-
izer in the following iteration. Simulation results show the
superior performance of the iterative algorithm when com-
pared with the conventional MMSE equalizer.

1. INTRODUCTION

Multimedia services in mobile communication require very
high data rates [1]. Communication theory suggests that high
data rates can be achieved by using multiple antenna at the
transmitter and receiver, so called MIMO systems [2, 3, 4].
When MIMO systems are used to increase the data rates, to
design an equalizer is a challenging task due to co-antenna
and inter-symbol interference. Most of the recent research
on MIMO systems focused on flat fading channels to de-
crease the computational complexity of the receiver using
space time block codes [5, 6, 7] that increase the diversity
of the signal. But, these schemes do not increase the data
rates. In order to increase the data rates using MIMO systems
in the presence of co-antenna and inter-symbol interference
in [8, 9] time domain MIMO decision feedback equalizers
(DFE) have been proposed. In these algorithms, hard deci-
sions are input in the feedback filter due to which, in most
cases, the phenomenon of error propagation may occur that
may degrade the bit-error-rate (BER) performance of these
equalizers [10]. Moreover, the computational complexity of
these equalizers is very high. To improve the performance
of DFE Shoumin et. al [11] proposed several DFE iterative
algorithms that input soft decisions in the feedback filter that
improve the performance but the computational complexity
of these algorithm is prohibitively high and increases with
the channel support.

Orthogonal frequency division multiplexing (OFDM)
with frequency domain equalization (FDE) methods are ro-
bust to severe time dispersive channels [12]. Dinis et. al
[13] proposed an iterative layered space time receiver that is
based on a frequency domain DFE in which soft decisions are
found for the feedback filter. Here, the filter coefficients for

feedback and feed forward filters are required that are com-
putationally very demanding. OFDM with FDE is robust to
severe time dispersive channels, however, it has a peak-to-
average power ratio (PAPR) problem. An SCCP is a closely
related scheme that has most of the benefits of OFDM but
does not have PAPR problem [14].

In this work, an iterative equalization scheme is proposed
that exploits SCCP and to mitigate the severe time disper-
siveness of the channel the equalization is performed in the
frequency domain. Working in the frequency domain and
the use of SCCP simplifies the detection in both CAI and
ISI to the detection in only inter-carrier-interference (ICI) as
explained in Section 2. In the proposed algorithm, the equal-
ization is split into two stages. The first stage estimates the
transmitted samples in the frequency domain with a low com-
plexity MMSE equalizer and then converts them into time
domain by applying an inverse fast Fourier transform (IFFT)
operation. While, the second stage determines the a poste-
riori probabilities of the estimated time domain symbols to
find the mean and variance, which are used in the MMSE
equalizer in the first stage in the next iteration.

This paper is organized as follows. In the following sec-
tion the signal model is presented. Then, in Section III, the it-
erative symbol estimation algorithm is presented. Simulation
results are given in section IV, followed by our conclusions
in Section V.

Notations: Bold upper case letters, X(k), and lower
case letters, x(k), with indices respectively denote the ma-
trices and vectors having all the elements at frequency k,
while without indices denote the general matrices and vec-
tors. Conjugate transposition of a matrix is denoted by (.)H ;
diag(x) is a diagonal matrix with diagonal elements taken
from the vector x. IN is an identity matrix of dimension
N ×N and in denotes its nth column. F denotes the FFT
matrix and fn denotes its nth column. E{.} and 〈.〉N denote
respectively the statistical expectation and the modulo-N op-
eration. X(n, l) denotes the nth row and lth column element
of matrix X. Finally, s̄(k) and Cov[s(k),s(k)] respectively
represent the mean (expected value) and co-variance of s(k).

2. SYSTEM MODEL

The MIMO-SCCP transmission and reception model with
nT transmit and nR receive antennas used in this paper is
given in Figure 1. On each transmit antenna, data are con-
verted into blocks each of symbol N and a CP is appended
at the beginning of each block. Then, the data are transmit-
ted serially with the help of parallel to serial (PTS) converter
through the L multi-path channel. At each receive antenna,
the received samples are collected and converted into blocks
each of N + L− 1 symbols with the help of serial to paral-
lel (STP) converter and the CP part is removed. To under-
stand the signal model of a MIMO-SCCP system, consider
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Figure 1: Basic baseband model of the transmitter, channel and the iterative receiver.

an isolated transmit and receive antenna and suppose that the
signal between the transmit and receive antenna has propa-
gated through L different paths. If the sampling rate at the
receiver is equal to the symbol transmission rate then the re-
ceived baseband signal at sample time n after removing the
CP can be written as

r(n) =
L−1

∑
l=0

h(l)x(〈n− l〉N)+ v(n), (1)

where h(l) is the unknown complex channel gain between the
transmit and receive antenna for the lth multi-path and v(n)
is the complex white Gaussian noise at the receive antenna.
The N received samples in vector form can be written as

r = Hx+v = HFHs+v, (2)

where F is the unitary discrete Fourier transform (DFT)
matrix, H is the circulant channel convolution matrix
(CCM) of dimension N × N and H(n, l) = h(n,〈n− l〉N).
Moreover, x = [ x(0) x(1) · · · x(N−1) ]T and s =
[ s(0) s(1) · · · s(N−1) ]T . Where, {x(n)} are the
time domain symbols to be transmitted and {s(k)} are the
corresponding frequency domain samples after the FFT op-
eration. The relationship between them can be described by
the following operation

x(n) =
1√
N

N−1

∑
k=0

s(k)e j 2π
N kn. (3)

In (1), it can be noted that the receiver experiences ISI. How-
ever, working in the frequency domain can make this prob-
lem ISI free. Therefore, applying the FFT on (2) yields the
frequency domain received sample vector

y = FHFHs+Fv = HICs+w, (4)

where y = [ y(0) y(1) · · · y(N−1) ]T , y(k) is the
received frequency domain sample at frequency k, w =
[w(0) w(1) · · · w(N− 1)]T , w(k) = 1√

N ∑N−1
n=0 v(n)e− j 2πnk

N

and HIC is the ICI matrix. If in (4), the channel is linear
time invariant (LTI) then the ICI matrix, HIC, will be diago-
nal. Therefore, in order to estimate the symbols {s(k)}, the
L-MMSE equalization requires the inversion of a diagonal
matrix, which is computationally inexpensive.

However, contrasting to single-input single-output
(SISO) system in MIMO system model the signals are trans-
mitted from nT and received by nR antennas. Therefore, each
receive antenna not only experiences ISI due to multi-paths
but co-antenna interference too. The presence of CAI and ISI
makes the equalization computationally very expensive. But,
working in the frequency domain can simplify this problem
into an only ICI problem. Therefore, as shown in Figure 1
the collection of received samples at frequency k, from re-
ceived antenna l = 1,2, . . . ,nR, in vector form can be written
as

y(k) = H(k)s(k)+w(k), (5)

where

y(k) = [ y1(k) y2(k) · · · ynR(k) ]T ,

H(k) =




H11(k) H21(k) · · · HnT 1(k)
H12(k) H22(k) · · · HnT 2(k)

...
...

. . .
...

H1nR(k) H2nR(k) · · · HnT nR(k)


 ,

s(k) = [ s1(k) s2(k) · · · snT (k) ]T ,

and w(k) = [ w1(k) w2(k) · · · wnR(k) ]T .

Here, Htr(k) is the frequency response of the channel be-
tween the transmit antenna t and the receive antenna l at fre-
quency k and Htr(k) =

√
N ∑L−1

l=0 htr(l)e− j 2πlk
N .

3. MMSE-ITERATIVE EQUALIZATION

To estimate the transmitted symbols {xt(n)} from the an-
tenna t = 1,2, ...,nT , we propose a relatively low complex-
ity iterative algorithm. The iterative algorithm works in two
stages. In the first stage an MMSE equalizer is designed to
estimate the transmitted frequency domain symbols. The first
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stage accounts for already estimated variances on the equal-
izer design and means in estimator to cancel the interference
from all other symbols.

In order to design the equalizer, the noise is as-
sumed uncorrelated and zero mean, i.e., E{w(k)} = 0,
E{w(k)w(k)H}= σ2

wInR and E{st(k)w(k)}= 0. Moreover,
we define s̄(k) = E{s(k)}, s̄ = E{s}, ct(k) = var[st(k),st(k)]
and cs(k) = [ c1(k) c2(k) · · · cnT (k) ]T . The MMSE
equalizer qt(k) of length nR for the soft estimates of st(k)
can be derived by minimizing the cost function

J(qt(k)) = E{|qH
t (k)y(k)− st(k)|2},

which yields the MMSE equalizer coefficient vector given in
[15, 16] by

qt(k) =
(
H(k)diag(cs(k))HH(k)+σ2

wInR

)−1
ht(k)ct(k)

(6)
and the estimate

ŝt(k) = s̄t(k)+qH
t (k)( y(k)−H(k)s̄ ) (7)

with the assumption that {s̄t(k) 6= 0}, the mean values of the
estimates of the individual symbols can not be equal to zero,
in (6) ht(k) is the tth column of the matrix H(k).

Now, we are interested in finding the a posteriori values
of mean and variance of the frequency domain symbols to
use in the next iteration, which requires the log-likelihood-
ratios (LLR)s [17]. The frequency domain transmitted sym-
bols have not finite constellations due to the FFT operation,
therefore, it is very difficult to determine the LLRs. How-
ever, the LLRs can be found easily by converting the esti-
mated frequency domain symbols into the time domain. The
relationship between the time and frequency domain samples
can be written as

st(k) = iTk Fxt (8)

xt(n) = iTn FHst . (9)

Therefore, we have

x̂t(n) = iTn FH
N−1

∑
k=0

ik ŝt(k)

= iTn FH
N−1

∑
k=0

ik
[
s̄t(k)+qH

t (k)(y(k)−H(k)s̄)
]

= x̄t(k)+ iTn FH
N−1

∑
k=0

ik
[
qH

t (k)(y(k)−H(k)s̄)
]
.(10)

In (5) the individual terms can be written as

s(k) =




s1(k)
s2(k)

...
snT (k)


 =




iTk Fx1
iTk Fx2

...
iTk FxnT




= ℜs(k)




x1
x2
. . .
xnT


 =




xT
1

xT
2
...

xT
nT


 fk (11)

w(k) =




w1(k)
w2(k)

...
wnR(k)


 =




iTk Fv1
iTk Fv2

...
iTk FvnR




= ℜw(k)




v1
v2
...

vnR


 =




vT
1

vT
2
...

vT
nR


 fk (12)

where

ℜs(k) =




fT
k 0 0 0
0 fT

k 0 0

0 0
. . . 0

0 0 0 fT
k




︸ ︷︷ ︸
nT×nT N

and

ℜw(k) =




fT
k 0 0 0
0 fT

k 0 0

0 0
. . . 0

0 0 0 fT
k




︸ ︷︷ ︸
nR×nRN

.

If we suppose x = [xT
1 xT

2 · · · xT
nT

]T , X =
[x1 x2 · · · xnT ]T , v = [vT

1 vT
2 · · · vT

nR
]T and V =

[v1 v2 · · · vnR ]T then by exploiting (11) and (12), the equa-
tion (10) can be written as

x̂t(n) = x̄t(n)+ iTn FH
N−1

∑
k=0

ikqH
t (k)

[
H(k)(X− X̄)+V

]
fk (13)

= x̄t(n)+ fH
n

N−1

∑
k=0

ikqH
t (k)[H(k)ℜs(k)(x− x̄)+ℜw(k)v]. (14)

Now, if we suppose

Qt =
N−1

∑
k=0

ikqH
t (k)H(k)ℜs(k)

︸ ︷︷ ︸
N×nT N

Pt =
N−1

∑
k=0

ikqH
t (k)ℜw(k)

︸ ︷︷ ︸
N×nRN

,

then, (14) can be written as

x̂t(n) = x̄t(n)+ fH
n {Qt(x− x̄)+ Ptv} . (15)

Now, we wish to find the a posteriori values of {x̄t(n)} and
{ct(n)} to use in (6) and (7) in the next iteration. To find
these values the following steps are required to form the
proposed iterative algorithm.

Step 1: In the first iteration, we have no prior knowledge.
Therefore, we initialize all the mean values {x̄t(n)} = 0
that corresponds to {s̄t(k) = 1} and diag(cs(k)) = InT , the
estimate ŝt(k) is obtained using (6) and (7).

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



Step 2: The a priori and a posteriori LLR of xt(n)
are defined in [17, 18] as

L[xt(n)] = ln
Pr{xt(n) = 1}

Pr{xt(n) =−1} and

L[xt(n)|x̂t (n)] = ln
Pr{xt(n) = 1|x̂t (n)}

Pr{xt(n) =−1|x̂t (n)}
.

The difference between the a posteriori and a priori LLRs
(which is the extrinsic information) of xt(n) is

4L[xt(n)] = L[xt(n)|x̂t (n)]−L[xt(n)] = L[x̂t(n)|xt (n)]

= ln
Pr{x̂t(n)|xt (n)=1}

Pr{x̂t(n)|xt (n)=−1}
. (16)

In order to find the extrinsic LLR, L[x̂(n)|x(n)], in (16), it is
assumed that the probability density function (PDF) of x̂t(n)
is Gaussian with variance σ2

xt (n) and can be written as

Pr{x̂t(n)}=
1√

2πσx(n)
exp

(
− (x̂t(n)−E{x̂t(n)})2

2σ2
x (n)

)
. (17)

Therefore, the conditional PDF, when the transmitted signal
xt(n) = b ∈ {+1,−1}, of x̂t(n) becomes

Pr{x̂t(n)|xt (n)=b}=
1√

2πσx(n)
exp

(
− (x̂t(n)−mtn(b))

2σ2
x (n)|xt (n)=b

)
(18)

where mtn(b) = E{x̂t(n)|xt (n)=b} and σ2
x (n)|xt (n)=b =

var[x̂t(n), x̂t(n)|xt (n)=b], which are the conditional mean and
variance of x̂t(n).

Throughout the iterative receiver process, we exchange
only extrinsic information. That is, when estimating xt(n),
we use only the a priori information from {xp(n), p 6= t}.
Therefore, it is assumed that the a priori information x̄t(n) =
0 and ct(n) = 1 in (6) and (7). Hence, the conditional mean
can be determined by using (13) as

E{x̂t(n)|xt (n)=b}= fH
n

N−1

∑
k=0

ikqH
t (k)H(k)

[
E(X− X̄)

]
fk

= bfH
n

N−1

∑
k=0

ikqH
t (k)H(k)




0 · · · 0 0
... bt,n

... 0
0 · · · 0 0




︸ ︷︷ ︸
nT×N

fk

= b fH
n

N−1

∑
k=0

ik
qH

t (k)ht(k)e−
j2π
N kn

√
N

= b
N−1

∑
k=0

qH
t (k)ht(k)

N
= b qH

t ht

where qt = 1
N [qT

t (0) qT
t (1) · · · qT

t (N − 1)]T and ht =
[hT

t (0) hT
t (1) · · · hT

t (N − 1)]T . It should be noted that
mtn(b) depends on the particular value of b. Similarly, the
conditional variance σ2

x (n)|xt (n)=b, can be written as

σ2
x |xt (n)=b = E

{
(x̂t(n)−mtn(b))(x̂t(n)−mtn(b))H}

= E{x̂t(n)x̂H
t (n)}|xt (n)=b−mtn(b)mH

tn(b).

From (15), we have

E{x̂t(n)x̂H
t (n)}|xt (n)=b = fH

n [QtE{(x− x̄)(x− x̄)H}QH
t

+ σ 2
v PtPH

t ]fn = fH
n [QtCov(x,x)QH

t +σ 2
v PtPH

t ]fn

and

σ2
x |xt (n)=b = fH

n [QtCov(x,x)QH
t +σ2

v PtPH
t ]fn−qH

t hthH
t qt .

Note that unlike the mean the variance of the estimator is in-
dependent of b. Now, the difference between the a posteriori
and the a priori LLR of xt(n) becomes

4L [xt(n)] = ln

[
exp

(
− (x̂t (n)−mtn(+1))2

σ2
x (n)|xt (n)=+1

)]

[
exp

(
− (x̂t (n)−mtn(−1))2

σ2
x (n)|xt (n)=−1

)]

=
Re{2x̂t(n)qH

t hthH
t qt}

fH
n [QtCov(x,x)QH

t +σ 2
v PtPH

t ]fn−qH
t hthH

t qt
(19)

and the a posteriori LLR of st(k)

L
[
st(k)|ŝt (k)

]
= L [st(k)]+4L [st(k)] . (20)

Step 3: Exploiting (20) and using the property
Pr{xt(n) = 1|x̂t (n)} + Pr{xt(n) =−1|x̂t (n)} = 1 the up-
dated values for x̄t(n) and ct(n) are obtained as

x̄t(n)new = Pr{xt(n) = +1|x̂t (n)}−Pr{xt(n) =−1|x̂t (n)}

= tanh

(
L

[
xt(n)|x̂t (n)

]

2

)
(21)

and

ct(k)new = ∑
b∈{+1,−1}

(b− x̄t(n)new)2Pr(xt(n) = b|x̂t (n))

= 1− x̄t(n)2
new. (22)

The equations (21) and (22) are used to update the values of
s̄t(k) and ct(k) in (6) and (7) in Step 1.

Step 4: We repeat steps 1 through to 3 until the spec-
ified number of iterations has elapsed.

4. SIMULATION

For simulations, it is assumed that the MIMO channel is fre-
quency selective and slowly time varying, i.e., it is time in-
variant within each frame of N + L− 1 symbol periods but
changes independently and slowly from one frame to other.
We suppose perfect knowledge of channel and noise vari-
ance at the receiver. For simulations a 2 transmit and 3 re-
ceive antenna MIMO channel model is used. The number of
sub-carriers is chosen to be N = 32 and the length of the CP
is kept equal to the length of the channel. We use an 8-tap
wireless fading channel model in which each channel tap is
represented by a complex Gaussian random process indepen-
dently generated. Here, we assume ∑L−1

l=0 σ2
ltr = 1, where σ2

ltr
is the variance of the lth path between the transmit antenna t
and receive antenna r. The symbols {xt(n)} are BPSK. All
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simulations are performed for 5000 monte-carlo simulations.
In the first stage of the algorithm, all frequency domain sym-
bols are estimated using the low complexity MMSE equal-
izer. In the second stage estimated symbols are converted
back into time domain and means and variances of the esti-
mated time domain symbols are found, which are used in the
following iteration in the first stage. Figure 2 shows the BER
performance of iterative estimation technique up to three iter-
ations. In the figure BER performance is compared with the
MMSE equalizer and matched filter bound (MFB). The MFB
is obtained from the model given in 1 by assuming the sym-
bols {xp(m)|m6=n when p=t} are known when estimating xt(n).
It can be seen from the figure that the performance of the iter-
ative algorithm outperforms the MMSE equalizer and almost
converges after first iteration.

5. CONCLUSIONS

We have considered the design of an iterative receiver for the
severe time dispersive slowly time variant MIMO channel.
Due to CP and equalization in the frequency domain the al-
gorithm can work for severe time dispersive channels. The
simulation results support the expected superiority of the pro-
posed iterative scheme over the L-MMSE equalization that
has poor performance.
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MMSE
Zero−th Iter
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Figure 2: BER performance comparison of the proposed it-
erative algorithm with the MMSE equalizer and MFB at dif-
ferent number of iterations for the SCCP block length of 32.
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