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ABSTRACT

We propose to estimate time-varying frequency-selective
channels using data-dependent superimposed training
(DDST) and a basis expansion model (BEM). The pro-
posed method is an extension of the DDST-based method
recently proposed for time-invariant channels. The super-
imposed training consists of the sum of a known sequence
and a data-dependent sequence, which is unknown to the
receiver. The data-dependent sequence cancels the effects
of the unknown data on channel estimation. Simulation re-
sults show that the proposed method compares favorably
with time-division multiplexing training.

1. INTRODUCTION

Wireless and mobile communications channels for high data
rate transmission are typically time and frequency selec-
tive. Frequency-selectivity is due to multipath propaga-
tion and large signal bandwidth whereas time-selectivity
is induced by Doppler. Such doubly selective channels of-
fer joint multipath-Doppler diversity gains [1, 2]. However,
achieving such gains requires channel acquisition, which is
a challenging task. Further, when the channel is fast fad-
ing, the common approach of assuming the channel to be
quasi-static over a certain interval of time may lead to un-
acceptable system performance. Thus, accurate estimation
of doubly-selective channels is well motivated.

In most practical systems, training is used to facilitate
channel estimation. Blind techniques typically require long
data records and are often complex to implement. The
conventional way of multiplexing training symbols with the
data is time-division multiplexing (TDM) [3, 4]. In the
case of purely time-selective channels, periodic insertion of
training symbols, known as pilot symbol aided modulation
(PSAM), was shown to be optimal in the sense of mini-
mizing the mean square error (MSE) of channel estimation.
For purely frequency-selective channels, periodic insertion
of pilot clusters was shown to be optimal [4]. For doubly
selective channels and zero-padded block transmission, us-
ing the basis expansion model (BEM) of [5], it was shown
in [6] that periodic insertion of zero-guarded pilot symbols
was optimal. For cyclic-prefixed systems, orthogonal multi-
plexing is implemented in the frequency domain [7]. An
alternative approach to orthogonal multiplexing schemes
is superimposed training (ST). This scheme saves valuable
bandwidth at the expense of a reduction in the information
signal-to-noise ratio (SNR), since some of the transmitted
energy is allocated to the embedded pilots. In the case of
purely time-selective channels, it was shown in [8] that ST
outperforms PSAM when the fading is fast. ST schemes
have also been proposed in [9, 10, 11]. The main drawback
of such a scheme is that performance of a channel estima-
tor is limited by the unknown data which act as a source
of input noise. To circumvent this, a variant of the ST

scheme, called data-dependent ST (DDST) was proposed
in [12, 13] for purely frequency-selective channels. Unlike
the conventional ST scheme, the training sequence in the
DDST method was set to be the sum of a known (to the
receiver) sequence, and a data-dependent sequence, which
is unknown at the receiver. Here, we extend this method
to include time and frequency-selective channels. Towards
this objective, we use the basis expansion model (BEM)
[5, 1] which has been used to approximate doubly selective
channels.

The paper is organized as follows. The next section de-
scribes the system model. Channel estimation is presented
in Section 3. The issue of optimum training design is ad-
dressed for the proposed pilot assisted transmission in Sec-
tion 4. Equalization and symbol detection are explained in
Section 5. Simulations results are presented in Section 6
and conclusions are drawn in Section 7.
Notation: Superscripts ∗, T , H and † denote complex

conjugate, transpose, Hermitian and pseudo-inverse opera-
tors respectively. The trace and statistical expectation are
denoted by Tr {·} and E {·}. The nth element of a vector z
is denoted by z(n). The (N×N) identity matrix is denoted
by I. Finally, diag (a1, ..., aN ) is the (N ×N) diagonal ma-
trix whose nth diagonal entry is an. A matrix of zero will
be denoted by 0. The symbol ∝ will mean ”proportional
to” and < . >N denotes arithmetic modulo N .

2. SYSTEM MODEL

Consider a doubly-selective communication link and let
h(t; τ) denote its time-varying impulse response which in-
cludes the doubly-selective channel as well as the transmit-
receive filters. Let H(f ; τ) denote the Fourier transform of
h(t; τ). Let us define the delay spread τmax and the Doppler
spread fmax as the thresholds on τ and f beyond which
|H(f ; τ)| ≈ 0.

Consider a cyclic-prefixed single-carrier block transmis-
sion system operating over such a channel. In order to
avoid interblock interference, we assume the length of the
cyclic prefix (CP) to be larger or equal to the length of
the channel. At the receiver, after removing the CP, the
baud-sampled discrete-time baseband signal model for each
received block (we omit the block index for notational sim-
plicity) is

y(n) =

L−1
∑

`=0

h(n; `)s(n− `) + v(n), n = 0 · · ·N − 1 (1)

where N is the length of the block, h(n; `) is the time-
varying `th tap of the channel, L − 1 is the order of the
channel in number of samples, and {s(n)} is the transmitted
block. Because of the CP s(−i) = s(N − i), i = 1 · · ·L −
1. We assume that the transmitted symbols s(n) are zero-
mean and independent of the zero-mean noise v(n).
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Now, we use a BEM to model the time-varying channel.
We focus here on the exponential basis functions. Under the
assumption that the delay and Doppler spreads are bounded
by τmax and fmax respectively, the time-varying channel
can be modelled for n = 0, · · · , N − 1 as

h(n; `) =

Q/2
∑

q=−Q/2

hq,`e
j2πqn/N , ` = 0, ..., L− 1 (2)

where L and Q satisfy the following conditions:

(L− 1)T ≥ τmax Q/(NT ) ≥ 2fmax

where T is the symbol period. We also assume that N >>
L(Q+ 1).

Using eq. (2), the signal model in eq. (1) can be written
in vector form as

y =

Q/2
∑

q=−Q/2

DqHqs + v (3)

where Dq := diag
(

1, · · · , ej2πq(N−1)/N
)

, Hq is an

(N × N) circular matrix with first column given by
[hq,0, hq,1, ...hq,L−1, 0, ..., 0]

T , and s is the (N × 1) trans-
mitted block. Equivalently, y can be rewritten as

y =

Q/2
∑

q=−Q/2

DqShq + v (4)

where S is the leading (N × L) matrix of the (N ×N) cir-
cular Toeplitz matrix whose first column is s, and hq =
[hq,0, ..., hq,L−1]

T . In a more compact form, y can be ex-
pressed as

y = D[IQ+1 ⊗ S]h + v (5)

where D = [D−Q/2 · · ·DQ/2], h = [hT
−Q/2 · · ·h

T
Q/2]

T .

3. CHANNEL ESTIMATION USING DDST

In a TDM scheme, some of the entries of s are known pilots.
In the conventional ST scheme, a known training sequence,
c, is added to the data vector, w, i.e., s = w+ c. The data
symbols are assumed to be zero-mean, i.i.d. random vari-
ables drawn from a finite alphabet, e.g., PSK or QAM; let
σ2
w denote the data symbol power. The channel coefficients

can be consistently estimated using the first-order statis-
tics of the received signal [9, 10]. A disadvantage of this
method is that the channel estimate is degraded by the em-
bedded unknown data, which acts as a source of input noise.
To mitigate this problem, we use the DDST approach [12],
where w is distorted prior to adding the known training se-
quence. Let w = w+e be the distorted data vector, where
e is a zero-mean data-dependent sequence. With s = w+c,
y can be written as

y = D[IQ+1 ⊗ C]h +D[IQ+1 ⊗W]h + v

where C and W are defined similar to S in (4). The lin-
ear least squares (LLS) channel estimate, which regards
the data-related term on the RHS of the above equation
as noise, is given by

ĥ = (D[IQ+1 ⊗ C])† y. (6)

Note that if the statistics of the channel are available, the
minimum mean square error (MMSE) estimator could be
used. Here, to simplify the equations, we use the above
LLS estimator.

3.1. Identifiability

The channel estimator in eq. (6) is consistent iff the follow-
ing identifiability condition is satisfied

rank {D[IQ+1 ⊗ C]} = L(Q+ 1). (7)

Equivalently,

rank
{

[D−Q/2C, ...,D0C, ...,DQ/2C]
}

= L(Q+ 1).

Recall that C is the N ×L leading submatrix of a circulant
matrix, and the D’s by definition are N ×N full rank ma-
trices. Equivalently N ≥ L(Q+1), C must have full column
rank L, and the Q+ 1 sub-matrices must be orthogonal to
one-another, i.e., CHDH

mDnC = 0, m,n = −Q/2, ..., Q/2,
m 6= n. We note that such a condition would be required
even if the exponential bases were replaced by an arbitrary
orthonormal basis set. For the exponential basis set, the
necessary and sufficient conditions are

Result 1 Channel identifiability is ensured iff N ≥ L(Q+
1), the training sequence has at least L non-zero tones, and
CHDqC = 0, q = ±Q, ...,±1.

Let Dc̃ = diag (c̃) with c̃ being the DFT of c. Then a
sufficient condition is that DH

c̃ J
qDc̃ = 0, q 6= 0, where J

is the circular shift matrix operator. Thus, the training
sequence must satisfy an interesting shift-orthogonality in
the frequency domain.

In the following, we refer to the indices of the nonzero
entries of c̃ as pilot frequencies. Let P denote the subset of
{0, · · · , N − 1} containing these pilot frequencies and let P
denote its cardinality. Note that a necessary but not suffi-
cient condition for channel identifiability is P ≥ L.

Corollary 1 If P = L, then channel identifiability is guar-
anteed if the pilot frequencies are spaced at least (Q + 1)
apart.

We make the following remarks

• Corollary 1 implies that L(Q + 1) unknown channel
coefficients can be identified with only L pilot tones.
When Q = 0, this is the standard result: the train-
ing sequence must have at least L tones to cope with
the unknown possibly annihilating L − 1 channel ze-
ros. For Q > 0, this identifiability is possible thanks
to the frequency diversity (or frequency spread) offered
by the time-varying channel and enabled by the “shift-
orthogonal” training sequence.

• A channel identifiability condition that is independent
of P is P ≥ (L − 1)Q + L. This is required when the
pilot frequencies are cyclicly contiguous.

3.2. Data-Independent Channel Estimation Con-
dition

In order for ĥ to be independent of the data, the following
condition must be satisfied

[IQ+1 ⊗ C]HDH
D[IQ+1 ⊗W] = 0 (8)

which can be equivalently expressed as

C
H
DqW = 0, q = −Q, · · · , Q (9)

Using the same reasoning as in the previous subsection,
condition (9) can be expressed in the frequency domain as

N−1
∑

m=0

c̃∗(m)w̃(< m+ q >N )ej2πm`/N = 0

q = −Q, · · · , Q.` = −L+ 1, · · · , L− 1 (10)
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where w̃ is the DFT of w.
Let Z be the subset of {0, · · ·N−1} containing the indices

of the DFT entries of w̃ involved in Condition (10), and let
Z denote its cardinality. Note that Z depends on P. More
specifically, if k ∈ P, then {< k−Q >N , · · · , < k+Q >N} ⊂
Z. Condition (10) imposes (2L−1)(2Q+1) constraints on Z
elements of w̃ indexed by Z. Therefore, the number of effec-
tive constraints on w̃ (or w) is min(Z, (2L−1)(2Q+1)). By
keeping P to the minimum value for a given pilot placement
scheme, it can be shown that min(Z, (2L−1)(2Q+1)) = Z.
In this case, Condition (10) implies that the n ∈ Z-th DFT
entries of w̃ must be set to zero. Hence, in what follows,
P will be kept to the minimum value. We now make the
following remarks.

• If the pilot frequencies are cyclicly contiguous, the min-
imal value of P that guarantees channel identifiability
is P = (L − 1)Q + L, as mentioned in the previous
subsection. In this case, Z consists of only one cluster
of size Z = (L+ 1)Q+ L.

• In the case where L pilot frequencies are spaced at least
(Q+1) apart, as in Corollary 1, Z consists of L disjoint
clusters of size 2Q + 1, and Z = L(2Q + 1). Since Z
in this case is larger than that obtained in the case
of contiguous pilot frequencies, data distortion is also
greater. However, as we will see in the next section,
designing the pilot frequencies to be contiguous is worst
when performance of channel estimation is concerned.

• Note that Z > P for time-varying channels, unlike the
case of time-invariant channels (i.e., Q = 0) where Z =
P regardless of P [12].

• In the presence of a DC-offset, it is preferable that
{P + q, q = −Q/2, · · · , Q/2} does not include the
zero frequency in order to decouple channel and DC-
offset estimation. To make DC-offset estimation data-
independent, the zero frequency should be added to
Z.

4. OPTIMUM TRAINING SEQUENCE
DESIGN

In the case of purely frequency-selective channels, it was
shown in [15] that designing c so that its DFT has only
L non-zero entries which are equally spaced and have the
same magnitude is optimal in terms of minimizing the mean
square error (MSE) of the LLS channel estimate and min-
imizing data distortion. For doubly-selective channels, the
design of c is not as simple because as we will see later,

minimizing the MSE of ĥ under Condition (9) does not
minimize data distortion and vice-versa.

4.1. Minimizing the MSE of Channel Estimate

Since v is AWGN, the MSE of ĥ is, under Condition (9),
given by

mse

(

ĥ
)

:= Tr
{

E
{

(ĥ− h)(ĥ− h)H
}}

= σ2Tr

{

(

[IQ+1 ⊗ C
H ]DH

D[IQ+1 ⊗ C]
)−1

}

.

where σ2 is the noise power. We have the following inequal-
ity

mse

(

ĥ
)

≥ σ2[L(Q+1)]−1Tr
{

[IQ+1 ⊗ C
H ]DH

D[IQ+1 ⊗ C]
}

with equality iff

[IQ+1 ⊗ C
H ]DH

D[IQ+1 ⊗ C] ∝ I

which is equivalent to

C
H
DqC ∝ δ(q)I, q = −Q, · · · , Q.

Using the same reasoning as in the previous section, the
above condition becomes

N−1
∑

m=0

c̃∗(m)c̃(< m+ q >N )ej2πm`/N = σ2
cδ(q)δ(`),

q = −Q, · · · , Q; ` = −L+ 1, · · · , L− 1. (12)

A simple design that satisfies the above condition is

|c̃(k)|2 =
Nσ2

c

P

P−1
∑

i=0

δ(k − iM − t), k = 0, · · · , N − 1

and

N = PM, 0 ≤ t ≤M − 1, P ≥ L, M ≥ Q+ 1(13)

where P , t and M are positive integers and σ2
c =

(1/N)
∑N−1

n=0 |c(n)|
2. This design consists of P equispaced

tones, at least Q+1 apart. When M ≤ Q, Condition (12)
can still be satisfied but in this case, the phases of the c̃(m)
would have to be constrained as well. However, the training
design in this case is not interesting since P should be min-
imized in the DDST approach, as we will see later. Note
that in the presence of a DC offset, t should be larger than
Q/2 in order to decouple channel and DC offset estimations
[14].

Using eq. (13), the minimum MSE is given by

mse

(

ĥ
)∣

∣

∣

min
=

σ2L(Q+ 1)

Nσ2
c

. (14)

It is worth noting that the minimum MSE is not a function
of P , the number of non-zero entries of c̃. Thus, P should
be set to its minimum value, L, in order to minimize data
distortion. Recall that when L pilot frequencies are spaced
at least (Q+1) apart, the number of zeroed entries of w̃ is
Z = L(2Q+ 1).

Note that for the optimal design in eq. (13), the channel
estimate in eq. (6) reduces to

ĥq =
1

σ2
c

C
H
D
H
q y, q = −Q/2, · · · , Q/2

The coefficients of ĥq can also be simply expressed as

ĥq,` =
1

Nσ2
c

P−1
∑

k=0

c̃∗(kM + t)rq,ke
j2π(kM+t)/N (15)

where

rq,k =

N−1
∑

n=0

y(n)e−j2πn(q+kM+t)/N

A constant amplitude sequence satisfying the optimality
condition in Result 1 is given by the following shifted chirp
sequence

c(n) = σce
j2πnt/Nejπn(n+ν)/P

where ν = 0 if P is even and ν = 1 if ν is odd.
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4.2. Minimizing Data Distortion

In order to minimize data-distortion, we choose w which
minimizes the Euclidean distance between w and w under
the constraint that the DFT entries of w at the frequencies
Z are identically zero. Using Parseval’s theorem, this is
equivalent to minimizing

∑

k/∈Z

|w̃(k)− w̃(k)|2 +
∑

k∈Z

|w̃(k)|2

over {w̃(k), k ∈ Z}. The minimum is obtained when
w̃(k) = w̃(k) for all k /∈ Z. Thus,

w = (I−Φ)w

with Φ = FHTZF where TZ is obtained after setting the
k ∈ Zth diagonal entries of the (N ×N) identity matrix to
zero. The power of data distortion,

E {‖w −w‖2} = E {‖Φw‖2}

is, under the assumption of i.i.d. data symbols, given by
Zσ2

w. Thus, data distortion increases with Z but is not
a function of the placements of the zeroed DFT entries of
w. This implies that minimizing Z also minimizes data
distortion. In Subsection 3.2., it was shown that Z is min-
imum when the pilot frequencies are cyclicly contiguous;
Z = (L + 1)Q + L. However, this pilot placement is not
optimal for channel estimation. Recall that for the opti-
mal pilot design in eq. (13) where P = L, we have that
Z = L(2Q+1), i.e., (L−1)Q more zeroed DFT entries than
the minimum value obtained with cyclicly contiguous pilot
frequencies. Note that in the case of purely time-selective
channels (i.e., L = 1), the optimum design in eq. (13) with
P = L = 1 also minimizes Z. Indeed, in this case, the
optimal c̃ contains only one non-zero element at an arbi-
trary frequency i, Z = {< i−Q >N , · · · , < i+Q >N} and
Z = 2Q+ 1.

5. LINEAR EQUALIZATION AND DATA
DETECTION

Since the Hq’s are circular matrices, they can be diag-
onalised using the DFT matrix, i.e. Hq = FHHqF
where Hq = diag (Hq(n), n = 0, · · · , N − 1) with Hq(n) =
∑L−1

`=0 hq,` exp(−j2π`n/N). Therefore, left-multiplying y

in eq. (3) by F and using the matrix manipulations in sub-
section 3.1., we obtain

Fy =





Q/2
∑

q=−Q/2

J
q
Hq



Fs =: HFs. (16)

Thus, the MMSE equalizer of s is given by

ŝ = F
H
GFy (17)

where G = HH(HHH + σ2
wI)

−1. The soft decision of w is
then given by

ŵ = ŝ− c

The above block MMSE equalizer can be replaced by the
low-complexity approximation in [16]. Further, iterative
methods such as those proposed in [17] can also be imple-
mented. Such methods were shown to outperform MMSE
equalization because they better take advantage of the fre-
quency and time diversity of the time-varying channel.

Due to data distortion at the transmission, ŵ is different
from w even in the absence of channel estimation error and
noise. Indeed, in this ideal scenario, ŵ = (I −Φ)w. Since
(I−Φ) is singular, w cannot be recovered linearly. However,

using the fact that the data symbols are drawn from a fi-
nite alphabet and that Φw is small compared to w, symbol
detection can be undertaken by finding the vector of con-
stellation points w that minimizes the Euclidian distance
between ŵ and (I−Φ)w. This sequence detection scheme
is computationally cumbersome. Further, if sequence de-
tection were to be used, then maximum likelihood detec-
tion (such as sphere decoding) should be preferred to linear
equalization. Here, we use the iterative symbol-by-symbol
detection scheme proposed in [12].

The symbol-by-symbol detection algorithm is initialized
by treating Φw as an extra additive noise, and considering
ŵ as a soft detector of w; the initial hard detector of w is
given by

w̄
(0) = bŵc

where bŵc denotes the vector of constellation points that
are the closest to the vector ŵ. The detected symbols are
used to estimate Φw to be used in the next iteration. The
detected symbols at the ith iteration are given by

w̄
(i) = bu +Φw̄

(i−1)c.

6. SIMULATION RESULTS

We compare the proposed DDST scheme with the TDM
scheme proposed in [6] in terms of channel estimation per-
formance and bit error rate (BER). The length of the
data block is set to N = 256. The time-varying chan-
nel is assumed to be of order L = 3 and generated us-
ing Jakes model with a normalized Doppler frequency fD.
Two values of fD are considered here: fD = 0.003 and
fD = 0.005. The channel coefficients are assumed uncorre-
lated and their powers are given by the exponential delay
profile E

{

|h(n; `)|2
}

= exp(−0.2`), ∀n. The exponential
basis function model for the channel is used at the receiver
for channel estimation with Q = 2dfDNe. For the values of
fD mentioned above, we have that Q = 2 and Q = 4. For
both schemes, we use MMSE equalization. The training se-
quence for the DDST method is the shifted chirp sequence
given in Section 4.1 and its power is set to 10% of the total
transmit power. For the TDM method, zero-guarded pilots
are uniformly placed within the block as in [6].

The merits of the two methods are assessed using 500
Monte-Carlo runs. Figure 1 show the normalized mse on
channel estimation which is defined as

∑N−1
n=0

∑L−1
`=0 |h(n; `)− ĥ(n; `)|2

∑N−1
n=0

∑L−1
`=0 |h(n; `)|

2

for different values of the data rate loss of the TDMmethod.
Note that ĥ(n; `) is obtained using the BEM and the ĥq,`’s.
Figure 2 shows the BER performance. The MSE and the
BER level off at high SNR because of the channel mod-
elling mismatch due to the BEM approximation. It is seen
that the proposed method outperforms the TDM method
in terms of channel estimation. It also compares favorably
with the TDM method in terms of the BER. Recall that the
proposed method does not incur any data rate loss apart
from the periodic cyclic prefix insertion.

Simulation results also show that unlike the case of time-
invariant channels, the iterative scheme in the previous sec-
tion does not seem to provide any significant improvement.
This is due to the fact that the bit error rate at high SNR
is dominated by the channel modelling mismatch.

7. CONCLUSIONS

We extended the data-dependent superimposed training
scheme in [12] to time-varying channels. We have derived
conditions for channel identifiability and zero-interference
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between pilots and data. The latter was achieved with-
out trading off data-rate. The only penalties were a slight
decrease in data-to-noise power ratio and a slight data dis-
tortion. The proposed method was shown to compare fa-
vorably with time-division multiplexing.
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Figure 1. Empirical MSE of channel estimates
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Figure 2. Empirical bit error rate
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Figure 3. Empirical MSE of channel estimates
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Figure 4. Empirical bit error rate
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