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ABSTRACT
This paper proposes a post-filtering estimation scheme for mul-
tichannel noise reduction. The proposed method is an extension
and improvement of the existing Zelinski and McCowan post-filters
which use the auto- and cross-spectral densities of the multichannel
input signals to estimate the transfer function of the Wiener post-
filter. A drawback in previous two post-filters is that the noise power
spectrum at the beamformer’s output is over-estimated and there-
fore the derived filters are sub-optimal in the Wiener sense. The
proposed method overcomes this problem and can be used for the
construction of an optimal post-filter which is also appropriate for a
variety of different noise fields. In experiments with real noise mul-
tichannel recordings the proposed technique has shown to obtain a
significant gain over the other studied methods in terms of signal-to-
noise ratio, log area ratio distance and speech degradation measure.
In particular the proposed post-filter presents a relative SNR en-
hancement of 17.3% and a relative decrease on signal degradation
of 21.7% compared to the best of all the other studied methods.

1. INTRODUCTION

Nowdays the use of microphone arrays for speech enhancement
seems very promising, with the main advantage being that a mi-
crophone array can simultaneously exploit the spatial diversity of
speech and noise, so that both spectral and spatial characteristics of
signals can be used [1]. In most cases the speech and noise sources
are in different spatial locations, thus a multichannel system com-
pared to a single channel system obtains a significant gain due to
the ability of suppressing interfering signals and noise originating
from undesired directions.

The spatial discrimination of the array is exploited by beam-
forming algorithms [1]. In many cases though the obtainable noise
reduction is not sufficient and post-filtering techniques are applied
to further enhance the output of the beamformer. The Minimum
Mean Square Error (MMSE) estimation of a multichannel sig-
nal from its noisy observations is achieved using the multichan-
nel Wiener filter. Simmer et al. [2] have shown that the optimal
broadband multichannel MMSE filter can be factorized into a Min-
imum Variance Distortionless Response (MVDR) beamformer [3]
followed by a single channel Wiener post-filter. In general, such
a post-filter accomplishes higher noise reduction than the MVDR
beamformer alone, therefore its integration in the beamformer out-
put can lead to substantial SNR gain.

Despite its theoretically optimal results, Wiener post-filter can
be difficult to realize in practice. This is due to the requirement
for knowledge of second order statistics for both the signal and the
corrupting noise that makes the Wiener filter signal-dependent. A
variety of post-filtering techniques trying to address this issue have
been proposed in the literature [4, 5, 6, 7]. A quite common method
for the formulation of the post-filter transfer function is based on
the use of the auto- and cross-spectral densities of the multichannel
input signals [2, 4, 6].

One of the early methods for post-filter estimation is due to
Zelinski [4] which was further studied by Marro et al. [8]. The gen-
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eralized version of Zelinski’s algorithm is based on the assumption
of a spatially uncorrelated noise field. However this assumption is
not realistic for most practical applications. If a more accurate noise
field model was used instead, the overall performance of the noise
reduction system would be improved . McCowan et al. [6] replaced
this assumption by the most general assumption of a known noise
field coherence function and extended the previous method to de-
velop a more general post-filtering scheme. In [6] it is proved that
Zelinski’s post-filter is a special case of McCowan’s post-filter for
the case of spatially uncorrelated noise. However a drawback in
both methods is that the noise power spectrum at the beamformer’s
output is over-estimated [6, 9] and therefore the derived filters are
sub-optimal in the Wiener sense.

This paper deals with the problem of estimating the Wiener
post-filter transfer function so that the estimated filter will be op-
timal in terms of MMSE, while still allowing for the development
of a general post-filter appropriate for a variety of different noise
fields. To accomplish these demands we preserve McCowan’s gen-
eral assumption of a known noise field coherence function [6] but
also take into account the noise reduction performed by the MVDR
beamformer. In this way we estimate the speech source’s spectrum
same as McCowan but we propose a new robust method for the es-
timation of the power spectrum at the beamformer’s output which
is consistent with the optimality in terms of MMSE.

2. PROBLEM STATEMENT

Let us consider an M-sensor linear microphone array where a
speech source is located at a distance r and at an angle θ from the
center of the array. The observed signal, yi(n), i = 0, . . . ,M− 1,
at the ith sensor is a delayed and attenuated version of the original
speech signal s(n) with an additive noise component vi(n). Each
microphone signal yi(n) can also be considered as a linearly fil-
tered version of the source signal plus additive noise. Applying the
short-time Fourier transform (STFT), the observed information in
the joint time-frequency domain can be written as

Y(k, `) = H(k;θ ,r)S(k, `)+V(k, `) , (1)

where k and ` are the frequency bin and the time frame index, re-
spectively, and

Y(k, `) =[Y0(k, `) ,Y1(k, `) , . . . ,YM−1(k, `)]
T (2)

H(k;θ ,r) =[H0(k;θ ,r) , . . . ,HM−1(k;θ ,r)]T (3)

V(k, `) =[V0(k, `) ,V1(k, `) , . . . ,VM−1(k, `)]
T . (4)

The ith element of the vector H(k;θ ,r) corresponds to the fre-
quency response, Hi(k;θ ,r) = αi(θ ,r)e− jωkτi(θ ,r), of the acoustic
path between the speech source and the ith sensor, where ai(θ ,r) is
the attenuation factor, τi(θ ,r) is the time delay expressed in num-
ber of samples and ωk is the discrete-time angular frequency corre-
sponding to the kth frequency bin.

2.1 Noise Field
In microphone array applications, noise fields can be characterized
by a measure known as complex coherence function. Coherence
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function measures the amount of correlation between noise signals
at different spatial locations and is defined as [3]:

ΓVpVq(ω) =
ΦVpVq(ω)√

ΦVpVp(ω)ΦVqVq(ω)
, (5)

where ΦVpVq(ω) is the cross-spectral density between the noise ar-
rived at sensors p and q and ΦVpVp(ω), ΦVqVq(ω) are the spectral
densities of the noise at sensors p and q, respectively.

A diffuse noise field is defined as equally distributed uncorre-
lated white noise coming from all directions and is a widely-used
model for many applications concerning noisy environments (e.g
cars and offices [5],[6]). The complex coherence function for such
a noise field can be approximated by

ΓVpVq(ω) =
sin(ω fsd/c)

ω fsd/c
, ∀ω , (6)

where d is the distance between sensors p and q and ω is the
discrete-time angular frequency.

For the case of a spatially uncorrelated noise field, the coher-
ence function reduces to ΓVpVq(ω) = 1, for p = q and ΓVpVq(ω) =
0, for p 6= q,∀ω . Such a noise field can be generated by thermal
noise in the microphones and is randomly distributed, in general.

2.2 Multichannel Wiener Filter
The optimum, in terms of MMSE, weight vector Wopt(k, `) that
transforms the corrupted input signal vector, H(k;θ ,r)S(k, `), by
additive noise V(k, `) , into the best MMSE approximation of the
source signal S(k, `) is known as multichannel Wiener filter. To
find this optimum weight vector we have to minimize the mean
square error at the beamformer’s output. In time-frequency do-
main the error at the beamformer’s output is defined as E (k, `) =
S(k, `)−WH(k, `)Y(k, `) and the optimum solution Wopt(k, `), as-
suming that the matrix ΦYY(k, `) is invertible, is given by

Wopt(k, `) = Φ−1
YY (k, `)ΦYS(k, `) , (7)

where ΦYS(k, `) is the cross-spectral density vector between the
source signal and the sensors’ inputs and ΦYY(k, `) is the spectral
density matrix of the sensors’ inputs.

Under the assumption that the source signal S(k, `) and the
noise are uncorrelated, it has been shown in [2] that (7) can be fur-
ther decomposed into a MVDR beamformer followed by a single
channel Wiener filter, which operates at the output of the beam-
former:

Wopt(k, `) =
Φ−1

VV (k, `)H(k;θ ,r)
HH(k;θ ,r)Φ−1

VV (k, `)H(k;θ ,r)︸ ︷︷ ︸
Wmvdr(k,`)

·Hpost(k, `) , (8)

where Hpost(k, `) =
ΦSS(k, `)

ΦSS(k, `)+Φnn(k, `)
. (9)

With ΦSS(k, `) we denote the power spectral density of the source
signal whereas with Φnn(k, `) the power spectrum of the noise at the
output of the beamformer which equals to

Φnn(k, `) = Φnf (k, `)WH
mvdr(k, `)ΦVV(k, `)Wmvdr(k, `). (10)

The quantity Φnf (k, `) is the normalization factor of the noise cross-
power spectral matrix defined as

Φnf (k, `) =
1
M

M−1

∑
p=0

ΦVpVp(k, `) . (11)

In the case of the MVDR beamformer the weight vector
Wmvdr(k, `) can be evaluated since it is data independent, though
this is not possible for the Wiener post-filter. As can be seen by
Eq. (9), the solution depends on the knowledge of ΦSS(k, `). Since
the original values of ΦSS(k, `) are not available, estimation is nec-
essary. In the next sections this paper focuses on addressing the
problem of estimating the Wiener post-filter transfer function.

3. POST-FILTER ESTIMATION

In the current section we first provide a short review of McCowan’s
post-filter estimation method [6] and then we propose a new es-
timation scheme that succeeds to provide a general post-filter as
McCowan’s, appropriate for a variety of different noise fields, and
also be optimal in the Wiener sense. In addition we point out the
similarities and differences of the discussed methods.

An overview of the overall multichannel noise reduction system
is provided in Fig. 1. At the output of the sensors the multichan-
nel input signals are time aligned and scaled to compensate for the
time delay and attenuation, caused by the propagation of the source
signal on the acoustic paths. According to this, H(k;θ ,r) will be
equal to a M column vector of ones, I. The signals at the delay
compensation output can be denoted in matrix notation as

Y(k, `) = I ·S(k, `)+V(k, `) . (12)

Figure 1: Block diagram of the noise reduction system.

3.1 McCowan’s Post-Filter
Computing the auto and cross power spectral densities of the time
aligned input signals on sensors p and q, leads to

ΦYpYq = ΦSS +ΦVpVq +ΦSVp +ΦSVq (13a)

ΦYpYp = ΦSS +ΦVpVq +2ℜ
{

ΦSVp

}
. (13b)

The formulation of McCowan’s post-filter is based on the fol-
lowing assumptions:
1. The speech and noise signals are uncorrelated, ΦSVp = 0 ∀p.
2. The noise field is homogeneous, meaning that the noise power

spectrum is the same on all sensors, ΦVpVp = ΦVV.
3. An estimation of the coherence function ΓVpVq(ω) is given.
Under these assumptions and by Eqs. (5) and (13) it follows that:

ΦYpYq = ΦSS +ΦVpVq (14a)
ΦYpYp = ΦSS +ΦVV (14b)
ΦVpVq = ΦVVΓVpVq . (14c)

Equation set (14) forms a 3×3 linear system. Noting that under
the adopted assumptions it holds ΦYpYp(k, `) = ΦYqYq(k, `) and solv-
ing for ΦSS we obtain:

Φ̂(pq)
SS =

ℜ
{

Φ̂YpYq

}− 1
2
(
Φ̂YpYp + Φ̂YqYq

)
ℜ

{
Γ̂VpVq

}

1−ℜ
{

Γ̂VpVq

} . (15)

which is the derived estimation of ΦSS(k, `) using the auto- and
cross-spectral densities between sensors p and q. The notation ˆ(·)
stands for the estimated quantity. The average between the auto-
spectral densities of channels p and q is taken to improve robust-
ness. In ΦYpYq the real operator ℜ{·} is used according to the def-
inition that the power spectrum must always be real. Robustness
can be further improved by taking the average over all

(M
2
)

possible
combinations of channels p and q, resulting in
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Φ̂SS =
2

M(M−1)

M−2

∑
p=0

M−1

∑
q=p+1

Φ̂(pq)
SS . (16)

The post-filter denominator is estimated by Φ̂YpYp , as for the
Zelinski technique and the transfer function of the post-filter is ex-
pressed as

ĤM =
Φ̂SS

1
M

M−1
∑

p=0
Φ̂YpYp

. (17)

As it has already been mentioned, Zelinski’s post-filter is a spe-
cial case of McCowan’s general expression. This can be verified
by Eq. (15): For a spatially uncorrelated noise field the coherence
function will equal to Γ̂VpVq = 0. Thus Φ̂(pq)

SS (k, `) = ℜ
{

Φ̂YpYq(k, `)
}

,
i.e the spectral density estimation of the speech source in Zelinski’s
post-filter [4].

3.2 Proposed Generalized Post-Filter
In our proposed post-filter estimation scheme we adopt the same as-
sumptions as McCowan et al. and estimate the power spectral den-
sity of the speech source, the numerator of the Wiener post-filter
transfer function (9), as proposed in [6]. The difference between
the two methods lies in the estimation of the post-filter’s denomi-
nator. The denominator of Eq. (9) denotes the power spectrum of
the MVDR beamformer’s output. Denoting with Z the output of the
beamformer, we can write

ΦZZ = ΦSS +Φnn . (18)

With the assumption of a homogeneous noise field, Φnn can then be
written from Eq. (10) as

Φnn = ΦVVW
H
mvdrΓVVWmvdr , (19)

where ΓVV
1 is the coherence matrix of the noise field:

ΓVV =




1 ΓV0V1 . . . ΓV0VM−1
ΓV1V0 1

...
. . .

ΓVM−1V0 . . . 1


 (20)

Solving the system (14) for ΦVV instead of ΦSS, results in

Φ̂(pq)
VV =

1
2
(
Φ̂YpYp + Φ̂YqYq

)−ℜ
{

Φ̂YpYq

}

1−ℜ
{

Γ̂VpVq

} , (21)

which is the estimation of ΦVV using the auto- and cross-spectral
densities between sensors p and q. The average between the auto-
spectral densities of channels p and q is used to improve robustness.
Further robustness on the solution can be established by taking the
average between all combinations of channels p and q, resulting
finally in

Φ̂VV =
2

M(M−1)

M−2

∑
p=0

M−1

∑
q=p+1

Φ̂(pq)
VV . (22)

We must note that a problem may arise in the estimation of
Φ̂(pq)

SS (15) and Φ̂(pq)
VV (21) in the case that Γ̂VpVq = 1, for all p 6= q. A

possible solution proposed in [6] to deal with this problem would
be to bound the model of the coherence function so as Γ̂VpVq <
1, for all p 6= q.

To estimate the power spectrum at the beamformer’s output,
with no prior knowledge of the ΦSS values, we use the existing esti-
mations. The post-filter’s denominator will then be

1For the case of a homogeneous noise field ΓVV = ΦVV.
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Figure 2: MVDR beamformer directivity factor.

Φ̂ZZ = Φ̂SS + Φ̂VVW
H
mvdrΓ̂VVWmvdr . (23)

An alternative approach would be to estimate the spectral den-
sity ΦZZ directly from the output of the MVDR beamformer. How-
ever in such case the estimation would lack robustness since we
would have available only one output signal to make the estimation,
instead of N signals.

From Eqs. (9), (16) and (23) we obtain the transfer function of
the Wiener post-filter

Ĥprop =
Φ̂SS

Φ̂SS + Φ̂VVWH
mvdrΓ̂VVWmvdr

. (24)

At this point we have to note that in both methods of Zelinski
[4] and McCowan [6], the estimated denominator given in (17), is
an over-estimation of the noise power spectrum at the beamformer’s
output. This is attributed to the fact that the noise attenuation, al-
ready provided by the MVDR beamformer, is not taken into ac-
count. Therefore the derived filters are sub-optimal in the Wiener
sense [6, 9].

4. EXPERIMENTS AND RESULTS

To validate the effectiveness of the proposed post-filter we com-
pared its performance to other multi-channel noise reduction tech-
niques, including the MVDR beamformer [3], the generalized
Zelinski post-filter [4] and the McCowan post-filter [6], under the
assumption of a diffuse noise field.

4.1 Speech Corpus and System Realization

The microphone data set used for the experiments is from CMU
Microphone Array Database[10], recorded in a noisy computer lab
at Carnegie Mellon University with many computer and disk-drive
fans. The data set contains recordings by 10 male speakers of 13
utterances each. The recordings were collected by a linear micro-
phone array. It consisted of 8 sensors with a spacing of 7 cm be-
tween adjacent sensors. The desired speech source was positioned
directly in front of the array at a distance of 1 m from the center. All
the recordings were sampled at 16 kHz with 16-bit linear sampling.

We window the sampled input signals into frames of 640 sam-
ples (40 ms) and apply to each frame a Hamming window. The
overlap between adjacent frames is 480 samples (30 ms). Each data
block is then Fourier transformed with a FFT of size 1024.

We first apply the MVDR beamformer to the multichannel
noisy signals. Superdirective beamformers are known to be very
sensitive to microphone mismatch and boost uncorrelated noise at
lower frequencies. In order to overcome this problem of self-noise
amplification we compute the MVDR weight vector under a White
Noise Gain (WNG) constraint [11]. Under the assumption of a dif-
fuse noise field the directivity factor of the beamformer is given by
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D f =

∣∣WH
mvdrH

∣∣2

WH
mvdrΓVVWmvdr

. (25)

The beamformer’s output is further processed by the studied
post-filters. To calculate the Wiener post-filters’ transfer functions,
the auto- and cross-spectral densities ΦYpYp and ΦYpYq have to be esti-
mated. Due to the non-stationarity of the speech signals, only short
data blocks are available for spectrum estimation. The power spec-
tra are estimated using the short-time spectral estimation method
proposed in [12], which can be viewed as a recursive Welch peri-
odogram. This method smoothes the spectra in time and frequency
and yields improved estimates. Finally, the output of the noise re-
duction system, Fig. 1, is transformed to the time-domain using the
Overlap and Add synthesis (OLA) method .

4.2 Speech Enhancement Experiments
To demonstrate the benefits of estimating the post-filter transfer
function with the proposed method, we use three different objec-
tive speech quality measures for the algorithms under test.

To assess the noise reduction, the segmental signal-to-noise ra-
tio enhancement (SNRE) is used. The SNRE is defined as the differ-
ence in segmental SNR between the enhanced output and the noisy
input of the noise reduction system, Fig. 1. The post-filter transfer
function of each studied technique is derived by applying as inputs
in the noise reduction system, the noisy speech signals. To calculate
the SNRE, we compute the output of the noise reduction system us-
ing the clean speech and the noisy speech signals as inputs. In this
way, we have available two signals at the output; the processed clean
speech signal and the enhanced output signal. The segmental SNR
is computed from consecutive samples with block size of bs = 512
samples. The quantities SNRin, SNRout and SNRE are defined as
follows:

SNRin(`, i) = 10log10




bs
∑

k=1
|S(k, `)|2

bs
∑

k=1

∣∣ |Yi(k, `)|2−|S(k, `)|2
∣∣


 (26)

SNRout(`) = 10log10




bs
∑

k=1
|Fs(k, `)|2

bs
∑

k=1

∣∣ |F(k, `)|2−|Fs(k, `)|2
∣∣


 (27)

SNRE(`) = SNRout(`)− 1
M

(
M−1

∑
i=0

SNRin(`, i)

)
, (28)

where F(k, `) and Fs(k, `) are the short-time Fourier transforms of
the enhanced noisy signal and the processed speech signal respec-
tively.

To assess the speech quality of the enhanced output signal, the
Log-Area-Ratio distance (LAR) and the speech degradation (SD)
measure are used. These measures are found to have a high corre-
lation with the human perception [13]. Low LAR and SD values
denote high speech quality. The LAR distance and the SD measure
are defined according to the following formulas:

LAR(`) =
1
P

P

∑
p=1

∣∣∣∣20log10
∣∣∣∣
gs(p, `)
gf(p, `)

∣∣∣∣
∣∣∣∣ (29)

SD(`) =
1
P

P

∑
p=1

∣∣∣∣20log10
∣∣∣∣

gs(p, `)
g fs(p, `)

∣∣∣∣
∣∣∣∣ , (30)

where gs(p, `), gf(p, `) and g fs(p, `) represent the pth area ratio
function of the desired signal, the enhanced signal and the processed
clean signal respectively, computed over the `th frame.

For every speaker of the test set, the SNRE, LAR and SD results
are averaged across all the 13 utterances and are shown in Tables
1–3. In addition, Fig. 3 shows the spectrograms of the clean and

the noisy input signal along with the output signals of the studied
methods, for an utterance corresponding to the word “thomas”.

From Figs. 3(c) and 3(d) we note that neither the beamformer
alone nor the Zelinski post-filter can remove sufficiently the noise
in the low frequency region. This inadequacy is also illustrated in
Table 3, where the SNR enhancement of the above two methods
is quite poor compared to the SNR enhancement provided by Mc-
Cowan’s and by the proposed post-filter. What is also noteworthy
from the results in Table 3, is that Zelinski’s post-filter not only
gives the lowest SNRE of all the studied methods, but in addition
in some cases the output SNR is smaller than the input SNR (neg-
ative SNRE). An explanation can be found in [13], where it has
been shown that Zelinski’s method, works well only for reverber-
ation times above 300 ms. For very low reverberation times, the
output speech quality is poorer than the input speech quality. The
low SNRE of the MVDR beamformer, can be attributed to the fact
that the greatest portion of the noise energy is concentrated in the
low frequency region, where the beamformer has a low directivity
factor (Fig. 2). Comparing the spectrograms of Figs. 3(e), 3(f)
derived by applying McCowan’s and the proposed post-filter, re-
spectively, at the output of the beamformer, we can note that even
though McCowan’s post-filter performs sufficient noise reduction at
low frequencies, its behavior at mid and high frequencies is not as
efficient as the proposed post-filter. From Fig. 3 it can also be seen
that the spectrogram closest to the clean speech is the one derived
by applying the proposed post-filter. This is due to the fact that the
proposed post-filter performs a sufficient noise reduction on every
frequency region (low-mid-high).

From the results in Tables 1, 2 and 3 it is clearly evident that
the proposed post-filter consistently outperforms all the other meth-
ods as it produces the best results for all the objective measures. It
gives the greater noise reduction while still providing the highest
speech quality signal. In particular the proposed post-filter estima-
tion scheme presents a relative SNR enhancement of 17.3% and a
relative decrease on signal degradation of 21.7% compared to the
best of all the other studied methods (McCowan’s Post-filter).

Table 1: LAR Results

Noisy LAR (dB)
Speaker Input MVDR Zel. Mc. Prop.

sp1 2.83 3.91 5.23 3.94 2.96
sp2 3.00 4.00 4.98 3.33 2.66
sp3 2.98 3.79 4.70 3.11 2.56
sp4 3.03 3.96 5.15 3.30 2.60
sp5 3.01 3.85 5.00 3.28 2.52
sp6 3.26 3.85 5.12 3.44 2.77
sp7 3.12 3.74 4.65 3.18 2.59
sp8 3.23 3.90 4.99 3.39 2.70
sp9 3.05 3.89 4.80 3.06 2.41

sp10 3.06 3.75 5.14 3.55 2.64
mean 3.05 3.86 4.98 3.36 2.64

Table 2: SD Results

SD (dB)
Speaker MVDR Zel. Mc. Prop.

sp1 3.91 5.35 4.07 3.03
sp2 4.00 5.09 3.42 2.72
sp3 3.79 4.80 3.22 2.63
sp4 3.96 5.25 3.41 2.67
sp5 3.85 5.11 3.38 2.59
sp6 3.85 5.24 3.56 2.85
sp7 3.74 4.74 3.27 2.65
sp8 3.90 5.10 3.48 2.76
sp9 3.89 4.89 3.15 2.47
sp10 3.75 5.25 3.65 2.70
mean 3.86 5.08 3.46 2.71
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(d) Zelinski post-filter
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(f) Proposed post-filter

Figure 3: Speech Spectrograms. (a)Original clean speech signal:“thomas”. (b)Noisy signal at sensor #4. (c) Beamformer output
(SNRE=2.23 dB, SD=3.65 dB, LAR=3.65 dB). (d)Zelinski post-filter (SNRE=1.44 dB, SD=5.15 dB, LAR=5.02 dB). (e)McCowan post-
filter (SNRE=5.97 dB, SD=4.31 dB, LAR=4.16 dB). (f)Proposed post-filter (SNRE=7.07 dB, SD=3.15 dB, LAR=3.09 dB).

Table 3: SNRE Results

SNRE (dB)
Speaker MVDR Zel. Mc. Prop.

sp1 1.95 0.51 8.35 9.98
sp2 2.08 0.71 12.55 14.49
sp3 2.01 0.99 12.49 13.97
sp4 1.76 -0.26 11.12 13.57
sp5 1.86 0.11 10.94 12.90
sp6 2.22 0.70 11.34 12.89
sp7 2.38 0.46 11.01 12.82
sp8 1.62 0.03 9.03 10.91
sp9 1.84 -0.48 11.25 13.60

sp10 3.00 0.76 11.19 13.11
mean 2.07 0.35 10.93 12.82

5. CONCLUSIONS

In this paper a multichannel noise reduction system with addi-
tional post-filtering has been presented. The proposed post-filter
estimation scheme is an extension of the existing Zelinski’s and
McCowan’s post-filters. While in these two methods an over-
estimation of the spectral density in the output of the beamformer
has been used, which constitutes these methods sub-optimal in
terms of MMSE, the proposed post-filter takes into account the
noise reduction performed by the beamformer and produces a ro-
bust spectral estimation that satisfies the MMSE optimality of the
Wiener filter. In experiments with real noise multichannel record-
ings from a noisy computer lab, the proposed technique has shown
to obtain a significant gain over the other studied methods in terms
of signal-to-noise ratio, log area ratio distance and speech degrada-
tion measure. In particular the proposed post-filter presents a rela-
tive SNR enhancement of 17.3% and a relative decrease on signal
degradation of 21.7% compared to the best of all the other studied
methods.
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