
Extending Laplace and z Transform Domains 
Michael J. Corinthios 

Professor, Ecole Polytechnique de Montréal 
Université de Montréal 

2500 Chemin de Polytechnique, 
Montréal, Qc, H3T 1J4 

Canada 
michael.corinthios@polymtl.ca

 
 

ABSTRACT 
A generalisation of the Dirac-delta function and 
its family of derivatives recently proposed as a 
means of introducing impulses on the complex 
plane in Laplace and z transform domains is 
shown to extend the applications of Bilateral 
Laplace and z transforms. Transforms of two-
sided signals and sequences are made possible by 
extending the domain of distributions to cover 
generalized functions of complex variables. The 
domains of Bilateral Laplace and z transforms 
are shown to extend to two-sided exponentials 
and fast-rising functions, which, without such 
generalized impulses have no transform. 
Applications include generalized forms of the 
sampling theorem, a new type of spatial 
convolution on the s and z planes and solutions 
of differential and difference equations with two-
sided infinite duration forcing functions and 
sequences. 

 
1. INTRODUCTION 
 
Generalized functions have expanded 
considerably the domain of existence of the 
Fourier transform [1]-[5]. Weighted spectra 
leading to impulses on the complex Laplace and 
z transform planes have been proposed for the 
exponential decomposition of finite duration 
signals [6], [7].  The decomposition of infinite 
duration complex exponential continuous-time 
and discrete-time signals leads in general to 
diverging integrals and summation. Generalizing 
the Dirac-delta impulse has for objective to 
define transforms for a class of functions which 
leads to integrals that are not absolutely 
convergent. In this paper, the distribution 
theoretic basis of the generalization is presented, 
followed by properties of the new distributions 
and the resulting Bilateral transforms. 
Applications of the bilateral transforms to the 

solution of differential and difference equations 
are illustrated through examples. 
 
2. COMPLEX-DOMAIN DISTRIBUTIONS 
 

A generalised distribution , associated with 
Laplace transform complex domain, as a 
generalised function of a complex variable 

( )G s

s jσ ω= + , may be defined as an integral along 
a straight line contour in the s plane extending 
from a point s jσ= − ∞  to s jσ= + ∞  of the 
product of  with a test function ( )G s ( )sΦ . For 
convenience we refer to this integral by the 
symbol [ ( )]

G
I sΦ , or simply , and use the 

notation 
[ ]GI Φ

( )[ ] ( ) ( )

( ) ( )
[ ],

            .

G s

j

j

I s G s s

G s s d s

σ

σ

σ

ℜ =

+ ∞

− ∞

Φ = < Φ >

= Φ∫
                   

The test function ( )sΦ  has derivatives of any 
order along straight lines in the s plane going 
through the origin, and tends to zero more 
rapidly than any power of s . For example, if 
the generalised distribution is the generalised 
impulse ( )sξ  [8], [9]  we may write  

( )[ ] ( ) ( )

( ) ( )

[ ],

(0), 0
0, 0.

G s

j

j

I s s s

s s d s
j

σ

σ

σ

ξ

ξ
σ
σ

ℜ =

+ ∞

− ∞

Φ = < Φ >

= Φ =
Φ =⎧

⎨ ≠⎩
∫

 

Basic Properties 
In the following a selection of basic properties of 
generalized distributions in the context of the 

 1

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

mailto:michael.corinthios@polymtl.ca


continuous-time domain and Laplace transform 
is included due to their importance in evaluating 
transforms.  

Shift in s Plane 
 
Letting 0 0s 0jσ ω= +  we may erite 

0 [ ] 0( ), ( ) ( ) ( )
j

s j
G s s s G s s s ds

σ

σ σ

+ ∞

ℜ = − ∞
< − Φ > = − Φ∫ .

                        
Letting 0 ,s s y ds dy− = =  we obtain 

0

0 [ ]

0 [ ]

( ), ( )

  ( ), ( ) .
s

y

G s s s

G y y s
σ

σ σ

ℜ =

ℜ = −

< − Φ >

=< Φ + >
 

Scaling 
Let 0γ ≠  be a real constant.  We can write 

( ) ( ) ( ) ( )[ ], .
j

s
j

G s s G s s ds
σ

σ
σ

γ γ
+ ∞

ℜ =
− ∞

< Φ > = Φ∫  

Letting  ,s y ds dyγ γ= =  we obtain  

( ) ( )

( ) ( )

[ ]

[ ]

,

1     , / .

s

y

G s s

G y y

σ

γσ

γ

γ
γ

ℜ =

ℜ =

< Φ >

= < Φ >
 

Product with an Ordinary Function 
Consider the product ( ) ( )G s F s . We can write 

( ) ( ) ( )
( ) ( ) ( )

[ ]

[ ]

,

     ,
s

s

G s F s s

G s F s s
σ

σ

ℜ =

ℜ =

< Φ >

=< Φ >
 

if  ( ) ( )F s sΦ ∈C ,  the class of test functions. 
Convolution 
Denoting by  the convolution of 
two generalised distributions, with 

( )1 2( )G s G s∗
y j= Σ+ Ω ,  

we may write 
( ) ( )

( ) ( ) ( )

1 2 [ ]

1 2 [ ]

( ) ,

     ,

s

j
s

j

I G s G s s

G y G s y dy s

σ

σ

ℜ =

Σ+ ∞

ℜ =
Σ− ∞

= < ∗ Φ >

=< − Φ >∫
 

( ) ( ) ( )1 2,
j

y
j

I G y G s y s ds
σ

σ

+ ∞

[ ]ℜ =Σ
− ∞

=< − Φ >∫                           

the integral on the right, being in the form of a 
convolution with a test function, belongs to the 
class of test functions.  
Differentiation 

( ) ( ) ( ) ( )[ ], .
j

s
j

G s s G s s ds
σ

σ
σ

+ ∞

ℜ =
− ∞

′ ′< Φ > = Φ∫                            

Integrating by parts we obtain 
         

( ) ( ) ( ) ( )[ ] [ ], ,s sG s s G s sσ σℜ = ℜ =′ ′< Φ > = − < Φ >                     
and, by repeated differentiation, 

( ) ( ) ( )
( ) ( ) ( ) ( )

[ ]

[ ]

,

  1 ,

n
s

n n
s

G s s

G s s

σ

.σ

ℜ =

ℜ =

< Φ >

= − < Φ >
              

Multiplication of the Derivative Times an 
Ordinary Function 
Consider the product ( ) ( )G s F s′ . We can write 

( ) ( )

( ) ( )

[ ]( ),

   ( ) .

s

j

j

G s F s s

G s F s s ds

σ

σ

σ

ℜ =

+ ∞

− ∞

′< Φ >

′= Φ∫
 

Integrating by parts we obtain 
( ) ( )

( ) ( )
( ) ( )

[ ]

[ ]

[ ]

( ),

     , ( )

                  , ( ) .

s

s

s

G s F s s

G s F s s

G s F s s

σ

σ

σ

ℜ =
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′= − < Φ >
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3.  DISCRETE TIME DOMAIN 
 
A distribution  may be defined as the value 

of the integral, denoted 

( )G z

( )GI z⎡Φ⎣ ⎤⎦ , of its 

product with a test function ( )zΦ . 
Symbolically, we write 

 
( ) ( ) ( )

( ) ( )

,

               

G z r

z r

I z G z z

G z z dz

=

=

⎡ ⎤Φ = < Φ >⎣ ⎦

= Φ∫  

where the contour of integration is a circle of 
radius r  centred at the origin in the z  plane. 
Similar properties to those of the continuous time 
domain are encountered in the discrete-time 
domain.   
 
  

 
4.  THE GENERALISED DIRAC_DELTA 
IMPULSE IN THE s DOMAIN 
 

The generalised Dirac-delta impulse denoted 
( )sξ  [8], [9] may be defined by the relation 

( ) ( )

( ) ( )

[ ],

(0), 0

0, 0.

s

j

j

s s

s s d s j

σξ

ξ σ

σ

ℜ =

∞

− ∞

>

⎧

< Φ

Φ = Φ =⎪= ⎨
⎪ ≠⎩

∫  

If ( )F s  is analytic at 0s =  then 
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( ) ( )

( ) ( )

[ ],

(0), 0

0, 0.

s

j

j

s F s

s F s d s jF

σξ

ξ σ

σ
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∞

− ∞

< >

⎧ = =⎪= ⎨
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∫  

Some important properties are summarized in the 
following. 

                                   
Differentiation 
Letting 0 0s 0jσ ω= +  we may erite 

0 [ ] 0( ), ( ) ( ) ( )
j

s j
G s s s G s s s ds

σ

σ σ

+ ∞

ℜ = − ∞
< − Φ > = − Φ∫              

( ) ( )

( ) ( ) ( )

( )
0 [ ]

0 0

0

,

1 ,  
0, .

n
s

n n

s s s

j s

σξ

σ σ
σ σ

ℜ =< − Φ >

⎧⎪ − Φ == ⎨
≠⎪⎩

                    

Convolution 
[ ]( ) ( ) ( )s a s b j s a bξ ξ ξ− ∗ − = − + .

.

 
Convolution with an Ordinary Function 

0 0( ) ( ) ( )s s F s jF s sξ − ∗ = −  
Multiplication of an Impulse Times an Ordinary 
Function 

( ) ( ) ( ) ( ).s a F s F a s aξ ξ− = −  
Multiplication by the nth derivative of the Impulse  
Applying the property of the derivative times an 
ordinary function we obtain 

( ) ( ) (0) ( ) (0) ( ).s F s F s F sξ ξ ξ′ ′ ′= −  
More generally we obtain 

( ) ( ) ( )

0

( ) ( ) ( 1) (0) ( ).
n

n k k n

k

n kF s s F s
k

ξ ξ −

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑             

                   
5.  APPLICATION TO DISCRETE-TIME 
GENERALISED IMPULSES  
 
The discrete-time domain generalised impulse 
will be denoted by the symbol ( )zψ  and is 
equivalent to the symbol  used earlier 
[8] , that is,  

( 1zζ − )

( )( ) 1z zψ ζ= −  

(1), 1
( ), ( )

0, 1.z r

j r
z z

r
ψ =

Φ =⎧
< Φ > = ⎨ ≠⎩

                                

If ( )X z  is analytic at  then  1z =
(1), 1

( ) ( )
0, 1.z r

jF r
z F z dz

r
ψ

=

=⎧
= ⎨ ≠⎩

∫                                    

Differentiation 
( ) ( ) ( )

( ) ( ) ( )

,

1 1 ,   
0, 1.

n
z r

n n

z z

j r
r

ψ =< Φ >

⎧ 1− Φ =⎪= ⎨
≠⎪⎩

 

 
6.  DIFFERENTIAL AND DIFFERENCE 
EQUATIONS WITH TWO-SIDED 
FORCING FUNCTIONS 
 
In what follows the steady state solution of 
differential and difference equations are 
evaluated with non-causal infinite duration two 
sided functions, i.e. extending from  to −∞ +∞ .   
 
Example 1 
To find the steady state solution of the 
differential equation 

3 3 2 8y y y y t .′′′ ′′ ′+ + + = +  
 
Applying the Laplace transform we have 
( ) ( ) ( ) ( )3 23 3 1 4 16s s s Y s s sπξ πξ′+ + + = − +  

i.e.

( ) ( ) ( )
( )

( )
( ) ( )

3 2

3 2

4 16
3 3 1

4
16

3 3 1

s s
Y s

s s s

s
      s .

s s s

πξ πξ

πξ
πξ

′− +
=

+ + +

′−
= +

+ + +

 

Let  

( ) ( ) ( )33 2

1 1
3 3 1 1

F s
s s s s

= =
+ + + +

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( )

4 16

4 0 0 16

4 4 3 16

Y s F s s s

  F s F s

   s s s .

π ξ πξ

π ξ ξ πξ

πξ π ξ πξ

s

′= − +

′ ′= − − +

′= − + − +

 

 
( ) 2 2y t t .+  =

Example 2  
To evaluate the steady state solution of the 
difference equation 

[ ] [ ] [ ]1y n by n x n− − =  
with 

[ ] nx n a= .  
Applying the z transform  
 

( ) ( ) (1 11 2Y z bz a zπψ− −− = )  

( )
( )

( )
1

1

2

1

a z
Y z

bz

πψ −

−
=

−
. 

Let  
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( ) ( )1

2
1

F z
bz
π

−
=

−
, 

( ) ( ) ( )
( ) ( ) ( ) ( )

1

1
1

2
1

Y z F z a z

1F a a z a z
ba

ψ

πψ ψ

−

−
−

=

= =
−

.−  

Hence 

[ ]
1nay n

a b

+

=
−

. 

Example 3 
To obtain the steady state solution of the same 
difference equation with  

[ ]x n n= . 
Applying the z transform to both sides of the 
equation we have 
 

( )( ) ( )11 2Y z bz z zπ ψ− ′− = −  

( ) ( )
( )1

2
1

z z
Y z

bz
π ψ

−

′−
=

−
. 

Writing  

( ) ( )1

2
1

zF z
bz
π

−

−
=

−
 

we have 
( ) ( ) ( )Y z F z zψ ′= . 

Now 
( ) ( ) ( ) ( ) ( ) ( )1 1F z z F z F zψ ψ′ ′ ′= − ψ , 

( )
( )

( )

1

21

2 1 2

1

bz
F z

bz

π −

−

− −
′ =

−
 

Hence 

( ) ( ) ( ) ( )
( )

( )2

2 1 22
1 1

b
Y z z z

b b

ππ ψ ψ
−− ′= +

− −
, 

[ ]
( )

( )
( )2 2

11 1 2
1 1 1

b n bn by n
b b b

− −− −
= + =

− − −
. 

7. GENERALIZED SAMPLING IMPULSE 
TRAIN 
Generalized sampling impulse trains which grow 
or decay exponentially or as a special case are 
the common uniform constant level train can be 
transformed by the extended Bilateral Laplace 
and z transforms. 
 Fig.1 shows the Laplace transform of an 
exponentially rising impulse train. The sampling 
theorem can be readily written as a convolution 
in the s plane 
Let 

( ) ( )T
n

t tρ δ
∞

=−∞

= −∑ nT  

be a sampling train chosen for simplicity as a the 
usual uniform train. A signal ( )f t , ideally 
sampled, is given by  
 
   ( ) ( ) ( )s Tf t f t tρ= .  
 The sampled signal spectrum may be directly 
written in the form 

( ) ( ) ( )1 2 2
2T

n
f t t F s s jn

T T
π πρ ξ

π

∞

=−∞

⎛ ⎞↔ ∗ −⎜ ⎟
⎝ ⎠

∑  

( ) ( ) 1 2
T

n
f t t F s jn

T T
πρ

∞

=−∞

⎛ ⎞↔ −⎜ ⎟
⎝ ⎠

∑  

which is possible since now the Laplace 
transform of the impulse train exists. Similarly, 
sampling by a growing or decaying impulse train 
may be effecting in the s plane.  
 

 
 
Fig.1 The Laplace transform of an exponentially 
rising impulse train. 
 
8. NEW EXTENDED TRANSFORMS 
 
Tables 1 and 2 in the Appendix list basic new 
Laplace and z transforms. As can be seen from 
these tables, thanks to the generalised new 
distributions, the domains of existence  of 
Laplace and z transform are extended to 
functions that had to date no transform. The 
Fourier transform, if it exists, can be directly 
obtained as a special case from the Laplace and z 
transform, even for functions that lead to 
impulses on the imaginary axis. 
 
9. CONCLUSION 
 
Bilateral transforms domains are extended by the 
generalization of distributions to complex 
variables. In particular the generalization of the 
Dirac delta impulse in both Laplace and z 
domains is shown to extend these existence of 
these transforms and their applications to a large 
class of two-sided signals.   
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Appendix 

Table 1 Extended Laplace Transform of Basic 

Functions 

 

( )cx t  Extended Laplace Transform 

1 2 ( )sπξ  

ate  2  ( )s aπ ξ −  

cosh( )at  { [ ] [ ]}s a s aπ ξ ξ− + +  

cosh( )j tβ  { [ ] [ ]}π δ ω β ξ ω β− + +  

( )u t  1/ ( )s sπξ+  

( )ate u t  1/( ) ( )s a s aπξ− + −  

cos( )te tα β  
{ [ ( )] [ ( )]}s j s jπ ξ α β ξ α β− + + − −

 

cos ( )te t uα β t
 

2 2 { [ ( )]
( )
                         [ ( )]}

α π ξ α β
α β

ξ α β

−
+ − +

− +
+ − −

s s j
s

s j

 

t  2 ( ) /d s dsπ ξ−  

nt  n ( )( 1) 2 ( )n sπξ−  

( )nt u t  1 (!/ ( 1) ( )n n nn s sπξ+ + − )  

 
 
 
 
 

Table 2 Extended z Transforms of Basic 
Sequences 

 
[ ]x n  Extended z Transform ( )X z  

1 2 (z)πψ  

na  2 ( / )z aπψ  

[ ]u n  
1

1 ( )
1

z
z

πψ
−
+

−
 

[ ]na u n  1
1 ( / )

1
z a

az
πψ

−
+

−
 

[ ]rn u n  

 

1
1

1
1 ( 1)

1

( 1) !( 1) ( , )
( 1)

     ( 1) ( 1, ) ( )

r i
r i

i
i

r
i i

i

iS r i z
z

S r i zπ ψ

+
=

+
+ −

=

−
−

−

+ − +

∑

∑
 

rn  
1

1 (

1

2 ( 1) ( 1, ) (
r

i i

i

S r i zπ ψ
+

+ −

=

− +∑ 1) )  
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