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ABSTRACT
Digital implementation of ultra-wideband receivers requires analog-
to-digital conversion (ADC) at an extremely high speed, thereby
limiting the available bit resolution. Herein, a new family of re-
ceiver structures optimized and tailored to quantized observations
is presented. The generalized-likelihood ratio test (GLRT) based on
the quantized samples is derived and shown to provide performance
improvements in comparison to the infinite resolution GLRT rule
employed on the quantized received signal. Furthermore, simula-
tion results reveal that four bits of resolution are sufficient to closely
approach the performance of a infinite resolution receiver.

1. INTRODUCTION

Ultra-wideband (UWB) systems transmit signals whose bandwidths
exceed 20% of their center frequency or have a -10 dB bandwidth
of more than 500 MHz. The large bandwidth of UWB signaling
offers the potential for higher capacity, very fine timing resolution,
improved penetration properties, low probability of intercept, and
increased diversity due to significant multipath [1]. To achieve ad-
equate energy capture and account for pulse distortion [2], UWB
transmitted reference (TR) receivers have been reconsidered as a
promising low complexity alternative to conventional RAKE re-
ceivers [3]. In conjunction with correlation receivers, TR systems
and their generalizations offer high energy capture without explicit
channel estimation, i.e. no attempt is made to resolve individual
multipath components (see [4] and references therein). Implicit
channel estimation significantly reduces complexity at the expense
of employing a noisy template estimate which causes performance
degradation.

Analog implementations for UWB systems have been previ-
ously proposed, e.g. [3]. While simplifying some of the implemen-
tation issues, such as reducing the required sampling rate consid-
erably, our interest in digital logic is motivated by improvements
in robustness, flexibility, scalability, the ability to employ sophis-
ticated digital signal processing algorithms, and simplification of
analog elements in the transceiver yielding low power operation
over purely analog logic [5, 6]. A key challenge for the implemen-
tation of digital UWB systems is the required sampling rate. Real-
ization of sampling rates on the order of GHz and the desire to keep
the power consumption low, limits the available bit resolution of the
ADC to very few bits [7].

Mono-bit digital receivers which obviate the need for an auto-
matic gain control and thereby simplify the implementation of an
all digital UWB receiver considerably have been shown to lead to
a significant performance degradation in comparison to infinite res-
olution receivers [8]. To reduce the performance loss, sigma-delta
modulation, which requires oversampling, can be applied. In [9],
the required ADC bit resolution for an UWB matched filter receiver
is investigated. It is found that four bits give a close approxima-
tion to the optimal performance. However, the analysis in [9] re-
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lies heavily on the assumption that the quantization noise can be
modelled by a uniform random variable with variance ∆2/12 and
a Gaussian assumption for the overall noise term (quantization and
AWGN noise). Both assumptions do not appear to be justified for
UWB systems employing a low bit resolution ADC (< 4 bits). Ex-
act performance analysis for an UWB direct-sequence spread spec-
trum (DS-SS) system employing a matched filter receiver propagat-
ing over the AWGN channel is considered in [10]. It is found that
with the appropriate dynamic range of the quantizer, three bits of
resolution are sufficient to closely approximate the infinite resolu-
tion case. It is not a-priori clear whether the results in [10] also
hold in the presence of a multipath channel with a high degree of
diversity.

Our approach is to design receivers based on quantized obser-
vations to determine more completely the best tradeoff between per-
formance and complexity. TR receivers employing an idealized infi-
nite resolution ADC [4] are compared to their practical counterparts
that take into account a low-bit resolution ADC. To this end, the
generalized likelihood ratio test (GLRT) based on the quantized re-
ceived signal is derived and shown to be superior to the GLRT-U
rule that is based on unquantized samples, but operates on quan-
tized samples. Because of the high complexity of the GLRT rule,
several sub-optimal detection/estimation schemes are investigated.
As in [9], it is found that a four bit ADC yields close to optimal
performance if the dynamic range is adjusted properly. Note that
optimum quantization for signal detection has been considered pre-
viously, e.g. [11–13]. The authors derive quantizers for very spe-
cific scenarios and a given detection rule, requiring knowledge of
the statistics of the received signal. In contrast, our focus herein is
the design of new detection algorithms given a uniform quantizer.

This paper is organized as follows. In Section 2, we provide the
system model. Receivers employing a low resolution ADC along
with several more sub-optimal receivers are considered in Section 3.
Section 4 presents simulation results and concluding remarks are
drawn in Section 5.

2. SYSTEM MODEL AND RECEIVER STRUCTURES

We consider a time-hopped UWB system with antipodal modu-
lation that uses multiple pulses per bit to convey information to
achieve adequate bit energy. The transmitted signal is given by [1]

s(t) =
√

E ∑
i

ai

N f−1

∑
j=0

g′(t− iN f Tf − jTf − c jTc), (1)

where E is the energy of the transmitted pulse, {ai} are the infor-
mation symbols taking values ±1 with equal probability, g′(t) is
the transmitted monocycle, N f is the number of frames per sym-
bol, Tf is the frame period, Tc is the chip period, and c j , for
j = 0, . . . ,N f − 1, is the time-hopping sequence whose elements
are integer values in the range 0 ≤ c j ≤ Nh. In our experiments,
we employed random time-hopping (TH) sequences drawn from a
uniform distribution. We assume that there is no inter-frame inter-
ference. The multipath channel is modeled as a tapped-delay line
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with arbitrary path delays τl and path gains γl assumed to be time-
invariant for the duration of one observation block. Therefore, the
received waveform can be expressed as

r′(t) =
√

E ∑
i

ai

N f−1

∑
j=0

Np−1

∑
l=0

γlg
′
l(t− iN f Tf − jTf − c jTc− τl)

+n′(t), (2)

where Np is the number of multipath components and n′(t) is
AWGN with two-sided PSD σ2 = N0/2. The received waveform is
passed through a receive filter gR(t) whose output can be rewritten
in a more convenient form by denoting h(t) = ∑Np−1

l=0 γlgl(t − τl),
where gl(t) = g′l(t) ∗ gR(t) is the convolution of the distorted re-
ceived monopulse and the receive filter:

r(t) =
√

E ∑
i

ai

N f−1

∑
j=0

h(t− iN f Tf − jTf − c jTc)+n(t). (3)

The observation interval comprises Ns symbols out of which the
first Nt symbols are known (training symbols) and the remaining
Nd = Ns−Nt symbols are unknown (data symbols).

After lowpass filtering, the received signal r(t) is sampled with
sampling period Ts. Let h = [h[0],h[1], . . . ,h[L− 1]]T denote the
sampled version of the channel response (CR). After removing the
time-hopping code (despreading), the length-LN f Ns received vector
r can be obtained as a concatenation of N f Ns sub-vectors ri, j for
i = 0,1, . . . ,Ns−1, j = 0,1, . . . ,N f −1 of length L given by

ri, j =
√

E aih+ni, j, (4)

such that ri = [rT
i,0, . . . ,r

T
i,N f−1]

T and r = [rT
0 , . . . ,rT

Ns−1]
T . The

noise samples are assumed to be independent and hence the covari-
ance matrix of the noise vector in the ith symbol and the jth frame
ni, j is given by K = σ2IL, where IL is the L×L identity matrix.

3. LOW-BIT RESOLUTION RECEIVERS

We assume that a b bit uniform scalar quantizer Q(·) with symmet-
ric quantization levels q±l = ±∆(l− 1/2), l = 1,2, . . . ,2b−1, cen-
tered around zero, i.e. q−l =−ql , is employed. The threshold levels
T±l , l = 0,1,2, . . . ,2b−1, are given by

Tl =
{

0, l = 0
(ql +ql+1)/2, l = 1,2, . . . ,2b−1−1 (5)

and the dynamic range of the ADC is defined as twice the maximum
quantized value plus ∆, i.e. D = 2q(2b−1) +∆ = ∆2b. If the unquan-
tized received samples ri, j[n] fall out of this range, they are clipped.
Since the received vector ri, conditioned on the ith data symbol and
the channel, is Gaussian, the probability mass function (pmf) of the
quantizer output yi, j[n] is given by [14]

P(yi, j[n] = ql |ai,h[n])=





1−Q(zl+1), l =−2b−1

Q(zl)−Q(zl+1), l =−2b−1 +1, . . . ,−1
Q(zl−1)−Q(zl), l = 1, . . .2b−1−1
Q(zl), l = 2b−1

,

where Q(x) =
∫ ∞

x 1/
√

2π exp(−y2/2)dy is the complemen-
tary cumulative Gaussian distribution function and zl = (Tl −
ai
√

E h[n])/σ . The GLRT rule based on quantized observations for
detection of the data symbol a j is given by

Λ(y j) =
∏N f−1

l=0 ∏L−1
n=0 P(y j,l [n]|a j = +1, ĥ+,ML[n])

∏N f−1
l=0 ∏L−1

n=0 P(y j,l [n]|a j =−1, ĥ−,ML[n])

a j=+1
>

<
a j=−1

1, (6)

where P(y j,l [n]|a j = +1, ĥ+,ML[n]) is the likelihood function of the
quantized received samples y j,l [n] conditioned on the ML estimate
of the template signal ĥ±,ML[n] = ĥ(a j=±1,ML)[n] and the data sym-
bol a j = ±1. We emphasize that the decision rule in (6) is based
on the quantized samples. In general, due to the presence of the
product of Q-functions, it appears that a closed form solution for
the maximum likelihood (ML) channel estimate conditioned on the
data symbol a j = ±1 cannot be obtained. Therefore, we numeri-
cally solve

ĥ(a j=±1,ML)[n] = (7)

arg max
h[n]∈D

{
Nt−1

∏
i=0

N f−1

∏
l=0

P(yi,l [n]|ai,h[n])P(y j,l [n]|a j =±1,h[n]) ·

Ns−1

∏
i=1,i6= j

N f−1

∏
l=0

1
2

(
P(yi,l [n]|ai = +1,h[n])+P(yi,l [n]|ai =−1,h[n])

)
}

.

for both a j = +1 and a j =−1 with the range of optimization, con-
strained to D = [−q(2b−1),q(2b−1)]. Note that despite the constraint
on the range of optimization, we refer to the estimator in (7) as
the ML estimator. With this choice for the optimization range, the
maximum absolute value for each estimated channel tap is identical
to the largest quantization level. The ML channel estimate for all
possible combinations of the received signal can be pre-calculated.

In order to reduce the complexity, we introduce two suboptimal
decision rules: GLRT-U and GLRT-QS, where -U and -QS refer to
unquantized and quantized, simplified, respectively. The GLRT-U
scheme corresponds to the decision rule that is based on unquan-
tized samples [4] and simply replaces the unquantized samples by
the quantized samples, i.e. â j = sgn(ȳT

j ĥ j) for j = Nt , ...,Ns− 1.
Here, the frame averaged despread received signal is defined as
ȳi = 1/N f ∑N f−1

j=0 yi, j and the template signal for the jth data sym-
bol is given by

ĥ j =
1√

E (Ns−1)

(
Nt−1

∑
i=0

aiȳi +
Ns−1

∑
i=Nt ,i 6= j

âiȳi

)
. (8)

The GLRT-QS receiver uses the decision rule in (6) but replaces
the conditioned ML channel estimate by the intuitive closed form
ad-hoc estimator

ĥ(a j=±1,AH) =
1√
E Ns

(
Nt−1

∑
i=0

aiȳi +
Ns−1

∑
i=Nt ,i 6= j

âiȳi± ȳ j

)
. (9)

We emphasize that this is the conditional ML estimate only if un-
quantized samples ri, j[n] are available (no numerical optimization
is required). In the sequel, we argue that this ad-hoc estimator is
equivalent to the ML channel estimate for several cases.

Due to the investigation of quantized signals, the development
of optimized receiver structures for arbitrary values of Nd , Nt , and
N f does not yield intuitive simple forms. To gain intuition, we focus
on several special cases.

Special Case: Nd = Nt = N f = 1
Consider the case of a classical TR system with Nt = Nd = N f =
1, i.e. one training symbol, one data modulated symbol, and one
frame per symbol. As can be seen from (8), the decision rule for the
GLRT-U receiver simplifies to â1 = sgn

(
a0y

T
0 y1

)
. For the ad-hoc

and the conditioned ML channel estimates, we obtain ĥ±,AH[n] ≈
1/(2

√
E )(a0y0[n]± y1[n]) and

ĥ±,ML[n] = arg max
h[n]∈D

{P(y0[n]|a0,h[n])·

P(y1[n]|a1 =±1,h[n])} . (10)
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Figure 1: Likelihood function of the training and the data part of the
received signal for Nt = 1, Nd = 3, N f = 1, b = 2, and L = 400.

As will be seen in Section 4, for the case Nt = Nd = N f = 1 no
noticeable performance loss of the computationally less complex
GLRT-QS scheme with respect to the GLRT-Q receiver can be ob-
served. This suggests that the channel estimate of the GLRT-Q and
the GLRT-QS schemes are similar. In fact, we can identify three dif-
ferent scenarios for which the ML and ad-hoc channel estimates are
identical. First, denoting all combinations of y0[n] and y1[n] whose
likelihood function involves the quantization bins corresponding to
the maximum or minimum quantization value with infinite support,
i.e. y0[n] = ±q(2b−1) or y1[n] = ±q(2b−1) as asymmetric combina-
tions, we can prove [15] that for all symmetric combinations (i.e.
all combinations which are not asymmetric) we have ĥ±,ML[n] =
ĥ±,AH[n], i.e. the ad-hoc estimator is the ML estimator. Sec-
ond, asymmetric combinations for which y0[n] =−y1[n] = ql , ql =
−2b−1, . . . ,2b−1, we have ĥ±,ML[n] = ĥ±,AH[n] = 0. Third, asym-
metric combinations for which y0[n] = y1[n] =±q2b−1 and the range
of numerical optimization is constrained to D = [−q2b−1 ,q2b−1 ] we
have ĥ±,ML[n] = ĥ±,AH[n] =±q2b−1 . Note that the term symmetric
relates to the fact that the likelihood function for symmetric com-
binations is the product of the difference of Q-functions whose ar-
gument is finite. For low SNR, the ML channel estimate for the
remaining asymmetric combinations differs from the ad-hoc esti-
mator and it appears that no closed form solution for the ML chan-
nel estimate exists. Moreover, the channel estimates corresponding
to asymmetric combinations (except the zero level) are highly de-
pendent on the range of optimization. However, in the limit of high
SNR, we have observed that the ad-hoc channel estimates of the
remaining asymmetric combinations converge to the ML estimates.
In other words, the ad-hoc estimator is a high SNR approximation
to the ML estimator in (10).

Special Case: Nd = Nt = 1, N f ≥ 1
If the number of frames per symbol N f is greater than one, the ML
channel estimate is given by

ĥ±,ML[n] = arg max
h[n]∈D

{
N f−1

∏
j=0

P(y0, j[n]|a0,h[n]) ·

P(y1, j[n]|a1 =±1,h[n])
}

. (11)

For a large number of frames per symbol, i.e. N f À 1 the number of
possible combinations (and therefore also the complexity) increases
exponentially with N f . Therefore, we consider suboptimal schemes
that are expected to provide better performance than the GLRT-QS
receiver but are less complex than the GLRT-Q scheme. Instead
of considering the entire received signal at once, we can proceed
frame by frame, i.e. we compute N f channel estimates where the

Receiver Channel Estimator Detector
GLRT-U Training Correlation
GLRT-QS Ad-hoc GLRT
GLRT-QF ML-FF GLRT
GLRT-QFW Weighted ML-FF GLRT
GLRT-Q ML GLRT
GLRT-QM ML Modified GLRT

Table 1: Receiver structures.

jth estimate is given by

ĥ j
±,QF[n] = arg max

h[n]∈D

{
P(y0, j[n]|a0,h[n]) ·P(y1, j[n]|a1 =±1,h[n])

}

(12)
and average them to obtain the final estimate ĥ±,QF[n] =

1/N f ∑N f−1
j=0 ĥ j

±,QF[n]. Note that the jth channel estimate restricted
to a pair of frames of the training and data symbol is ML optimal.
We denote this sub-optimal scheme by GLRT-QF where QF refers
to the optimal channel estimate on a frame basis. As will be seen
in Section 4, the GLRT-QF receiver exhibits a small performance
degradation in comparison to the GLRT-QS scheme due to the as-
sumption that the prior density for the channel estimate within all
quantization bins is flat. In other words, we consider each value
for the channel estimate within a quantization bin as equally likely.
While this assumption might be justified for symmetric quantiza-
tion bins, i.e. quantization bins that do not have ±∞ as a threshold
value, in the case of a asymmetric combination, where at least one
quantization bin has an infinite support, this assumption does not re-
flect the behavior of a real system that employs an automatic-gain-
control stage to adjust the quantizer to the received signal strength.
For example, for the simple case y0 =−q2b−1 , y1 =−q2b−1 , a0 = 1,
a1 = 1, and N f = 1, the resulting likelihood function is a monoton-
ically decreasing function suggesting that the ML channel estimate
is h[n] = −∞ (if the range of the numerical optimization is uncon-
strained). Certainly, this solution is not practical. If prior knowl-
edge on the statistical description of the channel is available, we
can weight the likelihood function accordingly. In the context of
UWB communications, this is a challenging task, given the statisti-
cal description of the channel provided in [16]. However, it is clear
that values much larger than the dynamic range of the quantizer are
unlikely. Therefore, we introduce a Gaussian weighting function
Γ(h[n]) = 1/(

√
2πσ2

w)exp
(−1/(2σ2

w)h[n]2
)

which acts as a prior
density, but does not require knowledge of the channel statistics.
The variance σ2

w is chosen heuristically based on the dynamic range
of the quantizer. This receiver is denoted as GLRT-QFW and its jth
channel estimate is given by

ĥ j
±,QFW[n] = arg max

h[n]∈D

{
P(y0, j[n]|a0,h[n]) ·

P(y1, j[n]|a1 =±1,h[n])Γ(h[n])
}

, (13)

leading to the final estimate ĥ±,QFW[n] = 1/N f ∑N f−1
j=0 ĥ j

±,QFW[n].

Special Case: Nt = 1, Nd ≥ 1, N f = 1
In this case the ML channel estimate conditioned on the correspond-
ing data symbol is given by

ĥ(a j=±1,ML)[n] =

arg max
h[n]∈D

{
P(y0[n]|a0,h[n])P(y j[n]|a j =±1,h[n]) ·

Ns−1

∏
i=1,i 6= j

1
2
(P(yi[n]|ai = +1,h[n])+P(yi[n]|ai =−1,h[n]))

}
. (14)

We emphasize that all of the unknown data symbols, except the
one to be detected, appear as nuisance parameters over which we
average the likelihood function as in [4].
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Figure 2: BER performance of the GLRT-U, GLRT-QS, and GLRT-
Q decision rules for b = 1,2,3,4, Nt = 1, Nd = 1, and L = 400.

In our experiments, we have observed that increasing the
number of data symbols Nd > 2 leads to ambiguity prob-
lems. Figure 1 exhibits the likelihood function to be max-
imized in (14) as well as the training part comprising
the training symbols and the data symbol to be detected
P(y0[n]|a0,h[n])P(y j[n]|a j = ±1,h[n]) and the data part com-
prising the remaining unknown data symbols (nuisance parame-
ters) ∏Ns−1

i=1,i 6= j
1
2 (P(yi[n]|ai = +1,h[n])+P(yi[n]|ai =−1,h[n])) for

Nd = 3, Nt = N f = 1. The index of the symbol to be detected is i = 1
and the received samples are set to y0 = q−1, y1 = q1, y2 = q−2,
and y3 = q1. Here, the nuisance parameters are a2 and a3. It can
be observed that both the training and data part of the likelihood
function are symmetric about the origin and that the training part
shows a maximum at zero. However, at zero, the data part reaches
its minimum, and moreover, it has two local maxima. Intuitively,
this means that the training part suggests zero for the channel esti-
mate, while the overall likelihood function exhibits two local max-
ima. The receiver may choose either maximum to determine the
overall channel estimate leading to an ambiguity since with prob-
ability 1/2 that we select the incorrect maxima. As will be seen
in Section 4, this ambiguity results in a performance degradation.
To remove this ambiguity, we can modify the GLRT-Q scheme in
the following manner. Whenever the maximization of the training
part suggests zero as the ML channel estimate we replace this esti-
mate by the ad-hoc estimate ĥ±,AH[n]. This scheme is refereed to
as GLRT-QM. We note that this ambiguity problem of the GLRT-Q
receivers also occurs for a bit resolution of b = 3, and an increased
number of data symbols Nd = 4,5. However, for the case Nd = 3,
increasing the transmit power for the training symbol by a factor
of 2 or assuming only one unknown data symbol and two training
symbols removes the ambiguity and the GLRT-Q outperforms the
GLRT-QS receiver as expected. Table 1 summarizes the investi-
gated receiver structures.

Next, we discuss the asymptotic complexity of the GLRT-U,-
QS, and -Q receivers which theoretically can be applied to the
general setting N f > 1, Nt > 1, and Nd > 1. The detection rule
employed by the GLRT-U scheme in (8) requires O(L) multiply-
and-add (MPA) operations and O(N f L) add-and-store operations to
despread the quantized received signal y j . In contrast, the detec-
tion rule of the quantized receiver structures in (6) requires O(N f L)
MPA operations and about O(N f L) table look-ups. Therefore, it
appears that the complexity of the detection rule for the GLRT-QS
and -Q receivers in (6) is similar to the one for the GLRT-U re-
ceiver in (8). Since the number of possible combinations of the
received quantized signal is limited, the channel estimates for the
GLRT-Q scheme in (11) can be pre-computed for each such combi-
nation. For example, for a b bit quantizer and Nt = Nd = N f = 1 we
pre-compute 22b estimates. However, the number of combinations
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Figure 3: BER performance of the GLRT-QS, GLRT-QF, and
GLRT-U for Nt = 1, Nd = 1, N f = 20, b = 2, and L = 400.

grows exponentially with b, N f , and Ns, i.e. O(ebN f Ns), rendering
the GLRT-Q receiver impractical. In contrast, the complexity of the
conditioned channel estimates required for the GLRT-QS receiver
can be easily calculated online based on the quantized received sam-
ples similar to the GLRT-U receiver.

4. SIMULATION RESULTS

For the simulation results presented in the sequel, we have used
a monopulse gl(t) that is shaped as the second derivative of a
Gaussian function and has a width of 1 ns. The frame period Tf is
set equal to 110 ns, the chip period Tc is 2 ns, and the elements of the
time-hopping code are randomly chosen in the interval 0≤ c j ≤ 24.
The channel is modeled as indicated in the report [16] of the IEEE
802.15.3a task group (CM1) with a delay spread being restricted to
50 ns, as the energy of the multipath components arriving after more
than 50 ns is negligible. The channel response is normalized by the
maximal value, i.e. maxn{|h[n]|} = 1. The receive filter has a rec-
tangular transfer function over ±4GHz and the sampling rate is set
to 8 GHz which corresponds to L = 400 samples per CR. The SNR
is defined as the ratio Eb/N0, where Eb is the energy per symbol at
the filter output (before sampling).

Figure 2 shows the BER performance of the GLRT-Q decision
rule in (6) in comparison with the two suboptimal decision rules:
GLRT-QS and GLRT-U for Nt = Nd = N f = 1 and different bit res-
olutions. The performance of the GLRT-U scheme employing a in-
finite resolution ADC (GLRT-U (b = ∞)) is provided for reference.
It can be observed that the decision rules based directly on the quan-
tized samples yi, j[n], i.e. GLRT-Q and GLRT-QS, provide modest
performance gains over the heuristic GLRT-U rule that assumes a
infinite resolution ADC. At BER = 10−3, the improvement of the
GLRT-Q and the GLRT-QS schemes are 0.3, 0.5, 0.2, 0.1 dB for
b = 1,2,3,4, respectively. As expected, no noticeable performance
loss of the computationally less complex GLRT-QS scheme (no nu-
merical optimization) with respect to the GLRT-Q receiver can be
observed.

The BER performance of the GLRT-U, QS, -QF, and -QFW for
Nt = 1, Nd = 1, N f = 20, b = 2, and L = 400 is exhibited in Figure 3.
It can be observed that the GLRT-U and GLRT-QS receivers show
similar performance while the GLRT-QF receiver exhibits a small
but noticeable degradation of about 0.25 dB. Intuitively, since the
GLRT-QF scheme employs the frame by frame ML channel esti-
mate as in (12) it should outperform the GLRT-QS and the GLRT-U
receiver. However, as explained in Section 4, by maximizing the
product of likelihood functions according to (12) for a given re-
ceived, quantized signal with respect to the channel, we implicitly
assume that the prior density for the channel estimate in a partic-
ular quantization bin is flat, an assumption that is not justified for
the lowest and largest quantization bin. The GLRT-QFW receiver
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Figure 4: BER performance of the GLRT-Q, GLRT-QS, and GLRT-
U for Nt = 1, Nd = 2, N f = 1, b = 2, and L = 400.

that employs a weighting function with a heuristically chosen vari-
ance of σ2

w = 1/16 exhibits no performance loss with respect to the
GLRT-QS receiver. In our experiments we have observed that the
GLRT-QFW scheme is fairly robust against the choice of the vari-
ance. Note that the weighting of the likelihood function can in prin-
cipal also be applied to the GLRT-Q scheme. However, we expect
the performance improvements to be modest.

Figures 4 shows the BER of the GLRT-Q, -QM, -QS, and -U re-
ceiver for b = 2, Nd = 2,3, and L = 400. We observe that for Nd = 2
the GLRT-Q scheme exhibits a performance gain of about 0.3 dB
in comparison to the GLRT-QS receiver which employs a simpli-
fied channel estimate. While for Nd = 3, in Figure 5 the ambiguity
of the GLRT-Q scheme as described in the previous section causes
performance degradation compared to the GLRT-QS receiver, the
modified scheme, GLRT-QM, exhibits a performance gain of about
0.5 dB.

In summary, the GLRT decision rules based on the quantized
received signal can lead to performance improvements. Particu-
larly, for the traditional TR setting, i.e. Nt = Nd = N f = 1 and a low
resolution ADC with b = 2 bits, performance improvements with
reasonably complex receiver structures can be observed. The gen-
eralization to a larger number of data symbols, training symbols,
or number of frames can lead to further performance improvements
at the cost of considerably more complex receiver structures. The
computationally efficient GLRT-U scheme yields good performance
even in the presence of a low resolution ADC and in addition can
be easily adapted to different parameter settings.

5. CONCLUSIONS

In this paper, the effect of low resolution quantization of the re-
ceived samples on the BER performance for UWB TR receivers is
investigated. The generalized-likelihood ratio test receiver (GLRT-
Q) based on the quantized samples is derived and shown to lead
to performance gains in comparison to the conventional GLRT re-
ceiver operating on quantized observations. The cost for this perfor-
mance gain is an exponential complexity in the number of frames,
training, and data symbols. To reduce the complexity several sub-
optimal detection schemes with a linear complexity showing mar-
ginal performance loss are derived. Simulation results reveal that a
four bit ADC can provide a performance close to a infinite resolu-
tion ADC.
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