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ABSTRACT
Of particular interest in this paper is to develop statistical
and modeling approaches for protein biomarker discovery
to provide new insights into the early detection and diag-
nosis of cancer, based on mass spectrometry (MS) data.
In this paper, we propose to employ an ensemble depen-
dence model (EDM)-based framework for cancer classifica-
tion, protein dependence network reconstruction, and further
for biomarker identification. The dependency revealed by
the EDM reflects the functional relationships between MS
peaks and thus provides some insights into the underlying
cancer development mechanism. The EDM-based classifica-
tion scheme is applied to real cancer MS datasets, and pro-
vides superior performance for cancer classification when
compared with the popular Support Vector Machine algo-
rithm. From the eigenvalue pattern of the dependence model,
the dependence networks are constructed to identify can-
cer biomarkers. Furthermore, for the purpose of compari-
son, a classification-performance-based biomarker identifi-
cation criterion is examined. The dependence-network-based
biomarkers show much greater consistency in cross valida-
tion. Therefore, the proposed dependence-network-based
scheme is promising for use as a cancer diagnostic classifier
and predictor.

1. INTRODUCTION

In genomics studies, great efforts have been made to develop
the gene regulatory network using microarray gene expres-
sion data [17]. Recently, it is believed that it is the proteomic
data and the collective functions of proteins that directly dic-
tate the phenotype of the cell and, thus, are more accurate
in interpreting the cause of biological phenomenon. Many
changes in gene expression might not be reflected at the level
of protein expression or function [1]. Therefore, proteomics,
is an emerging field for the discovery and characterization of
regulated proteins or biomarkers in different diseases in the
post-genome era. During cancer development, the cancer-
ous cells may release unique proteins and other molecules,
which may be regarded as early biomarkers. These biomark-
ers normally serve as the indicators of diseases. Correctly
identification of protein biomarkers for cancer holds enor-
mous potential for the early detection of cancer and effective
treatments. However, due to the complicate nature of protein
functions, it is a research topic with significant challenge.

For the analysis of protein samples, mass spectrometry
(MS) technologies have become increasingly important tools
[2]. MS is able to convert proteins or peptides to charged
pieces that can be separated on the basis of the mass-to-
charge ratio (m/z) and their abundances. There are several

types of MS ionization methods currently available, includ-
ing surface enhanced laser desorption ionization (SELDI),
electrospray ionization (ESI), and matrix-assisted laser des-
orption ionization (MALDI) [8]. The produced protein or
peptide spectra are then analyzed for different purposes, such
as identifying proteins via peptide mass fingerprints, can-
cer classification, etc. Until very recently, it has also been
applied for cancer biomarker identification, but only simple
classification-based approaches were studied. For instance,
in [4], a panel of three biomarkers were selected using the lin-
ear combination based Unified Maximum Separability Anal-
ysis (UMSA) to best separate cancer and non-cancer sam-
ples.

In [9], we developed an ensemble dependence model
(EDM)-based approach for cancer classification based on mi-
croarray gene expression data. The proposed method yields
promising performance in gene expression data. To further
explore the EDM concept, we apply it on proteomic data
and then present the idea of building dependence networks
based on MS data. The dependency revealed by the de-
pendence model provides some insight into the functional
interaction relationships between proteins. This paper is
organized as follows. In Section 2, we present the clas-
sification results for protein MS data based on EDM, and
present the proposed dependence network idea. Then, in Sec-
tion 3, the classification-performance-based biomarkers and
dependence-network-based biomarkers are examined. Fi-
nally, the conclusions are presented in Section 4.

2. DEPENDENCE MODEL AND DEPENDENCE
NETWORK

As mentioned earlier, the concept of ensemble dependence
model (EDM) for cancer classification is proposed in [9].
In Section 2.1, we modify and apply the EDM concept for
classification of proteomic data. The classification perfor-
mance on two apply public-available protein MS datasets is
reported. In Section 2.2, we will focus on the idea of depen-
dence network.

2.1 Dependence Model for Cancer Classification
The dependence model focuses on exploring and modeling
the group dependence relationship. Because of the limited
sample size of current MS data, it is not feasible to exam-
ine the dependence relationship among all mass features at
one time. In the proposed ensemble dependence model, fea-
tures are clustered into several clusters. Given appropriate
and well-sorted clustering results, we predict that proteins’
group behaviors and ensemble dynamics can be revealed. In
this study, the Gaussian Mixture Model [15] is applied for
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Classification Classification
Classification prostate dataset prostate dataset

ovarian dataset normal vs early normal vs late
stage cancer stage cancer

EDM-2 100% 99.39% 100%
EDM-3 100% 100% 100%
EDM-4 100% 98.18% 100%
EDM-5 96.60% 98.79% 99.39%
SVM 96.83% 78.79% 98.79%

Table 1: Correct classification rates for two MS datasets
when applying the proposed ensemble dependence model
with different choices of cluster number. The number after
“EDM-” refers to the number of clusters

feature clustering. After clustering, each cluster contains
specific features that have a well-defined mathematical re-
lationship to one another. For each cluster, an interesting
problem is how to effectively represent each cluster’s profile.
A most straightforward way could be using the average of all
features within one cluster to represent the cluster. In this pa-
per, due to the specific properties of the protein MS data, we
propose a concept of virtual protein, where virtual protein is
illustrated by a linear weighted combination of different MS
features within a cluster. In order to represent each cluster, a
virtual protein is generated as the cluster representative.

We argue that a virtual protein representation makes more
sense than a straightforward averaging, for two main rea-
sons. First, in mass spectrum data, some features correspond
to high intensity peaks, while some features correspond to
low intensity peaks. In order to avoid high intensity features
dominating its cluster, the virtual protein generated by the
weighted average expression of cluster members can pro-
vide better information to the entire cluster. Secondly, for
protein samples, mass spectrometry measures the mass-to-
charge ratio of the ionized peptides and their abundances in
the sample. Due to the measurement process of MS, one
particular cancer-related protein can be represented by sev-
eral peptides. A linear combination of MS features may lead
to a virtual protein which better represents the underlying
cancer-related protein. Another important question is how to
represent a virtual protein, i.e. determining the weights. In
our approach, the weights are determined through linear dis-
criminant analysis (LDA) [11]. Since we are interested in the
virtual proteins which are cancer-related and thus best repre-
sent the difference between a cancer and non-cancer sample,
LDA provides an efficient way to construct a virtual protein.
Given the virtual proteins as cluster representatives, the en-
semble dependence model in [9] is applied for classification.

In this study, there are two mass spectrum datasets un-
der investigation, one ovarian cancer dataset, with 91 normal
samples and 161 cancer samples [6], and one prostate cancer
dataset, with 81 normal samples, 84 early stage cancer sam-
ples and 84 late stage cancer samples [12]. Raw mass spectra
are downloaded from the National Cancer Institute, and East-
ern Virginia Medical School. Preprocessing is performed, in-
cluding smoothing, baseline correction, peak alignment and
peak detection, similar as in [13]. 50 top mass peaks are
obtained by the criterion proposed in [14]. All analysis are
based on the 50 selected peak features.

The ensemble dependence model is applied to clas-
sify cancer and normal data through leave-one-out cross-
validation [16]. In the proposed model, an unmentioned

problem is how to choose the number of clusters. The op-
timal number of clusters is difficult to determine, because it
may depend on different diseases and different sets of exam-
ined features. To examine this parameter, we apply different
choices to the proposed model and compare the overall clas-
sification performance, as shown in Table 1. Theoretically,
as the number of clusters increase, more dependence rela-
tionship is examined, thus better classification performance
will be achieved. However, in Table 1, as the number of clus-
ters increase, the classification performance first increases
and then decreases. Because, when more dependence rela-
tionship is examined, the number of model parameters also
increases quadratically. The maximum number of clusters
is limited by the size of the training dataset. From Table 1,
we can see that the proposed model yields good classifica-
tion performance. In order to examine the performance of
the proposed model, we compare it with the widely-applied
linear support vector machine (SVM) approach. It has been
applied in bioinformatics studies [10], where it is illustrated
that SVM provides excellent classification performance. To
ensure a fair comparison, both SVM and the proposed model
are applied to the top 50 features. From Table 1, we can see
that in the ovarian cancer dataset, the proposed model and
SVM have comparable performance. In the prostate cancer
dataset, when we classify normal samples against late stage
cancer samples, the two schemes also performs comparably.
However, in the prostate cancer dataset, when we classify
normal samples against early stage cancer samples, where
the classification task appears to be more difficult, the pro-
posed ensemble dependence model out performs SVM.

2.2 Dependence Network

The functionality of a protein is not solely characterized by
its own structure. Its surroundings and interacting proteins
also play important roles in determining the protein’s func-
tion. In this study, we propose to apply the dependence
model for protein dependence network construction. In the
previous subsection, the concept of ensemble dependence
model was applied on virtual proteins, the representatives of
clusters. Now, we use the dependence model to examine in-
dividual protein mass features, zooming in to build a network
that captures interactions among proteins.

A dependence network is a set of components, such as
MS peaks in our case, and linear dependence interactions
among them that collectively carry out specific functions,
where each arrow represents an inter-component dependence
relationship with an associated weight ai j indicating to what
extent component i depends on component j. In the follow-
ing, we describe how a dependence network is constructed.

In [9] it is shown that the eigenvalue pattern is closely
related to dependence relationship, especially the smallest
eigenvalue. Take a three-feature case for example. From the
noise-free ideal case, as the three features’ expression pro-
files more and more independent, the eigenvalues of their
dependence matrix will change and follow the trends, as
shown in Fig.1. In the three-features example, when the ex-
pression profiles are dependent, the smallest eigenvalue is
−2. When the dependence relationship become weaker and
weaker, the smallest eigenvalue increases, and eventually sat-
urate to around −0.7. Thus, for any feature triple, by exam-
ining the eigenvalue pattern of their dependence matrix, we
are able to tell how dependent they are, how closely related
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they are.
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Figure 1: The horizontal axis is variation level, which indi-
cates how noisy the three cluster expression profiles are. As
the cluster expression profiles become more noisy, the eigen-
values of the corresponding dependence matrix will change,
following the above curves.

Since, the eigenvalue pattern can serve as an indicator of
how closely related they are, if we examine three individual
MS features at one time, through an exhaustive search, we
can find all closely related feature triples. The elements in
each triple share a strong dependence relationship, which in-
dicates that they have a strong influence on each other in the
protein interaction network. Take the ovarian cancer dataset
as an example. For the normal case, we exhaustively exam-
ine the eigenvalue pattern for all possible feature triples. A
threshold−1.5 is applied. If the smallest eigenvalue of a fea-
ture triple is lower than the threshold, there exists a strong
dependence relationship within the triple, which is called the
“binding triple”. Similar analysis is applied to cancer sam-
ples. In the normal case, 520 triples pass the threshold; while
in the cancer case, 269 triples pass the threshold. Moreover,
there are only 80 triples in the overlap between normal and
cancer cases. The results suggest that, from healthy to can-
cerous, some dependence relationships among proteins are
disabled; while some other dependence relationships are ac-
tivated. The small overlap indicates that, from healthy to can-
cerous, the overall dependence relationship goes through a
major change.

The dependence network is constructed from binding
triples. As in graph theory, the topology of an n-node net-
work can be represented by an n×n adjacency matrix D. If
feature i and feature j both appear in a binding triple, it is
suggested by the dependence model that feature i and feature
j are closely related. And we will count once for Di j, the con-
nection between feature i and feature j. Basically, we count
the appearance of all feature pairs, and form an adjacency
matrix D. Then, the adjacency matrix D is normalized by the
total number of binding triples. Each element Di j is a confi-
dence value, which indicates the importance and strength of
the connection between feature i and feature j. We call net-
work D the dependence network. Making use of this infor-
mation, the dependence networks can be presented as shown
in Fig.3, where strong dependence relationship is reflected in
small distance between connected nodes. The length of each
connection is defined to be inverse proportional to the confi-
dence value. Because the confidence values are normalized,
through 1/Di j, features with strong dependence relationship
will locate close to each other, while features with weak de-
pendence relationship will be far apart. From Fig.3, we are
able to see the importance of each node and identify potential
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Figure 2: Fig (a) is the histogram of performance based po-
tential biomarkers in ovarian cancer dataset. Fig (b) is the
histogram of network based potential biomarkers of the ovar-
ian cancer dataset. In both figures, the horizontal axis is the
feature indexes, and the vertical axis shows how many times
one feature is identified during the 10-fold iterations. From
this figure, we can see that the network based criterion yields
more consistent results than the performance based criterion.

biomarkers.

3. BIOMARKER IDENTIFICATION

3.1 Classification-Performance-Based Biomarkers
In our early work [9], the concept of ensemble dependence
model was applied to classify microarray gene expression
data, but it was not used for biomarker identification because
gene expression data is quite noisy. If individual genes are
examined, large noises may overwhelm the underlying de-
pendence relationship. However, in proteomic MS data, the
peaks are relatively strong compared with noises. This en-
ables us to examine individual mass features and their de-
pendence relationship.

We examine three features at one time, and apply the
proposed model for classification. Through an exhaustive
search, all possible feature triples are examined, and the clas-
sification performance is recorded as a metric. Triples with
classification accuracy higher than 95% are considered to
be informative triples. Features with high appearance fre-
quency in informative triples are regarded as important can-
cer biomarkers. These are biomarkers identified based on
the criterion of classification performance. We call them the
classification-performance-based biomarkers.

First, we examine the ovarian cancer MS dataset. To en-
sure reproducibility of the identified biomarkers, we apply
a similar strategy with 10-fold cross validation. where, the
ovarian cancer dataset is divided into 10 parts; 9 parts are
used for model learning (training) and the one left is used
for validation (testing). We search for biomarkers every it-
eration based on each different choice of training and testing
samples. For each iteration, through an exhaustive search,
the top 15 potential biomarkers are kept for reference. 9 fea-
tures are commonly identified as biomarkers by 7 or more
out of 10 iterations. Fig.2(a) shows the histogram of poten-
tial biomarkers, where horizontal axis is the feature indexes,
and the vertical axis shows how many times one feature is
identified during the 10-fold iterations. We can see that the
result is not quite consistent.

We further examine the prostate MS dataset for the cases
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(a) Normal case (b) Cancer case

Figure 3: Dependence networks for normal and cancer cases
in ovarian cancer dataset. (Isolated nodes are omitted.) For
the purpose of illustration, the circles are used to indicate the
core features.

of both early stage and late stage. Our main purpose in ana-
lyzing this dataset is to demonstrate the consistency and pos-
sible difference between dominant biomarkers in early can-
cer stage and late stage. Similar with above analysis, 10-
fold cross validation is applied. Again, every iteration, top
15 potential biomarkers are kept for reference, and features
picked up by 7 or more out of 10 iterations are identified
as biomarkers. Based on normal samples and early stage
cancer samples, we identified 2 biomarkers. They are fea-
tures 41,48. Based on normal samples and late stage can-
cer samples, we identified 5 biomarkers, 39,42,46,48,50.
When examining the histograms, we observed similar fig-
ures as Fig.2(a), which indicates that the performance-based
criterion is not consistent under 10-fold cross validation. It is
noted that, the number of biomarkers in late cancer stage is
more than that in the early stage. And the identified biomark-
ers are not as consistent as those in the ovarian cancer dataset.
Our intuitive explanation to the above observations is as fol-
lows. In 10-fold cross validation, we use different training
samples to find potential candidates and regard the overlap-
ping candidates as biomarkers. In early cancer stage, the
protein expression pattern of prostate cancer may not be the
dominant factor, thus, is more sensitive to different choices
of training samples. Another reason might be, the prostate
cancer dataset is round half the size of the ovarian dataset.
Less number of samples may cause less consistency in 10-
fold cross validation.

3.2 Dependence-network-based Biomarkers in Ovarian
Cancer Dataset
In the ovarian cancer dataset, from binding triples of nor-
mal samples, we build a dependence network for normal case
Dnormal . From the binding triples of cancer samples, we build
a dependence network for cancer case Dcancer. By comparing
Dnormal and Dcancer, we are able to see that which features go
through a large topology change from normal to cancer and,
thus, are potentially biomarkers. Similar to the previous sub-
section, 10-fold cross validation is applied. For each itera-
tion, Dnormal and Dcancer are calculated, and 15 features with
large topology changes are kept for reference. 12 features
are commonly identified as potential biomarkers by 7 out of
10 iterations. We call them the dependence-network-based
biomarkers. Fig.2(b) shows histogram of identified biomark-
ers. From this figure, we can see that the network-based cri-
terion yields much more consistent result, compared with the

performance-based criterion.
From Fig.3, we can see the important features in the nor-

mal and cancer dependence networks. In the normal case,
features 11 and 19 are important core features. They have
rich dependence relationships with lots of other features.
However, in the cancer case, there are more core features
11, 14, 20, 46. From normal case to cancer case, the num-
ber of dependence relationships increases, and the number of
core features increases. Some unimportant features in normal
case become core features in cancer case, especially feature
46. Similar with [9], it can be suggested that in cancer case,
there are large noise variations which mess up the normal
dependence relationships. These core features are strongly
suggested to be biomarkers in ovarian cancer. It is our inten-
tion to investigate the origin and identity of these features.

3.3 Dependence-network-based Biomarkers in Prostate
Cancer Dataset
We further examine the prostate MS dataset. One objec-
tive here is to identify biomarkers active in early cancer and
in late cancer stage. From binding triples of samples from
normal, early cancer stage, and late cancer stage, we build
dependence networks Dnormal , Dearly and Dlate, respectively.
Based on similar analysis to the case of ovarian cancer, we
identify biomarkers for early stage cancer samples and late
stage cancer samples, respectively. Consistent with the ovar-
ian cancer dataset, similar observation with Fig.2 is observed,
which indicates that the network-based criterion gives more
consistent results under 10-fold validation than the perfor-
mance based criterion.

The dependence networks for normal, early cancer stage
and late cancer stage are shown in Fig.4. It is informative to
examine the difference revealed by different dependence net-
works which are believed to provide insights into the major
underlying phenotype under different situations. From this
figure, we can see some interesting behaviors of the identi-
fied network-based biomarkers. For example, features 7, 12,
19, 43 are isolated or peripheral in normal stage. However, in
late cancer stage, these features plays more important roles
in the dependence network. These features may correspond
to the key proteins on the pathways activated by the prostate
cancer. On the contrary, features 18, 26, 36 are important
network nodes in normal and early cancer stage. However,
they become isolated or peripheral in late cancer stage. These
feature may correspond to pathways disabled by the prostate
cancer. The most interesting examples are features 11 and
31. They are important network nodes in both normal stage
and late cancer stage. However, they seems to be deacti-
vated in early cancer stage. These features might be the key
to early stage cancer development, and deserve to be further
investigated.

4. CONCLUSION

In this study, we extend a dependence modeling framework
for cancer classification using MS data, propose to construct
dependence networks between protein MS features, and take
advantage of the differences revealed between dependence
networks under different cancer and non-cancer situations to
identify cancer biomarkers. With advantages lying in its na-
ture as a model-driven approach, the proposed EDM-based
classification scheme outperforms SVM, a widely applied
supervised machine learning algorithm.
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(a) Normal case (b) Early cancer case

(c) Late cancer case

Figure 4: Dependence networks for the prostate cancer
dataset: normal, early and late cancer cases. Nodes isolated
in all cases are omitted for simplicity. For the purpose of
illustration, the circles are used to indicate the core features.

In building the dependence network, the dependence re-
lationship among several features can be indicated by the
corresponding eigenvalue spectrum. From binding triples
found via the desired eigenvalue spectrum, the dependence
networks for both cancer and normal cases are built. We
developed a dependence modeling and network framework
to identify cancer biomarkers using protein MS data. The
proposed framework provides two efficient schemes (i.e.
performance-based and dependence-network-based) to iden-
tify MS features as biomarkers collectively. Based on real
MS data examination, it is observed that the dependence-
network-based approach provides much more consistent re-
sults in identifying biomarkers, as shown in Fig.2. This in-
teresting consistency motivates us to further explore the idea
of dependence network. We plan to further investigate this
for potential cancer diagnosis usage.
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