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ABSTRACT ~ The utilization of UWB in health applications was briefly
Vital-signs monitoring devices continue to utilize inwaesi investigated in [2], who studied the advantage of UWB sig-

sensing methodologies, ranging from skin surface c_ontag?ssi grlwgi]f?c?;?tkﬁ)l J;Sr?]lgtti'gr?. fol(/lg?gg\%?,ghrgﬂiﬁﬁg?rgf:ﬂ'h at
techniques such as the use of electrodes for measuring ¢ e coefficient of reflectivity of air-to-dry-skin interfador

diac signals (ECG test), to more intrusive techniques sach lectromagnetic waves in the range of 300-900 MHz is about
the_ut|I|zat|Qn Qf a faC|a_I mask for measuring gas exchang 206. As a result, he showed in a UWB radar setup that the
durmg respiration. In this paper, we present a wirelesarad rmotién of a humén body can produce significant changes in
techr.nque. based on .ultra-W|deband (UWB) te chnology fothe multipath profile. Later, we demonstrated the efficacy of
non-invasive monitoring of heart and respiration ratesr Ou is approach in our own work [3],]4]. UWB-based respira-
technique is based on the detection of chest-cavity motiotgry n?c?nitoring was also examine'd in‘ [5] P
throggh thg measurement of UNB sig_nal disple_lcements du In additi h ial f UWB Lo

to this motion. We show that the technique provides accurate Inha 't'or? to the potﬁnpa use Ob I_m(?mtonng In
results even in the presence of multiple subjects. Speltjfica nealthcare, the same technique can be applied to emergency
we investigate the two techniques for estimating breathin§ESCU€ situations, particularly to the problem of triageewh
and heart rates in the presence of multiple subjects: (1) th c|t|ms gre tr_atl)p%ed unger det()jns. cljn such a casedthe tech-
use of clustering algorithms to isolate the combined pasiti ”g ogy | escrclj_e Ca”d e use tIO detect a tfaﬁp? | victim’s
and breathing/heart rate of multiple subjects and (2) tlee u?ysica EIO” I't'on _""”_I accurate yuv?/tgrm'ne their ocra'go
of MUSIC to accurately estimate only the rates. Results art‘-:‘eryl_qglc y. In a similar mlc?lnn_er, ;nor;]ltonng ck?n eII
based on measurements from experiments with multiple sulﬁpp ied (among many applications) to (1) through-the-wa
jects in a laboratory setting. _ealth and location monitoring of victims in hostage-re&scu
situations, (2) detection of skiers trapped under snow afte
an avalanche, (3) vital-signs monitoring for lie-detedemsts

and (4) athletic performance monitoring [6].

Our motivation in using wireless sensing techniques based For security applications, UWB monitoring can be
on UWB technology to detect vital signs has primarily toapplied to aid in the physiological detection of decep-
do with three areas of application: health care, emergendjon (PDD). In order to assess the truthfulness of a per-
rescue operations, and security. son’s statements, PDD includes various physiological ex-
In medicine and related fields, heart and respiration rate8minations such as blood pressure, thoracic respiration,
have been monitored for more than a century to aid in the diPrain/neurological signal responses, heart electricaligc
agnosis of pathological conditions. However, as technplog[?], [8], [9], [10], to name a few. We believe that by incor-
continues to develop, medical devices are becoming moreorating UWB monitoring in PDD assessment, examination
and more complex for medical personnel and sometimeime and monetary cost could be reduced. Also this can be
painful to patients. Today, modern heart and respiratite ra @pplied in other applications such as airport security; cus
monitoring devices come in various shapes and sizes; howioms/immigration, and military checkpoints.
ever, these devices can only perform monitoring and diagnos  The problem of non-invasive detection and estimation of
tic functions for one patient at a time [1]. Furthermoretast respiration frequency has been previously studied in séver
patient’s health condition becomes more critical, the nemb contexts, specifically, the use of microwave Doppler radar
of configuration setups for monitoring the patient’s physio [11, 12] and the development of motion target algorithms
logical variables increases, as does the difficulty of managor the detection of respiratory and circulatory movements
ing the patient’s data. Acquiring vital signs, such as haadt [13]. However, no specific device or method has been im-
respiratory rates, using wireless devices will reduce sofme plemented for practical use (to the best of our knowledge)
these complexities. Likewise, applying the same monitorpossibly because microwave Doppler radars lack the ability
ing idea for multiple patients located within a few meters ofto provide material penetration. On the other hand, one of
each other, and monitoring their vital signs independentiythe main advantages of UWB is the potential to propagate
will help reduce the cost of health care by reducing the numthrough objects, thereby providing improved coverage and
ber of medical devices being used per patient. the ability to perform through-the-wall measurements. S,hu

1. INTRODUCTION



our goal is to present a consolidated analysis of easilyampl 3. MEASUREMENT SETUP
mented signal processing algorithms with results that demo
strate the capabilities of UWB monitoring for the detectdn
respiration and heart rates. In the following we first previ
a simple overview of the physical movements to be detecte
due to heart and respiratory action in Section 2. We thef]
describe the measurement set-up and the mathematical d

proach for breathing and heart rate estimation in Section 3: ted t | ith a Pulse-Repetition F PRE

Section 4 overviews the measurement results including e)p_fec e ko a p;l]'Sﬁl’ with a Fu se-l epet 'r?n r%q#er;cy( F)

periemnts with two and three simultaneous subjects. Sectio®! 100 KHz which generates pulses with a width of 300 pi-

5 concludes this paper. coseconds. The pulser also triggers a digital oscilloscope
(Tektronix TDS694C real-time scope) that is connected to

the receive antenna. The oscilloscope averdgies 100

2. THEPHYSIOLOGY BASICS received multipath profiles to improve the signal-to-neise

ratio (SNR) and stores the averaged waveforms. The time-

The heart is located in the ventral lower part of the mediyegoytions, for measuring the received waveforms is 25 pi-
astium, and is partially juxtaposed in the diaphragm. Sinc

the heart lies adjacent to the lungs, it alters its positidh w Toseconds where each recorded profileris = 50 ns long.
; e This implies that each waveform compridés= 1z = 2000
the movement of the diaphragm, the rib-cage and the lungs 'S IMpA wav pr o

[14]. The rhythmic nature of the heart action is due to the anjr%Ie r:;omts. is al h ved f is t d
generation and conduction of excitation signals origngati t-t'e |Ene-(:1jx(|js aotng gac L?Cﬁ'.ve V‘.’avﬁ orm tlr? erme
at the sinoatrial node (SA node) located in the right atrial /2>t UMe" and denoted by, which Is typically on the or
wall. After atrial contraction, the signals travel from 88 9¢' Off plcoseconds,dv,\'/r}ereqs the tllgl((%j-aXIS %f all rr](_acr(])rded
node down through conduction pathways that terminate ie{va\k/]e orm_T, IS termed “slow-time and %not_trah bywhic

the walls of the ventricles causing major muscle contractio IS the total monitoring time in seconds [3]. The time inter-

This phenomenon represents the heart’s electrical ::;ctivitvaI between each successive received (or averaged) wave-

15, (16], unch can b recorge by an electocardogran®™ s _ 01 secons and he ol montorg e o
(ECG). The ECG consists of placing electrodes on themeNaSW__ Tess — 700. Eurthermore. the sampling frequenc
chest, arms, and legs and recording the heart’s eIectricéﬁ L L pling freq . y
activity, which is represented by the P, QRS complexin slow-time is defined as = 1 = 10Hz and the sampling
and T waveforms. The heart rate is then measured bﬁfequencyinfast-time iR= L =40 GHz.

amplifying the ECG signal and measuring either the average o accyrate representation of each recorded waveform

or instantaneous time interval between two successive Kt 7) by its time sampled(nT, 1), two conditions must be
peaks. Thus, by converting the R wave into a pulse Ofat-"(1) the waveform(t, ) must be band-limited, that is,
fixed amplitude and duration, and then determining theg;g frequency spectrum must be limited by some maximum
current average from these pulses, the heart rate is t%p'calfrequency safmax, and (2) the sampling rafe must be cho-
computed. By contrast in the approach investigated here, W&, 1 pe ,at Ieast,twice the maximum frequefigx. Thus
use the physical displacement of the heart as measured by,g 1o Nyquist rate, the minimum sampling rate allowed is
sequence of UWB pulses in order to estimate heart rate. fo = 2fmax. Applying these concepts in environments where
patient monitoring is necessary, where the respiration fre

i i ) guency is normally lower than 30 breaths per minute (0.5 Hz)

The mechanics of breathing consist of the movement 0fnd the heart rate less than 120 beats per minute (2 Hz), the

the diaphragm and associated muscles, the rib-cage and asggiculated slow-time sampling frequenBy satisfies these
ciated musculature and the characteristics of the lunga-the o conditions.

selves. The muscular action controls breathing and it cause

the volume of the lungs to increase and decrease in order 91 Mathematical Analysis
regulate the content of carbon dioxide in the arterial bloo . .
[17]. Currently, there are various methods used to assess thet US assume that the transmitter and receiver are respec-
function of each breathing mechanism component, howevé€ly Ioca;}ted f?t coor(_jlnﬁe ve_ctomfakr:dxr. Fkyrt_her, f";(g

no single device can accurately evaluate the overall perfo@SSUMme that the nominal location of the air-skin interféce o

mance of breathing [1]. Some common methods used fdhe chest cavity of the subjectis. Therefore, the multipath

breathing detection are: (1) the displacement method’h,vhiccomponentarriving at the receiver after reflection at thessth

consists of wearing a chest wrap with adhesive sensors &aVity of the subject travels a nominal distance
tached to it, (2) the thermistor method, which requires a fa-
cial mask for measuring respiration heat, (3) the impedance

pneumography test, which attaches electrodes on the surfagowever, due to respiration, the chest cavity expands and
of the skin and measures chest movement, and (4) the CQontracts periodically (under normal conditions), anddise
method, which consists of a continuous measurement of ex5nce traveled by the corresponding multipath component

pired air and the utilization of infrared rays [14]. From the 4 (t) also varies periodically about the nominal distance:
described methods, we observe that these are relatively in-

vasive techniques, leading us to believe that UWB moni- di(t) = do+g(t) (2)
toring can be a solution for assessing respiration rate non-

invasively, provided that the accuracy is similar to exigti Assuming that the change in tidal volume and the displace-
techniques. ment of the chest cavity is a sinusoidal function of time, and

The basic measurement setup is shown in Figure 1. In our
d experiments we used TEM horn antennas for transmitting
and receiving, which we placed one meter apart from each
ther and a meter away from the subject. Note that the sub-
ct can be facing the antennas directly or be located behind
n obstruction such as a wall. The transmit antenna is con-

do = [ — x| + [|xr — x| 1)



We storel,, discrete-time sequences resulting from the sam-
pling of the received signals which can be expressed as

rim,n] = % aip(nd: — 1) + app(ndr — Tp(MTs))  (7)

These values are stored inM,(x Ns) matrix R = {r[m,n]},

1< m< Ny, 1<n<Ns. Arow of the matrixR, denoted by

ri, 1 <i < Ny represents the samples corresponding to the
ith received waveform.

In order to extract respiration frequency information
from this data, we first eliminate “background clutter”,
i.e., all signal components derived from other objects
that are not related to respiration motion. If we assume
that the propagation environment is static, and the only
motion present is that of the subject’s chest-cavity, then t
background clutter consists of multipath corresponding to
stationary scatterers in the multipath environment. Since
we would like to separate moving scatterers from stationary
scatterers, we apply a "motion-filter” to the received signa
so that the stationary components are removed. In order to
accomplish this, we first average all the received waveforms
(rows) in the matrixR and then subtract this metric from

. . . each individual row in the matrix. The averaging of all rows
the distance traveled by the corresponding multipath cempQ.a 1 res all the "constant” features across slow-time and
nent also varies periodically about the nominal distan¢g Wi g4 cting this from each row results in a set of signals due
a period dependent on the respiration rite to the changes in the multipath profile(i.e. the variatioe du

) to the motion of scatters). For further detailed mathenadtic
di(t) = do+g(t) = do+ Agsin 2rrfyt (3)  analysis of the motion-filtered data, the reader should tefe
whereAq represents the maximum deviation in the distanca3]- Following the motion filter step, we compute the energy
traveled by the relevant multipath component. With the ascontent of all filtered waveforms and identify the fast-time

sumption that the environment (besides the subjesthii, bin indices where 'the most significant energy is contained.
this movement is manifested in a time-varying channel imJn order to determine the respiration and heart rate frequen

Figure 1: Measurement Setup

ulse responskt, 7): cies we fur;her process the matfkusing two @e_chniques:
P ponsa(t, ) (1) cluster identification using Emeans classifier and (2)
. : - _ frequency estimation using MUSIC. However, before this
h(t,7) = Za.é(r i)+ 31— B) ) step the data must be filtered based on the vital sign being
~—— — respiratory variations monitored. Specifically, when estimating breathing raie, t
static channel data must be low-pass filtered below 1Hz. For heart-rate

wheret and t denote the fast and slow times respectively.data’ a band-pass filter is applied between 1-2Hz.

Note that the direct coupling between the antennas was ob-
served to be the strongest and earliest-arriving multipath > Erequency Estimation Analvsis
component. In the above equatigy{t), termed the “breath- equency y

ing signal” is given by In the clustering technique, after computing the indices
where the most significant energy is contained, we compute

di(t) do+Agsin2mfyt ) the Discrete Fourier Transform (DFT) along slow-time at

To(t) = = =To+Tgsin2itfpt (5)  each fast-time bin index and find the respective maximum

¢ ¢ frequency values. This provides a maximum likelihood

where c is the speed of light in air. Neglecting pulse- estimate of the breathing rate assuming sinusoidal bregthi
distortion and other non-linear effects, the signal measur Variation.  The resulting frequencies and position (i.e.,
by the receive antenna can be written as the convolution d¥in) values are placed in a new matrix, which is then feed
the transmit pulse and the channel impulse response. Igndfito the k-means classifier for frequency/position cluster
ing noise, the received signal measured at slow-tigan be classification. The&k-means classifier partitions the matrix

written as: into k clusters (in the case of two-person monitorikg?)
and computes the mean for each vector column in the
rit, 7y = pt)«h(t, 1) matrix. The resulting means are labeled centroids and these

form the center of the each cluster. The iterative classifier
= 2ap(T-T)+ap(T-Tt))  (6)  ggorithm minimizes the sum of distances over all clusters
! using the squared Euclidian distances of all frequencies
Therefore, we are measuring the received waveforms at di$2 their respective centroids. As a result, the clustering
crete instants in slow time= mTs, (M= 1,2,---,Ny) algorithm allows the combined estimation of the position
and frequency.

r(mTs, 7) = 5 aip(T — Ti) + app(T — Tp(MTs)).



Our second approach allows for estimation of frequency
only. In this approach we proceed by using the significant
energy bin indices to construct a slow-time matrix contagni
only the significant motion. The resulting slow-time matrix
is of sizem-by-n, wherem (i.e. # of rows) is the length of
indices where most of the motion energy is containedrand
(i.e. # of columns) is the length of averaged recorded wave-
forms. The data matrix is used to estimate the temporal cor-
relation matrix of the received data. We then apply the MU-
tiple Signal Classification method (MUSIC) technique [20]
to the correlation matrix to determine the heart or breathin
frequencies of each subject. Results for both estimaticinte
nigues are given in the following section.

4. RESULTS
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Figure 2: Respiration frequency estimation for two-person using

A summary of two experiments for breathing rate analysis
is displayed in Table 1. Specifically, the table displays the
directly measured breathing rates (the number of breaths di
vided by the monitoring tim8ess) and the estimated fre-
guencies, which are calculated using either the clustering
technique based on themeans classifier (shown in Fig-
ures 2 and 3) or the technique based on MUSIC (shown in
Figures 4 and 5). The two experiments had two or three
subjects situated as shown in the top illustrations of Egur
fig:allscenarios.

In the clustering estimation technique, we identified the
most populated clusters each of which correspond to the res-
piration frequency of one subject. This can be seen graph-
ically in Figure 2 and Figure 3 for the cases of monitoring
two and three persons respectively. Note that the subjects
are located within ® meters of each other. Similarly in the
frequency estimation based on MUSIC, we can clearly dis-

0.5

0.45F X: 3098 o
Y:0.4182
@~ @
§ 0.4}
o o
g 035
@ X: 3140
:U) Y:0.2977 x
s ®
g )
s x
= 0.25F ©
©
2 - 5
] X: 3115
x 02r Y:0.2312
o
015F £
o
e}

0.1 i i i i i i
3050 3100 3150 3200 3250 3300 3350 3400

clustering method.

Fast Time bin index

tinguish the presence of multiple peaks as shown in FigurEigure 3:Respiration frequency estimation for three-person using
4 for the case of two subjects and Figure 5 for the case dflustering method.

three subjects. These peaks can be identified as the individ-
ual breathing rate estimates. The estimates, which are sum-
marizedin Table 1, are shown to be fairly accurate with arror
ranging from 2% to as high as 15%.

In the same manner, the two methods were applied to
heart rate estimation as shown in Figures 7,8, 9, and 10. The
results are summarized in Table tab:results2 and the exact
measurement scenarios are depicted in the lower part of Fig-
ure fig:allscenarios. The accuracy is slighlty worse than th
breathing rate estimation due to the lower signal-to-n@ise
tio of the heart reflections. Nonetheless, the estimatexrat
are well within 10% of the measured heart rates.

Table 1:Measured and Estimated Respiration Frequencies
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1 1 1.25 0.31 0.30 0.30

2 1.52 0.28 0.26 0.28

2 1 1.25 0.35 0.30 0.29

2 1.03 0.22 0.23 0.24

3 1.68 0.43 0.42 0.42

Figure 4: Respiration frequency estimation for two-person using
MUSIC method.

5. CONCLUSIONS

In this paper we have presented a UWB-based monitoring
technique for non-invasive detection of respiratory anarhe
rates for multiple subjects located within a few meters of
each other. A framework for the analysis as well as the de-
velopment of signal processing techniques was described.
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Table 2:Measured and Estimated Heart Frequencies
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Figure 9: Heart frequency estimation for a two-person scenario
Also, it was demonstrated via measurements in a laboraising MUSIC
tory setting, that the respiration and heart rates can be-acc
rately estimated using this concept in various scenariogus
two different techniques. Furthermore, we have previously
shown that the monitoring of respiration rate can be perfuture challenges include the detection of irregular Iniegt
formed through walls and therefore the same concept can l@d heart patterns and increasing the accuracy with a timite
applied to multi-target monitoring for non-invasive déten.  measurement duration.
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Figure 10:Heart frequency estimation for a three-person scenario
using MUSIC
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