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ABSTRACT

Vital-signs monitoring devices continue to utilize invasive
sensing methodologies, ranging from skin surface contact
techniques such as the use of electrodes for measuring car-
diac signals (ECG test), to more intrusive techniques such as
the utilization of a facial mask for measuring gas exchange
during respiration. In this paper, we present a wireless radar
technique based on ultra-wideband (UWB) technology for
non-invasive monitoring of heart and respiration rates. Our
technique is based on the detection of chest-cavity motion
through the measurement of UWB signal displacements due
to this motion. We show that the technique provides accurate
results even in the presence of multiple subjects. Specifically,
we investigate the two techniques for estimating breathing
and heart rates in the presence of multiple subjects: (1) the
use of clustering algorithms to isolate the combined position
and breathing/heart rate of multiple subjects and (2) the use
of MUSIC to accurately estimate only the rates. Results are
based on measurements from experiments with multiple sub-
jects in a laboratory setting.

1. INTRODUCTION

Our motivation in using wireless sensing techniques based
on UWB technology to detect vital signs has primarily to
do with three areas of application: health care, emergency
rescue operations, and security.

In medicine and related fields, heart and respiration rates
have been monitored for more than a century to aid in the di-
agnosis of pathological conditions. However, as technology
continues to develop, medical devices are becoming more
and more complex for medical personnel and sometimes
painful to patients. Today, modern heart and respiration rate
monitoring devices come in various shapes and sizes; how-
ever, these devices can only perform monitoring and diagnos-
tic functions for one patient at a time [1]. Furthermore, as the
patient’s health condition becomes more critical, the number
of configuration setups for monitoring the patient’s physio-
logical variables increases, as does the difficulty of manag-
ing the patient’s data. Acquiring vital signs, such as heartand
respiratory rates, using wireless devices will reduce someof
these complexities. Likewise, applying the same monitor-
ing idea for multiple patients located within a few meters of
each other, and monitoring their vital signs independently,
will help reduce the cost of health care by reducing the num-
ber of medical devices being used per patient.

The utilization of UWB in health applications was briefly
investigated in [2], who studied the advantage of UWB sig-
nals’ high spatial resolution for capturing reflections caused
by significant body motion. Moreover, he illustrated that
the coefficient of reflectivity of air-to-dry-skin interface for
electromagnetic waves in the range of 300-900 MHz is about
72%. As a result, he showed in a UWB radar setup that the
motion of a human body can produce significant changes in
the multipath profile. Later, we demonstrated the efficacy of
this approach in our own work [3],[4]. UWB-based respira-
tory monitoring was also examined in [5].

In addition to the potential use of UWB monitoring in
healthcare, the same technique can be applied to emergency
rescue situations, particularly to the problem of triage when
victims are trapped under debris. In such a case the tech-
nology described can be used to detect a trapped victim’s
physical condition and accurately determine their location
very quickly. In a similar manner, UWB monitoring can be
applied (among many applications) to (1) through-the-wall
health and location monitoring of victims in hostage-rescue
situations, (2) detection of skiers trapped under snow after
an avalanche, (3) vital-signs monitoring for lie-detectortests
and (4) athletic performance monitoring [6].

For security applications, UWB monitoring can be
applied to aid in the physiological detection of decep-
tion (PDD). In order to assess the truthfulness of a per-
son’s statements, PDD includes various physiological ex-
aminations such as blood pressure, thoracic respiration,
brain/neurological signal responses, heart electrical activity,
[7], [8], [9], [10], to name a few. We believe that by incor-
porating UWB monitoring in PDD assessment, examination
time and monetary cost could be reduced. Also this can be
applied in other applications such as airport security, cus-
toms/immigration, and military checkpoints.

The problem of non-invasive detection and estimation of
respiration frequency has been previously studied in several
contexts, specifically, the use of microwave Doppler radar
[11, 12] and the development of motion target algorithms
for the detection of respiratory and circulatory movements
[13]. However, no specific device or method has been im-
plemented for practical use (to the best of our knowledge)
possibly because microwave Doppler radars lack the ability
to provide material penetration. On the other hand, one of
the main advantages of UWB is the potential to propagate
through objects, thereby providing improved coverage and
the ability to perform through-the-wall measurements. Thus,



our goal is to present a consolidated analysis of easily imple-
mented signal processing algorithms with results that demon-
strate the capabilities of UWB monitoring for the detectionof
respiration and heart rates. In the following we first provide
a simple overview of the physical movements to be detected
due to heart and respiratory action in Section 2. We then
describe the measurement set-up and the mathematical ap-
proach for breathing and heart rate estimation in Section 3.
Section 4 overviews the measurement results including ex-
periemnts with two and three simultaneous subjects. Section
5 concludes this paper.

2. THE PHYSIOLOGY BASICS

The heart is located in the ventral lower part of the medi-
astium, and is partially juxtaposed in the diaphragm. Since
the heart lies adjacent to the lungs, it alters its position with
the movement of the diaphragm, the rib-cage and the lungs
[14]. The rhythmic nature of the heart action is due to the
generation and conduction of excitation signals originating
at the sinoatrial node (SA node) located in the right atrial
wall. After atrial contraction, the signals travel from theSA
node down through conduction pathways that terminate in
the walls of the ventricles causing major muscle contraction.
This phenomenon represents the heart’s electrical activity
[15], [16], which can be recorded by an electrocardiogram
(ECG). The ECG consists of placing electrodes on the
chest, arms, and legs and recording the heart’s electrical
activity, which is represented by the P, QRS complex,
and T waveforms. The heart rate is then measured by
amplifying the ECG signal and measuring either the average
or instantaneous time interval between two successive R
peaks. Thus, by converting the R wave into a pulse of
fixed amplitude and duration, and then determining the
current average from these pulses, the heart rate is typically
computed. By contrast in the approach investigated here, we
use the physical displacement of the heart as measured by a
sequence of UWB pulses in order to estimate heart rate.

The mechanics of breathing consist of the movement of
the diaphragm and associated muscles, the rib-cage and asso-
ciated musculature and the characteristics of the lungs them-
selves. The muscular action controls breathing and it causes
the volume of the lungs to increase and decrease in order to
regulate the content of carbon dioxide in the arterial blood
[17]. Currently, there are various methods used to assess the
function of each breathing mechanism component, however
no single device can accurately evaluate the overall perfor-
mance of breathing [1]. Some common methods used for
breathing detection are: (1) the displacement method, which
consists of wearing a chest wrap with adhesive sensors at-
tached to it, (2) the thermistor method, which requires a fa-
cial mask for measuring respiration heat, (3) the impedance
pneumography test, which attaches electrodes on the surface
of the skin and measures chest movement, and (4) the CO2
method, which consists of a continuous measurement of ex-
pired air and the utilization of infrared rays [14]. From the
described methods, we observe that these are relatively in-
vasive techniques, leading us to believe that UWB moni-
toring can be a solution for assessing respiration rate non-
invasively, provided that the accuracy is similar to existing
techniques.

3. MEASUREMENT SETUP

The basic measurement setup is shown in Figure 1. In our
experiments we used TEM horn antennas for transmitting
and receiving, which we placed one meter apart from each
other and a meter away from the subject. Note that the sub-
ject can be facing the antennas directly or be located behind
an obstruction such as a wall. The transmit antenna is con-
nected to a pulser with a Pulse-Repetition Frequency (PRF)
of 100 kHz which generates pulses with a width of 300 pi-
coseconds. The pulser also triggers a digital oscilloscope
(Tektronix TDS694C real-time scope) that is connected to
the receive antenna. The oscilloscope averagesNa = 100
received multipath profiles to improve the signal-to-noise-
ratio (SNR) and stores the averaged waveforms. The time-
resolutionδτ for measuring the received waveforms is 25 pi-
coseconds where each recorded profile isτmax = 50 ns long.
This implies that each waveform comprisesNs = τmax

δτ
= 2000

sample points.
The time-axis along each received waveform is termed

”fast-time” and denoted byτ, which is typically on the or-
der of picoseconds, whereas the time-axis of all recorded
waveforms is termed ”slow-time” and denoted byt, which
is the total monitoring time in seconds [3]. The time inter-
val between each successive received (or averaged) wave-
form is Ts = 0.1 seconds and the total monitoring time is
Tmeas = 70 seconds thus, the number of recorded waveforms
is Nw = Tmeas

Ts
= 700. Furthermore, the sampling frequency

in slow-time is defined asFs = 1
Ts

= 10Hz and the sampling

frequency in fast-time isR = 1
δτ

= 40 GHz.
For accurate representation of each recorded waveform

r(t,τ) by its time sampledr(nT,τ), two conditions must be
met: (1) the waveformr(t,τ) must be band-limited, that is,
its frequency spectrum must be limited by some maximum
frequency, sayfmax, and (2) the sampling ratefs must be cho-
sen to be at least twice the maximum frequencyfmax. Thus
by the Nyquist rate, the minimum sampling rate allowed is
fs = 2 fmax. Applying these concepts in environments where
patient monitoring is necessary, where the respiration fre-
quency is normally lower than 30 breaths per minute (0.5 Hz)
and the heart rate less than 120 beats per minute (2 Hz), the
calculated slow-time sampling frequencyFs satisfies these
two conditions.

3.1 Mathematical Analysis

Let us assume that the transmitter and receiver are respec-
tively located at coordinate vectorsxt andxr. Further, we
assume that the nominal location of the air-skin interface of
the chest cavity of the subject isxl . Therefore, the multipath
component arriving at the receiver after reflection at the chest
cavity of the subject travels a nominal distance

d0 = ‖xl −xt‖+‖xr −xl‖ (1)

However, due to respiration, the chest cavity expands and
contracts periodically (under normal conditions), and thedis-
tance traveled by the corresponding multipath component
dl(t) also varies periodically about the nominal distance:

dl(t) = d0 + g(t) (2)

Assuming that the change in tidal volume and the displace-
ment of the chest cavity is a sinusoidal function of time, and



Figure 1: Measurement Setup

the distance traveled by the corresponding multipath compo-
nent also varies periodically about the nominal distance with
a period dependent on the respiration ratefb:

dl(t) = d0 + g(t) = d0 + ∆d sin2π fbt (3)

where∆d represents the maximum deviation in the distance
traveled by the relevant multipath component. With the as-
sumption that the environment (besides the subject) isstatic,
this movement is manifested in a time-varying channel im-
pulse responseh(t,τ):

h(t,τ) = ∑
i

αiδ (τ − τi)

︸ ︷︷ ︸

static channel

+ αbδ (τ − τb(t))
︸ ︷︷ ︸

respiratory variations

, (4)

wheret and τ denote the fast and slow times respectively.
Note that the direct coupling between the antennas was ob-
served to be the strongest and earliest-arriving multipath
component. In the above equationτb(t), termed the “breath-
ing signal” is given by

τb(t) =
dl(t)

c
=

d0 + ∆d sin2π fbt
c

= τ0 + τd sin2π fbt (5)

where c is the speed of light in air. Neglecting pulse-
distortion and other non-linear effects, the signal measured
by the receive antenna can be written as the convolution of
the transmit pulse and the channel impulse response. Ignor-
ing noise, the received signal measured at slow-timet can be
written as:

r(t,τ) = p(t)⋆ h(t,τ)

= ∑
i

αi p(τ − τi)+ αb p(τ − τb(t)) (6)

Therefore, we are measuring the received waveforms at dis-
crete instants in slow timet = mTs, (m = 1,2, · · · ,Nw)

r(mTs,τ) = ∑
i

αi p(τ − τi)+ αb p(τ − τb(mTs)).

We storeNw discrete-time sequences resulting from the sam-
pling of the received signals which can be expressed as

r[m,n] = ∑
i

αi p(nδτ − τi)+ αb p(nδτ − τb(mTs)) (7)

These values are stored in a (Nw ×Ns) matrix R = {r[m,n]},
1≤ m ≤ Nw, 1≤ n ≤ Ns. A row of the matrixR, denoted by
ri, 1≤ i ≤ Nw represents the samples corresponding to the
ith received waveform.

In order to extract respiration frequency information
from this data, we first eliminate “background clutter”,
i.e., all signal components derived from other objects
that are not related to respiration motion. If we assume
that the propagation environment is static, and the only
motion present is that of the subject’s chest-cavity, then the
background clutter consists of multipath corresponding to
stationary scatterers in the multipath environment. Since
we would like to separate moving scatterers from stationary
scatterers, we apply a ”motion-filter” to the received signals
so that the stationary components are removed. In order to
accomplish this, we first average all the received waveforms
(rows) in the matrixR and then subtract this metric from
each individual row in the matrix. The averaging of all rows
captures all the ”constant” features across slow-time and
subtracting this from each row results in a set of signals due
to the changes in the multipath profile(i.e. the variation due
to the motion of scatters). For further detailed mathematical
analysis of the motion-filtered data, the reader should refer to
[3]. Following the motion filter step, we compute the energy
content of all filtered waveforms and identify the fast-time
bin indices where the most significant energy is contained.
In order to determine the respiration and heart rate frequen-
cies we further process the matrixR using two techniques:
(1) cluster identification using ak-means classifier and (2)
frequency estimation using MUSIC. However, before this
step the data must be filtered based on the vital sign being
monitored. Specifically, when estimating breathing rate, the
data must be low-pass filtered below 1Hz. For heart-rate
data, a band-pass filter is applied between 1-2Hz.

3.2 Frequency Estimation Analysis

In the clustering technique, after computing the indices
where the most significant energy is contained, we compute
the Discrete Fourier Transform (DFT) along slow-time at
each fast-time bin index and find the respective maximum
frequency values. This provides a maximum likelihood
estimate of the breathing rate assuming sinusoidal breathing
variation. The resulting frequencies and position (i.e.,
bin) values are placed in a new matrix, which is then feed
into the k-means classifier for frequency/position cluster
classification. Thek-means classifier partitions the matrix
into k clusters (in the case of two-person monitoring,k=2)
and computes the mean for each vector column in the
matrix. The resulting means are labeled centroids and these
form the center of the each cluster. The iterative classifier
algorithm minimizes the sum of distances over all clusters
using the squared Euclidian distances of all frequencies
to their respective centroids. As a result, the clustering
algorithm allows the combined estimation of the position
and frequency.



Our second approach allows for estimation of frequency
only. In this approach we proceed by using the significant
energy bin indices to construct a slow-time matrix containing
only the significant motion. The resulting slow-time matrix
is of sizem-by-n, wherem (i.e. # of rows) is the length of
indices where most of the motion energy is contained andn
(i.e. # of columns) is the length of averaged recorded wave-
forms. The data matrix is used to estimate the temporal cor-
relation matrix of the received data. We then apply the MU-
tiple SIgnal Classification method (MUSIC) technique [20]
to the correlation matrix to determine the heart or breathing
frequencies of each subject. Results for both estimation tech-
niques are given in the following section.

4. RESULTS

A summary of two experiments for breathing rate analysis
is displayed in Table 1. Specifically, the table displays the
directly measured breathing rates (the number of breaths di-
vided by the monitoring timeTmeas) and the estimated fre-
quencies, which are calculated using either the clustering
technique based on thek-means classifier (shown in Fig-
ures 2 and 3) or the technique based on MUSIC (shown in
Figures 4 and 5). The two experiments had two or three
subjects situated as shown in the top illustrations of Figure
fig:allscenarios.

In the clustering estimation technique, we identified the
most populated clusters each of which correspond to the res-
piration frequency of one subject. This can be seen graph-
ically in Figure 2 and Figure 3 for the cases of monitoring
two and three persons respectively. Note that the subjects
are located within 0.5 meters of each other. Similarly in the
frequency estimation based on MUSIC, we can clearly dis-
tinguish the presence of multiple peaks as shown in Figure
4 for the case of two subjects and Figure 5 for the case of
three subjects. These peaks can be identified as the individ-
ual breathing rate estimates. The estimates, which are sum-
marized in Table 1, are shown to be fairly accurate with errors
ranging from 2% to as high as 15%.

In the same manner, the two methods were applied to
heart rate estimation as shown in Figures 7,8, 9, and 10. The
results are summarized in Table tab:results2 and the exact
measurement scenarios are depicted in the lower part of Fig-
ure fig:allscenarios. The accuracy is slighlty worse than the
breathing rate estimation due to the lower signal-to-noisera-
tio of the heart reflections. Nonetheless, the estimated rates
are well within 10% of the measured heart rates.

Table 1:Measured and Estimated Respiration Frequencies
Exp. Person Dist. Directly Cluster MUSIC

# # to Rx measured estimated estimated
(m) Freq. (Hz) Freq. (Hz) Freq. (Hz)

1 1 1.25 0.31 0.30 0.30
2 1.52 0.28 0.26 0.28

2 1 1.25 0.35 0.30 0.29
2 1.03 0.22 0.23 0.24
3 1.68 0.43 0.42 0.42
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Figure 2: Respiration frequency estimation for two-person using
clustering method.
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Figure 3:Respiration frequency estimation for three-person using
clustering method.
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Figure 4: Respiration frequency estimation for two-person using
MUSIC method.

5. CONCLUSIONS

In this paper we have presented a UWB-based monitoring
technique for non-invasive detection of respiratory and heart
rates for multiple subjects located within a few meters of
each other. A framework for the analysis as well as the de-
velopment of signal processing techniques was described.
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Figure 5:Respiration frequency estimation for three-person using
MUSIC method.

Table 2:Measured and Estimated Heart Frequencies
Exp. Person Dist. Directly Cluster MUSIC

# # to Rx measured estimated estimated
(m) Freq. (Hz) Freq. (Hz) Freq. (Hz)

1 1 1.80 1.20 1.25 1.24
2 2.00 1.07 1.18 1.00

2 1 1.56 1.20 1.12 1.20
2 1.20 1.27 1.21 1.33
3 2.25 1.33 1.28 1.38

Figure 6:Scenario setups for two-person and three-person moni-
toring

Also, it was demonstrated via measurements in a labora-
tory setting, that the respiration and heart rates can be accu-
rately estimated using this concept in various scenarios using
two different techniques. Furthermore, we have previously
shown that the monitoring of respiration rate can be per-
formed through walls and therefore the same concept can be
applied to multi-target monitoring for non-invasive detection.
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Figure 7: Heart frequency estimation for a two-person scenario
using the clustering method
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Figure 8: Heart frequency estimation for a three-person scenario
using the clustering method
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Figure 9: Heart frequency estimation for a two-person scenario
using MUSIC

Future challenges include the detection of irregular breathing
and heart patterns and increasing the accuracy with a limited
measurement duration.
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Figure 10:Heart frequency estimation for a three-person scenario
using MUSIC
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