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ABSTRACT
Conventional color imaging science and technology is ba-
sed on the paradigm that three variables are sufficient to
characterize a color. Color television uses three color chan-
nels, and silver-halide color photography uses three photo-
sensitive layers. However, in particular due to metamerism,
three color channels are often insufficient for high quality
imaging e.g. for museum applications. In recent years, a
significant amount of color imaging research has been de-
voted to introducing imaging technologies with more than
three channels – a research field known as multispectral co-
lor imaging. This paper gives an overview of this field and
presents some recent advances concerning acquisition and
reproduction of multispectral images.

1. INTRODUCTION

Already in 1853, the mathematician Hermann Grassmann,
the inventor of linear algebra, postulated that three variables
are necessary and sufficient to characterize a color [1]. This
principle, the three-dimensionality of color, has since been
confirmed by thorough biological studies of the human eye.
This is the reason why analog and digital color images are
mostly composed of three color channels, such as red, green
and blue (RGB).

However, for digital image acquisition and reproduction,
three-channel images have several limitations. First, in a
color image acquisition process, the scene of interest is im-
aged using a given illuminant. Due to metamerism, the color
image of this scene under another illuminant cannot be accu-
rately estimated. Furthermore, since the spectral sensitivities
of the acquisition device generally differ from the standard-
ized color matching functions, it is also impossible to obtain
precise device-independent color. By augmenting the num-
ber of channels in the image acquisition and reproduction
devices we can remedy these problems, and thus increase the
color image quality significantly.

Multispectral color imaging systems are developing
rapidly because of their strong potential in many domains
of application, such as physics, museum, cosmetics, medi-
cine, high-accuracy color printing, computer graphics, etc.
Several academic research groups worldwide are working on
these matters, for example at the University of Chiba in Japan
[2, 3], Rochester Institute of Technology in the United States
[4–9], ENST Paris in France [10–14], and Gjøvik University
College in Norway [15–21].

After this brief general introduction we explain the con-
cept of metamerism in Section 2. In Sections 3 and 4 we
present concepts, research challenges, and recent advances
within respectively acquisition and reproduction of multi-
spectral images.

2. COLOR AND METAMERISM

Aristotle viewed all color to be the product of a mixture of
white and black, and this was the prevailing belief until Sir
Isaac Newton’s prism experiments provided the scientific ba-
sis for the understanding of color and light [22]. Newton
showed that a prism could break up white light into a range
of colors, which he called the spectrum, and that the recom-
bination of these spectral colors re-created the white light.

An important fact of color is that the perceived color of
a given object is not merely a function of the spectral re-
flectance of the surface of the object, which we denote r(λ ),
but also of the spectral distribution of the illumination l(λ ),
and the spectral sensitivities of the three types of photosen-
sitive cells (cones) in the eye si(λ ). The cone responses
ci, i = 1,2,3, can be modeled relatively simply as

ci =
∫ λmax

λmin

l(λ )r(λ )si(λ )dλ . (1)

This equation forms the basis of colorimetry – the quan-
tification of color [23, 24].1 By uniformly sampling the spec-
tra above with a proper wavelength interval, we can rewrite
Equation 1 in a matrix form as

c = StLr. (2)

This matrix notation has several advantages, in particular it
enables us to use techniques based on matrix algebra, such as
vector space projections, to solve problems related to color
(for more details, see e.g. [11]).

From Equation 1, and the fact that the reflectance spectra
are continuous functions, while the sensor response only has
three values, it is clear that there are several different spectra
that can appear as the same color to the observer. A set of
two such spectra having different spectral compositions but
giving rise to the same psychophysical characterization are
called metamers.

For imaging, metamerism is both a curse and a blessing.
Without metamerism there would be no color image repro-
duction as we know it. Technologies such as photography,
printing, and television, are all based on metamerism. The
reproduced images have spectral distributions that show lit-
tle or no similarity to those of the original scene, rather they
are created in order be perceived as equal by a standard hu-
man observer.

1Note that the complexity of the Human Visual System extends far be-
yond that described by Equation 1, for instance is the perceived color of
an object highly dependent on its surrounds and viewing conditions. Such
phenomenons are currently being researched in the field of color appearance
modeling [25].
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On the downside, perhaps the most striking objection-
able effect of metamerism is seen when surfaces that have
matching colors seen under one illuminant, do not match un-
der another. This is an important problem for example in the
clothing industry. Even more relevant to imaging is the case
of creating an exact reproduction of for instance a painting.
The imaging professional typically spends a lot of time and
energy tweaking the color reproduction process to match the
original colors perfectly under a reference illuminant – but in
the end, when a customer displays the print for example in
a typical office fluorescent light, it does not have the desired
colors.

3. MULTISPECTRAL COLOR IMAGE
ACQUISITION

A multispectral color image acquisition system mostly con-
tains essentially the same elements as a color image acquisi-
tion device, the only principal difference is that it has more
than three channels. Figure 1 illustrates schematically the
different elements of a multispectral camera using a set of K
different color filters. The K channels are acquired sequen-
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Figure 1: Schematic view of the image acquisition process.
Only one color filter is shown in this figure. For conventional
color imaging, three color filters would be used, and for mul-
tispectral color imaging, we need more than three.

tially by changing the filter, typically either by using a rotat-
ing filter wheel [3, 4, 14, 26, 27], or an electronically tunable
filter [5, 12].

By sampling the spectra and applying matrix notation,
similarly to what we did with Equation 1, we can express the
K-channel camera response as the vector

cK = [c1c2 . . .cK ]t = Θtr, (3)

where Θ is the known N-line, K-column matrix of the spec-
tral transmittances of the filters multiplied by the camera sen-
sitivities, the optical path transmittance, and the spectral dis-
tribution of the illuminant, that is, the matrix elements of Θ
can be expressed as

θkn = [φk(λn)a(λn)o(λn)lR(λn)]. (4)

Equation 3 represents a basic linear model of the image ac-
quisition system, and this model can typically be used for
further interpretation of the multispectral image data.

3.1 Spectral reconstruction
The problem of estimating the spectral reflectances r̃ from
the camera responses cK is central in the design and opti-
mization of a multispectral color imaging system.

One approach is to take advantage of a priori knowledge
concerning the spectral reflectances that are to be imaged, by
assuming that the reflectance r in each pixel is a linear com-
bination of a known set of P smooth reflectance functions:
r = Ra, with R = [r1r2 . . .rP] the matrix of the P known re-
flectances and a = [a1a2 . . .aP]t a vector of coefficients. We
have previously proposed [11] a reconstruction operator that
minimizes the Euclidian distance dE(r, r̃) between the origi-
nal spectrum r and the reconstructed spectrum r̃:

r̃ = RRtΘ(ΘtRRtΘ)−1cK . (5)

In [28] we compared the performance of a number of
linear methods for reflectance reconstruction including the
one presented above. Methods based upon smoothness min-
imization, linear models of reflectance and least squares fit-
ting were compared using two simulated 6-channel camera
systems. The smoothness methods were generally found to
deliver the best performance on the test data sets. Further-
more, they deliver equivalent performance on training data,
even compared to those methods that make explicit use of a
priori knowledge of the training data.

Spectral reconstruction continues to be an active field of
research. One trend is to apply non-linear methods such as
polynomial regression [17] (see Figure 2). Neural network-
based methods have been found to yield superior perfor-
mance in the presence of acquisition noise [13, 27]. Recently
Alsam and Connah [19] proposed to use convex bases as an
alternative to linear bases and a method for spectral recon-
struction using metamer sets, with promising results.
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Figure 2: Mean RMS spectral reconstruction error for an
evaluation data set of over 1000 natural reflectances [29],
plotted as function of the number of sensors for an optimised
regularised polynomial transform (circles and dashed lines)
and a linear, or 1st order polynomial, method (triangles and
solid lines) (from [17]).

3.2 How many channels?

The surface reflectance functions of natural and manmade
surfaces are invariably smooth. It is desirable to exploit this
smoothness in a multispectral imaging system by using as
few sensors as possible to capture and reconstruct the data.
In a recent paper [18] we investigated the minimum number
of sensors to use, while also minimizing the spectral recon-
struction error.
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We do this by deriving different numbers of optimized
sensors, constructed by transforming the characteristic vec-
tors of the data (Figure 3), and simulating reflectance recon-
struction with these sensors in the presence of noise. We
find an upper limit to the number of optimized sensors one
should use, above which the noise prevents decreases in er-
ror. For a set of Munsell reflectances, captured under ed-
ucated levels of noise, we find that this limit occurs at ap-
proximately nine sensors, see Figure 4. We also demonstrate
that this level is both noise and dataset dependent, by pro-
viding results for different magnitudes of noise and different
reflectance datasets.
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Figure 3: Non-negative sensors formed by varimax rotation
with added positivity constraint. (From [18].)
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Figure 4: Effect of increasing sensor number with 12 bit
quantization and 1% shot noise on Munsell reflectance data.
(From [18].)

4. MULTISPECTRAL COLOR IMAGE
REPRODUCTION

Even though Professor Hunt pinned down the concept of
spectral color reproduction some time back [30], the idea
of creating a reflective physical image, in which the spectral
reflectance of the original scene is reproduced, have not been
much explored since. Besides a few early photographic tech-
niques, it is only recently that this idea has been taken up in
color imaging research. [7–9, 15, 16, 20, 21]

The main idea behind our research in this area is that
it is possible to reproduce multispectral color images faith-
fully on printed media, using a multi-channel image repro-
duction system. Our goal is thus to reproduce images with
a spectral match to an original scene, or a reference im-
age, in order to eliminate the problems of the conventional
metameric matches that can be achieved with four-color
printing processes. A metameric match is only correct under
a given viewing illuminant, while a spectral match is correct
under any illuminant.

Although conceptually simple, the realization of a mul-
tispectral color image reproduction system requires many
challenging research problems to be solved, some of which
are briefly presented in the following sections.

4.1 Spectral printer characterization
In order to use a printer for spectral reproduction it is crucial
to model its behaviour precisely. A landmark printer model
for halftone prints is the Neugebauer model [31], in which
the estimated spectral reflectance R̂(λ ) of a colorant combi-
nation is a weighted sum of the spectral reflectances NPi(λ )
of the Neugebauer primaries (NP),

R̂(λ ) =
k

∑
i=1

wiNPi(λ ). (6)

The NP are all the possible combinations of colorants that
the printer can print. For example a three ink printer (CMY)
will produce 23 = 8 NPs. Today, the Yule-Nielsen modified
spectral Neugebauer (YNSN) model [32], in which the so-
called n factor is introduce in an attempt to model the light
interaction between the paper and the colorants, is popular
[9]:

R̂1/n(λ ) =
k

∑
i=1

wiNP1/n
i (λ ). (7)

For both models, the weights wi are calculated from the col-
orant values c1, c2 and c3 (in the case of a three-primary
printer) using the Demichel model, as follows:

w0
w1
w2
w3
w12
w13
w23
w123

=
=
=
=
=
=
=
=

(1− c1)(1− c2)(1− c3),
c1(1− c2)(1− c3),
(1− c1)c2(1− c3),
(1− c1)(1− c2)c3,
c1c2(1− c3),
c1(1− c2)c3,
(1− c1)c2c3,
c1c2c3.

(8)

The Neugebauer models require the measurements of the
primaries NP to evaluate the reflectance of any colorant com-
bination. The value of the n factor depends the printing tech-
nology: for instance for amplitude modulated halftoning a
value around 2 is typically used, while for frequency modu-
lated halftoning, it is used as an optimization factor.

We have obtained promising results for an eight-channel
inkjet system using the YNSN model [15]. An important
problem that was discovered is that the model fails when the
paper receives too much ink.

Using the YNSN model, a relationship between colorant
values and resulting spectral reflectance is established: this
is denoted the forward printer model. However, in practice
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for spectral reproduction it is the inverse relationship that is
needed; the inverse model converts from the desired spec-
tral reflectance to required colorant values. Since the YNSN
model is not analytically invertible, iterative methods are of-
ten used. It is also possible to use large size look-up tables
but they require a large number of data to be built. The iter-
ative methods has the advantage to need just a few measure-
ments, but the iteration process can fall into local minima,
and therefore fail to obtain the optimal solution. To alleviate
this problem we recently proposed an alternative method of
inverting the Neugebauer model [33].

Furthermore, recent investigations have been carried out
concerning spectral gamut limitations [16], and optimal de-
sign of colorants for spectral reproduction [20].

4.2 Halftoning considerations

Once a set of colorant values for each pixel is obtained, com-
monly it is necessary to apply a halftoning process to convert
the pixel values typically ranging from 0 to 255 on eight bits
to binary levels indicating whether an ink drop of a certain
color is laid down at a certain location or not.

This halftoning is typically done by error diffusion (ED)
performed separately on each channel. In ED the output pixel
value (0 or 1) of an ink channel is determined by a threshold-
ing condition. Then the difference (i.e. the error) between
the input pixel value and output pixel value is weighted by a
weight filter and diffused to the neighboring pixels. Several
possibilities exist for filter weights, e.g. Floyd-Steinberg [34]
and Jarvis-Judice-Ninke [35], aiming to break up unwanted
patterns typically found in ED. This operation is performed
for each colorant channel separately in a raster scan mode.
Clustered-dot screens are not suitable because of moiré is-
sues when using a high number of primaries. It has been ob-
served that the fact that the ED is performed independently
for each channel introduces unwanted objectional patterns,
this can be called stochastic moiré [36].

In a recent paper we have proposed to use Vector Error
Diffusion (VED) for spectral reproduction [21]. The VED
technique halftones a picture considering each pixel value of
an image as a vector of data, thus performing the halftoning
of all the channels simultaneously. For colorimetric VED,
the error metric determining the combination of inks to be
printed is typically calculated as the Euclidean distance in
colour space between the desired colour and the colours of
the Neugebauer Primaries [36]. The NP giving the small-
est error is chosen, and the resulting error is diffused to the
neighboring pixels.

The extension from colorimetric VED to spectral VED is
relatively straightforward; the error metric is the Euclidean
distance in spectral reflectance space. Using this approach
we have obtained very promising simulation results on a 7-
channel inkjet printer. For each pixel the spectral reflectance
is directly converted into a dot distribution and is ready to be
printed. We thus completely avoid the difficult problem of
establishing the inverse model, as discussed earlier. As it can
be seen in Figure 5, the effect of stochastic moiré is greatly
reduced.

However, spectral VED is a time consuming process, and
further work should be done to increase the performance of
the algorithm. A study of the primaries interaction and the
spectral gamut of the printer should bring improvement and
allow to deal with data outside of the printer gamut [16].

SED of the 50th  patch VED  of the 50th  patch

Figure 5: A patch halftoned by scalar error diffusion (left)
and vector error diffusion (right). The reduced visual
noise (stochastic moiré) achieved by VED is clearly visible.
(From [21]).

5. SUMMARY

In this paper we have given a brief overview of the field of
multispectral color imaging, as well as a few of our recent
advances in the field.
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France, November 2005.

[28] David Connah, Jon Y. Hardeberg, and Stephen Westland.
Comparison of spectral reconstruction methods for multispec-
tral imaging. In Proceedings of the IEEE International Con-
ference on Image Processing, Singapore, October 2004.

[29] H. Owens. Colour and spatiochromatic processing in the hu-
man visual system. PhD thesis, University of Derby, Derby,
UK, 2002.

[30] R. W. G. Hunt. The Reproduction of Colour in Photography,
Printing and Television. Fountain Press, Kings Langley, UK,
3 edition, 1975. (Currently available in its 6th edition.).

[31] H. E. J. Neugebauer. Die theoretischen Grundlagen des Mehr-
farbendruckes. Zeitschrift für wissenschaftliche Photographie,
Photophysik und Photochemie, 36(4):73–89, April 1937.

[32] J. A. C. Yule and W. J. Nielsen. The penetration of light into
paper and its effect on halftone reproductions. In Proceed-
ings of the Technical Association of the Graphic Arts (TAGA),
volume 3, page 65, 1951.

[33] Ali Alsam, Jérémie Gerhardt, and Jon Y. Hardeberg. Inversion
of the spectral Neugebauer printer model. In Proceedings of
the 9th Congress of the International Colour Association, AIC
Color 2005, pages 473–476, Granada, Spain, May 2005.

[34] Robert W. Floyd and Louis Steinberg. An adaptive algorithm
for spatial greyscale. Proceedings of the Society for Informa-
tion Display, 17(2):75–77, 1976.

[35] J. F. Jarvis, C. N. Judice, and W. H. Ninke. A survey of tech-
niques for the display of continuous tone pictures on bilevel
displays. Computer Graphics and Image Processing, 5:13–
40, 1976.

[36] H. Haneishi, T. Suzuki, N. Shimoyama, and Y. Miyake. Color
digital halftoning taking colorimetric color reproduction into
account. Journal of Electronic Imaging, 5(5):95–106, January
1996.

[37] D. MacAdam, editor. Selected Papers on Colorimetry — Fun-
damentals, volume 77 of Milestone Series. SPIE Optical En-
gineering Press, Bellingham, Washington, 1993.

ACKNOWLEDGEMENTS

I want to express my deepest gratitude to all those who have
collaborated with me on different projects within this field,
in particular Professor Francis Schmitt, who got me started
in this area, as well as my colleagues and students Ali Alsam,
David Connah, Ambroise Marin, Jeremie Gerhardt, and Arne
Magnus Bakke.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


