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ABSTRACT

A wireless sensor network with a fusion center is consid-
ered to study the effects of dependent observations on the
parameter estimation problem. The sensor observations are
corrupted by Gaussian noise withgeometricspatial correla-
tion. From an energy point of view, sending all the local data
to the fusion center is the most costly, but leads to optimum
performance results since all the dependencies are taken into
account. From an estimation accuracy point of view, send-
ing only parameter estimates is the least accurate, but is the
most parsimonious in terms of communication costs. Hence,
this tradeoff between the energy efficiency and the estima-
tion accuracy is explored by comparing the performance of
maximum likelihood estimator (MLE) and the sample aver-
age estimator (SAE) under various topologies and commu-
nication protocols. We start by reviewing the results from
the one-dimensional case and continue by extending those
results to various two-dimensional topologies. Surprisingly,
we discover a class of regular polygon topologies where the
MLE under spatial correlation reduces to the SAE.

1. INTRODUCTION

The canonical wireless sensor network (WSN) consists of a
fusion center and a set of low-cost sensors with limited dy-
namic range, power, resolution, and wireless communication
capabilities. The role of the fusion center is to consolidate
information and aid the sensors when necessary. The job
of each sensor is to collect local data and transmit relevant
information to the fusion center. With limited communica-
tion and computation capabilities, spatially distributed sen-
sors are expected to coordinate, communicate, and, in our
case, estimate a parameter of interest from the environment
(e.g., monitoring temperature readings or toxicity levels of a
chemical agent in a region).

In the present setting of the distributed estimation prob-
lem, each sensor collects observations based on a parameter
of interest. Either the observations or sufficient statistics, if
available, are shared amongst the sensors or passed to the
fusion center. To further reduce the energy cost for commu-
nication, the observations may be quantized before transmis-
sion. Ultimately, the estimate of the parameter is obtained by
optimizing a non-linear function based on the received obser-
vations (e.g., maximum likelihood or minimum mean-square
error).

Deriving the maximum likelihood estimator (MLE) in a
WSN setting has been studied under various contexts. The
simplest approach is to send the full set of unprocessed ob-
servations to the fusion center where the MLE can be com-
puted. This approach is not feasible for WSNs due to the high
communication cost, but provides a benchmark for accuracy
performance. Another approach is to develop procedures
that take into account the power and bandwidth constraints.
In [1], the focus is on finding a class of MLEs that attain a
variance that is close to the optimal MLE when the observa-
tions are quantized to one bit. In [2, 3], the distributed esti-
mation scheme takes the quantization idea one step further
by requiring each sensor to send a message whose length is
determined by the local SNR. The proposed scheme is shown
to be within a constant factor of the optimal estimator.

While most of the results on distributed estimation as-
sume that the sensor observations are conditionally indepen-
dent, less is known about the broader, more difficult prob-
lem in which the sensor observations areconditionally de-
pendent. In many practical applications, a large number of
sensors are deployed over a finite region. Hence, some spa-
tial correlation most likely exists among the sensor observa-
tions. The issue of distributed estimation with dependent ob-
servations was studied in [4], where the authors implemented
suboptimal estimates to show that their scheme outperforms
procedures which neglect dependency.

In this paper, we consider a deterministic mean loca-
tion parameter estimation problem with dependent observa-
tions. In the presence of independent observations, deriving
the MLE is straightforward and highly energy efficient. The
full observation set from all the sensors does not need to be
present at the fusion center when the parameter estimate is
calculated. Instead, only specific quality measures based on
local sensor observations are necessary. Hence, if we con-
sider a WSN withN sensors randomly placed on a unit grid
where all the sensors only send quality measures to the fu-
sion center, thenO(N) bit-meters of transport energy cost
is required. Furthermore, the specific quality measures from
each sensor can be passed sequentially from sensor to sensor
and still incur no loss of information. Given the individual
sensor quality measures, a cumulative sum can be computed
where each sensors adds its own local contribution to the pre-
vious cumulative sum. This sequential communication pro-
tocol requiresO(

√
N) bit-meters of transport energy cost.

Refer to [5] for details.
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On the other hand, deriving the MLE for the depen-
dent observation case is, in general, not analytically feasi-
ble. In addition, the MLE under dependent observations
requires a centralized communication protocol in which all
data observations are sent to the fusion center, with an asso-
ciatedO(NM) bit-meters in terms of transport cost, where
M is the number of local sensor observations. To address
these issues, we start by summarizing the results for the one-
dimensional, linear topology with fixed and proximity spac-
ing found in [6]. This simple topology allows the MLE and
the corresponding Cramer-Rao lower bound (CRLB) to have
explicit analytic forms. Then, given a specific topology, a
comparison is made between the transport cost needed to im-
plement the communication protocol and the accuracy of the
estimate produced by the communication protocol. Specifi-
cally, the difference between the variance of MLE under de-
pendent observations and the variance of the MLE assum-
ing independent observations is observed to see the improve-
ment in accuracy by incorporating dependency in the esti-
mate. Then, we extend these results to the two-dimensional
grid topology. In the generalN ×N grid case, simulations
provide insight on the role of dependency since an analytical
solution, to the best of our knowledge, has yet to be found.
Also, we consider scenarios where the sensors are placed
randomly on a unit square and compared with the grid topol-
ogy case. Finally, a class of two- dimensional topologies are
found where MLE under dependent observations reduces to
the SAE. Under this class of topologies, the sequential pro-
cedure can be implemented without any loss in estimation
accuracy.

The organization of this paper is as follows. In Section 2,
the problem formulation as well as background material on
the MLE and the CRLB for any general covariance matrix
are presented. In Section 3, a one-dimensional topology is
presented. Two cases are considered where as the number
of sensors increases, either the area the sensors cover grows,
(i.e., fixed spacing), or the sensors are confined to a fixed area
and get closer together, (i.e., proximity spacing). In Sec-
tion 4, a two-dimensional fixed grid spacing is considered.
Various topologies are shown which include fixed grid spac-
ing, proximity grid spacing, random grid spacing and regular
polygon spacing. Section 5 provides the concluding remarks.

2. PROBLEM FORMULATION

Parameter Description

M # of measurements per sensor
N # of sensors
i measurement index:i = 1, . . . ,M
j sensor index :j = 1, . . . ,N
θ scalar parameter of interest

xi,j ith observation fromjth sensor
xi ith observation vector from all sensors

Consider a WSN comprised ofN sensors where each
sensor collectsM measurements. While we assume that
the sensor observations are independent from measurement

to measurement, they are not necessarily independent from
sensor to sensor. Hence, the observations at time indexi of
N sensors are modeled as

xi = θ1+wi (1)

where

f(wi|Σ) =
1

(2π)
N
2 |Σ| 12

exp(−1
2
wT

i Σ−1wi) . (2)

We let f(wi|Σ) denote the noise probability density func-
tion (Gaussian) with covariance matrixΣ. We assumeθ is
fixed but unknown. This is the standard deterministic mean
location parameter estimate formulation.

If all observations from the WSN,{xi}M
i=1, are available,

the MLE ofθ is given by

θ̂MLE =
1

1T Σ−11
1
M

M∑

i=1

1T Σ−1xi . (3)

The variance of the estimator in (3) is Var(θ̂MLE) =
1/

(
M

(
1T Σ−11

))
while the Fisher information is

I (θ̂MLE) = M
(
1T Σ−11

)
. Hence, the CRLB is achieved

by the estimator.
The estimator in (3) represents the most general form of

the MLE of θ. Depending on the structure ofΣ, simplifica-
tions can be made in the form of the MLE. The simplest case
imposes spatial independence on the sensor observations. If
in addition,σ2

j = σ2 for all j, thenΣ = σ2I. The MLE ofθ
is given by

θ̂SAE =
1

MN

M∑

i=1

N∑

j=1

xi,j , (4)

henceforth referred to as the sample average estimator
(SAE).

From the SAE in (4), it is evident that a sequential proce-
dure can be implemented wherein each sensor passes only
certain statistics of their own data from sensor to sensor.
As the statistics traverse the WSN, each sensor updates the
current statistic value based on their own observation data.
For independent observations in the Gaussian noise case, in
which the covariance matrixΣ = σ2I, the sequential proce-
dure only requires the sample average,µ̂j , to be computed
and passed from sensor to sensor, whereµ̂j = 1

M

∑M
i=1 xi,j .

The case with independent observations is the motivation
behind our sequential procedure. Without any loss of accu-
racy in the MLE estimate ofθ, the transport cost is reduced
by implementing a sequential procedure over a centralized
procedure. Now, we adopt a similar approach and consider
various topologies with dependent observations.

3. ONE-DIMENSIONAL TOPOLOGY

3.1 Fixed Line Spacing

Assume that the sensor nodes are equally spaced and each
individual sensor has the same variance. As more sensors
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are added, the area the sensors cover grows accordingly. The
elements of the covariance matrix have a geometric form,
Σi,j = σ2ρ|i−j|, whereρ is the correlation coefficient. Then,
for the one-dimensional sensor array, the covariance matrix
will be

Σ = σ2




1 ρ ρ2 . . . ρN−1

ρ 1 ρ . . . ρN−2

ρ2 ρ 1 . . . ρN−3

...
...

...
.. .

...
ρN−1 ρN−2 ρN−3 . . . 1




. (5)

The matrix in (5) is referred to as the Kac-Murdock-
Szeg̈o matrix [7] and using the fact that the matrix has a tridi-
agonal inverse, the MLE ofθ is

θ̂MLE =
1

M(N(1−ρ)+2ρ)

×



M∑

i=1

N∑

j=1

xi,j−ρ
M∑

i=1

N−1∑

j=2

xi,j




(6)

and the corresponding variance of the estimator is

Var(θ̂MLE) =
σ2(1+ρ)

M
(
N(1−ρ)+2ρ

) . (7)

To implement the MLE, all observations must be sent to
the fusion center. A distributed technique is not apparent
since correlations exist amongst the observations. Thus, the
energy expenditure in terms of transport cost isO(MN) bit-
meters. However, if we only calculate the sample average,
a sequential procedure can be used that only costsO(

√
N)

bit-meters. So the following questions arise. Is it worth all
this extra transport cost to achieve the best MLE? What is the
accuracy performance gain in terms of the variance of both
estimators under dependent observations? To answer these
questions, the variance of the SAE needs to be calculated un-
der the noise conditions of (5). The difference between the
variance of the MLE and the variance of the SAE provides a
measure for the accuracy improvement.

Under the same noise conditions, the variance of the es-
timator in (4) is found to be

Var (θ̂SAE) =
σ2

NM
+

2σ2ρ

N2M(1−ρ)

×
[
(N −1)− ρ

1−ρ

(
1−ρN−1

)]
.

(8)

Given both analytical forms of the variances, a straight-
forward computation shows the following proposition.

Proposition 1 For the covariance matrix given by(5), if
N ≥ 3 andρ ∈ (0,1), we have

Var (θ̂SAE)−Var (θ̂MLE)

Var (θ̂MLE)
= O(N−1) . (9)

For the fixed line spacing topology, both communication
protocols behave the same asymptotically. This was expected
since the area grew as the number of sensors grew. How-
ever, a more interesting case arises when the coverage area
remains fixed.

3.2 Proximity Line Spacing

A different model arises when the area the sensors cover is
fixed. As more sensors are added, the sensors get closer and
thus, more correlated. If we add sensors, equally spaced,
on a unit straight line, the maximum distance between ad-
jacent sensors isd = 1/(N − 1). Then, the elements of the
covariance matrix areAi,j = σ2ρ|i−j|d, while the covariance
matrix has the form

Σ = σ2




1 ρ
1

N−1 ρ
2

N−1 . . . ρ

ρ
1

N−1 1 ρ
1

N−1 . . . ρ
N−2
N−1

ρ
2

N−1 ρ
1

N−1 1 . . . ρ
N−3
N−1

...
...

...
. ..

...

ρ ρ
N−2
N−1 ρ

N−3
N−1 . . . 1




. (10)

The MLE for the covariance matrix in (10) is

θ̂MLE =
1

M
(
N(1−ρ

1
N−1 )+2ρ

1
N−1

)

×



N∑

j=1

µ̂j−ρ
1

N−1

N−1∑

j=2

µ̂j




(11)

with

Var (θ̂MLE) =
σ2(1+ρ

1
N−1 )

M
(
N(1−ρ

1
N−1 )+2ρ

1
N−1

) . (12)

Note, asN → ∞, the variance of the MLE approaches
2σ2

M
(
2−logρ

) .

Following the steps used for the fixed spacing case, the
variance of the SAE under the same covariance matrix is

Var (θ̂SAE) =
σ2

NM
+

2σ2ρ
1

N−1

N2M(1−ρ
1

N−1 )

×
[
(N −1)− ρ

1
N−1

1−ρ
1

N−1

(
1−ρ

)
]

.

(13)

Given the analytical expressions for the variances of each
estimator, we have the following propositions about the ab-
solute and relative difference.

Proposition 2 For the covariance matrix given by(10), if
N ≥ 3 andρ ∈ (0,1), we have

sup
N

[
Var (θ̂SAE)−Var (θ̂MLE)

]
=

− 2σ2

M

[
1

logρ
+

1−ρ(
logρ

)2 +
1

2− logρ

]
,

(14)
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and

sup
N,ρ

[
Var (θ̂SAE)−Var (θ̂MLE)

]
≤ 0.072

σ2

M
. (15)

Proposition 3 For the covariance matrix given by(10), if
N ≥ 3 andρ ∈ (0,1), we have

sup
N

[
Var (θ̂SAE)−Var (θ̂MLE)

Var (θ̂MLE)

]
=

(
1− 2

logρ

)(
1+

1−ρ

logρ

)
−1 ,

(16)

and

sup
N,ρ

[
Var (θ̂SAE)−Var (θ̂MLE)

Var (θ̂MLE)

]
≤ 0.14 . (17)

Propositions 2 and 3 claim that for any sensor number
N ≥ 3, the absolute and relative performance losses of the
SAE compared to the performance of the MLE are bounded
by a function ofρ, as seen by the right hand side of (14)
and (16), respectively. Also, for allN andρ, the bound on

absolute performance loss is found to be7.2%× σ2

M , while
the bound on the relative performance loss is found to be
14%. Therefore, given the linear proximity spacing topology,
if the WSN application can tolerate accuracy performance
degradations within these bounds, a sequential communica-
tion protocol can be implemented. On the other hand, if the
accuracy performance loss is too much to sustain, then the
centralized protocol with higher transport cost can be used.

4. TWO-DIMENSIONAL TOPOLOGY

4.1 Fixed and Proximity Grid Spacing

To extend the framework to a more realistic WSN scenario,
two-dimensional topologies are considered. For the fixed and
proximity spacing cases, the sensors form an equally spaced
grid across a square coverage area. From the covariance ma-
trix, an analytical expression for the MLE and its correspond-
ing variance has yet to be found. Therefore, simulations were
conducted for largeN to see the asymptotic trend of the vari-
ance of SAE relative to the variance of the MLE. Both figures
represent the relationship between the variance of both esti-
mators andρ for variousN . For the fixed spacing topology
shown in Fig. (1), asN increases, the gap between the vari-
ance of both estimators decreases. Also, for any fixedN , the
gap between variance of both estimators is relatively small.
In Fig. (2), the effects of random placement in the proxim-
ity grid setting were observed. The sensors were placed by
a uniform distribution over a square grid. It is evident from
Fig. (2) that asN increases, the gap between the variance of
the grid proximity spacing and the random proximity spacing
decreases. For the case whereN = 322 = 1024, the variance
curves between the grid proximity spacing and the random
proximity spacing are virtually indistinguishable.
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Figure 1: Plot of the variance versus the correlation co-
efficient ρ for the MLE and the SAE for the cases where
N = 9,25,900. The sensors are in a fixed spaced, grid
topology. The entries of the covariance matrix are given by
Σi,j = σ2ρ|i−j|, (M = 10,σ2 = 10).
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Figure 2: Plot of the variance versus the correlation coeffi-
cientρ for the MLE and the SAE, fixed and random, for the
cases whereN = 100 (top) andN = 1024 (bottom). For the
random placement, 500 realizations were considered. The
sensors are in a random proximity spaced, two-dimensional
topology. The entries of the covariance matrix are given by

Σi,j = σ2ρ
|i−j|
N−1 , (M = 10,σ2 = 10).
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4.2 Regular Polygon Spacing

Another approach considers various two-dimensional
topologies which allow the calculation of the MLE under de-
pendent observations to be analytically feasible. Interesting
results arise from topologies that form regular polygons. If
each vertex of a regular polygon is the location of a sensor,
then, with the proper labeling, the covariance matrix induced
by the topology is circulant. Then, by using the properties of
circulant matrices, the following proposition can be stated.

Proposition 4 For any regular polygon topology, if the ele-
ments of the covariance matrix are given byΣ = σ2ρ`, where
` is the distance between the sensors, then

θ̂MLE = θ̂SAE . (18)

The claim that̂θMLE = θ̂SAE also holds for any three-
dimensional regular polyhedron (e.g., triangular pyramid,
cube). If the sensors are placed in a regular polygon for-
mation, then the transport cost in communication is signifi-
cantly reduced and the estimation accuracy incurs no loss in
performance. Thus, the regular polygon topology eliminates
the effect of dependency in the calculation of the MLE, and
hence, reduces the MLE to the SAE.
Proof. To prove Proposition 4, it suffices to show that

1
MN

M∑

i=1

N∑

j=1

xi,j =
1

1T Σ−11
1
M

M∑

i=1

1T Σ−1xi .

First, given a regular polygon topology, index any arbitrary
sensor as sensor 1. Then, in a clockwise or counterclockwise
fashion, label the other sensors, in consecutive order, relative
to sensor 1. Afterwards, construct the covariance matrix us-
ing the fact that the elements are generated by the expression
Σ = σ2ρ`. Due to the rotational symmetry of a regular poly-
gon,Σ is a circulant matrix. A circulant matrix is any matrix,
circ(a0, . . . ,aN−1) ∈ RN×N , of the form

circ(a0, . . . ,aN−1) ,


a0 a1 a2 . . . aN−2 aN−1

aN−1 a0 a1 . . . aN−3 aN−2

aN−2 aN−1 a0 . . . aN−4 aN−3

...
...

...
.. .

...
...

a2 a3 a4 . . . a0 a1

a1 a2 a3 . . . aN−1 a0




.

Then, the following properties of circulant matrices are
invoked.

(P1) If a matrixA is nonsingular and circulant, thenA−1 is
circulant.

(P2) If a matrixA is circulant, then all the rows and columns
have equal sum.

Let C equal the sum of any column inΣ−1. Then,

1
1T Σ−11

=
1

NC
,

and

1
M

M∑

i=1

1T Σ−1xi =
1
M

C




M∑

i=1

N∑

j=1

xi,j


 .

By combining the above results, the proof is complete.¥

5. CONCLUSION

For the covariance matrices studied in this paper, the perfor-
mance of the SAE is close to that of the optimal MLE. More
precisely, for the one-dimensional case, we showed that if
the dependent noise structure has the form in (5), the SAE
is asymptotically equivalent to the MLE. Also, if the noise
covariance has the form in (10), we found numerical and an-
alytical bounds on the performance loss. While we incur a
small loss in performance by using the SAE instead of the
optimal MLE, there are considerable energy savings due to
the sequential nature of calculating the SAE. We also found
promising simulation results that show the asymptotic trends
extend the the two-dimensional case. Furthermore, for prox-
imity spacing, we showed that random placement on a square
performs as well as the grid placement case. Finally, we
proved that for regular polygon topologies, the MLE reduces
to the SAE.
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