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ABSTRACT

We investigate how the sound field induced by an acoustic event
evolves over space and time. The characteristics of its bidimen-
sional Fourier spectrum are analyzed and spatio-temporal sampling
results using an array of microphones are provided for different
scenarios of interest. We then address the distributed compression
problem using an information-theoretic point of view. In this con-
text, optimal rate-distortion tradeoffs are derived for two scenarios
of interest. A linear network setup is first considered, where a cen-
tral base station aims at recovering with minimum distortion the
signals recorded by an infinite line of microphones. A hearing aid
problem is then studied, where two hearing devices exchange data
over a rate-constrained wireless link in order to provide spatial noise
reduction.

1. INTRODUCTION

Sensor networks have emerged as a powerful tool to acquire data
distributed over a large area by means of self-powered and low-
cost sensing units. They allow to observe physical fields at differ-
ent time instants and space locations, thus acting as spatio-temporal
sampling devices. Most envisioned deployments of such distributed
infrastructures are tailored to a particular sensing task. Examples
are environmental monitoring (temperature, humidity or pressure
measurements) [1], target tracking [2] or acoustic beamforming [3].
The design of these networked architectures usually involves a com-
plex interplay of source and channel coding principles as a mean to
reproduce the sensed data within prescribed accuracy. In this con-
text, a thorough understanding of the physical phenomenon under
observation is crucial. It allows to accommodate the design of sens-
ing devices, sampling schemes and transmission protocols to the
targeted application, hence providing significant gains over blind
communication strategies.

In this work, we examine the spatio-temporal sampling and dis-
tributed compression of the sound field acquired with an array of
microphones. We first review the simple setup which consists of
one emitting source and one recording device. We then look at
more complex scenarios by means of the plenacoustic function [4]
which describes the evolution of the sound field over space and time.
More precisely, given an acoustic event, the plenacoustic function
corresponds to the sound that would be recorded at any given po-
sition and time. Its Fourier spectrum is shown to exhibit exponen-
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tial spatial decay rates beyond an essential spectral support. This
almost-bandlimited character allows to derive spatio-temporal sam-
pling results using different sampling lattices. Experimental results
are provided to confirm the theory.

We then turn our attention to the distributed compression prob-
lem, where the samples acquired by the microphones must be ef-
ficiently coded and transmitted to a central base station for recon-
struction. Note that in the scope of this paper, the problem is solely
addressed from a source coding standpoint, the channel coding per-
spective being matter of current research. Under these assumptions,
we focus on two limiting scenarios of interest. In the first setup [5],
the source is modelled as a continuous stationary Gaussian space-
time process on a line and is recorded using an infinite linear array
of microphones (linear network). Closed-form rate-distortion (RD)
formulas are provided for various sampling strategies. In particu-
lar, we show that under restricting hypotheses, the best achievable
RD tradeoff can be obtained by judicious signal processing at the
sensors. We thus provide, for this particular example, the solution
to the multi-terminal source coding problem whose general solution
remains unknown to date [6]. In the second setup [7], we consider
the problem where two digital hearing aids, each equipped with an
omnidirectional microphone, exchange their sensed acoustic data
using a wireless communication link in order to provide collabo-
rative beamforming. In other words, we study the beamforming
gain provided by a rate-constrained two-sensor array. Our hear-
ing aids setup is first identified as a remote source coding problem
with side information at the decoder. Under assumptions similar to
the first setup, we compute a closed-form RD formula in a simple
scenario. We then define the gain-rate function, which describes
the best achievable gain-rate tradeoff, and provide its correspond-
ing closed-form description. Extension to more complex acoustic
environments is also discussed.

The paper is organized as follows: in Section 2, we present the
spatio-temporal characteristics of the sound field along with sam-
pling results. The distributed compression task is then addressed
for the linear network setup in Section 3 and in the context of the
hearing aids problem in Section 4. We present the conclusions in
Section 5.

2. SPATIO-TEMPORAL CHARACTERISTICS OF THE
SOUND FIELD

This section is devoted to the analysis of the sound field along both
the spatial and temporal dimension. For the sake of simplicity, we
will work under the free-field assumption [8], i.e. that the reverber-
ation effect due to surrounding objects can be neglected. Extension
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Figure 1: Setups for the study of the sound field in free field. (a)
One source and one microphone. (b) One source and an infinite line
of microphones.

of the results presented here to the case with room reflections are
presented in [4]. Among different spatial setups, the case of an in-
finite line of microphones is discussed in details. In particular, the
2-dimensional Fourier transform (2D-FT) of the sound field along
a line is computed. It is shown that its essential support has a bow-
tie-like shape. Different spatio-temporal sampling schemes are then
investigated.

Let us first consider the setup depicted in Figure 1(a). A sound
u(t) is emitted in free field by an omnidirectional source located
at position(xu,yu,zu). The sound recorded at a receiver (micro-
phone) located at position(xv,yv,zv) is written v(t). Considering
the channel between the source and the receiver as a linear and time
invariant system, we can define an impulse response between these
two points. This impulse response, denoted ash(t), is a function of
the time and depends on the distanced between the source and the
receiver. It is given by [8]

h(t) =
δ
(

t − d
c

)

4πd
, (1)

wherec is the speed of sound propagation. Under these considera-
tions, the sound heard at the microphone is simply obtained as the
convolution of the source with the impulse response.

We now consider more general setups where we do not only
measure the sound field at one point but over larger areas. To this
end, we define theplenacoustic function(PAF) as the sound field
recorded at any possible location for a source located at one partic-
ular position. The PAF has been studied for different microphone
arrays, such as lines or planes [4], and for sources moving along
random trajectories [9]. In the sequel, we will focus on the PAF
along a line (thex-axis) as shown in Figure 1(b). For the case of
a source emitting a Dirac at time instanttu, the PAF simply corre-
sponds to the Green’s function [8]. In this case, the PAF is described
by

g(x, t) =

δ
(

t − tu−
√

(x−xu)2+(yv−yu)2+(zv−zu)2

c

)

4π
√

(x−xu)2 +(yv−yu)2 +(zv−zu)2
. (2)

Taking the 2D-FT of (2) leads to a spectrumG(Φ,Ω) where Φ
stands for the spatial frequency, measured in radians per meter, and
Ω for the temporal frequency, measured in radians per second. A
closed-form expression ofG(Φ,Ω) can be obtained and is plotted
in Figure 2(a). It can be seen that most of the energy present in the
signal is contained in the region of space satisfying

|Φ| ≤ |Ω|
c

. (3)

Outside of this region, the energy of the spectrum can be shown to
decay exponentially fast. As the spectrum is almost bandlimited,
the interpolation of the sound field can be achieved using sinc in-
terpolation. A quantitative sampling theorem, trading off sampling

(a)

(b)

Figure 2: Two-dimensional Fourier transform of the PAF. (a) Ob-
tained from the theory. (b) Obtained from experimental measure-
ments.

rate versus reconstruction signal-to-noise ratio (SNR), has been de-
rived in [4]. Experimental measurements have also been carried out
to confirm the developed theory and a similar bow-tie-like spectrum
has been obtained when calculating the spectrum corresponding to
the measured room impulse responses. This spectrum is shown in
Figure 2(b). Note that any spatio-temporal field governed by the
wave equation would result in a similar Fourier spectrum. Typi-
cally, in the electromagnetic case,c would then correspond to the
speed of light.

When sampling the PAF in the spatio-temporal domain, spectral
repetitions appear in the 2D-FT domain as observed in Figures 3(a)
and 3(b). Owing to the particular shape of the PAF’s spectrum, a
better packing can be obtained using quincunx sampling as shown
in Figures 3(c) and 3(d). This leads to a gain of factor 2 in the
processing and will be proved crucial in the RD analysis provided
in the next section.

3. RATE-DISTORTION FUNCTIONS FOR THE LINEAR
NETWORK SETUP

The scenario that we consider in this section, consists of a sensor
network recording a spatio-temporal acoustic field on an infinite
line V , which is generated by sound sources located on a paral-
lel line U at a distanced from the recording lineV . The setup
is shown in Figure 4. The sound sources emit an acoustic field
U(x, t), which induces a sound fieldV(x, t) on the recording line
through the convolution with a space and time invariant filterg(x, t),
which we obtain from equation (2) by settingtu = 0, xu = 0 and
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Figure 3: Sampling and interpolation of the PAF. (a) Rectangular
sampling grid. (b) Plenacoustic spectrum with its repetitions for a
rectangular sampling grid. The interpolation filter is in bold. (c)
Quincunx sampling grid. (d) Plenacoustic spectrum with its repe-
titions for a quincunx sampling grid. The interpolation filter is in
bold.

(yv− yu)
2 +(zv− zu)

2 = d2. Sensors equipped with microphones
are equally spaced on the recording line and sample the induced
field V(x, t). We model the sound sourceU(x, t) as a continuous
stationary Gaussian stochastic process with a flat and bandlimited
power spectral density (PSD)SU (Φ,Ω), i.e.,

SU (Φ,Ω) = σ2
U 1[−Φ0,Φ0](Φ)1[−Ω0,Ω0](Ω) ,

whereσU is some real parameter, andΦ0 andΩ0 are the maximal
spatial and temporal frequencies. The acoustic fieldV(x, t) that is
induced in the recording region, is then also a stationary Gaussian
stochastic process, whose PSD is given by

SV(Φ,Ω) = SU (Φ,Ω) |G(Φ,Ω)|2 .

Because of the PAF’s fast decay in the region where|Φ| > |Ω|/c,
we assume thatG(Φ,Ω) vanishes in that region. The support of the

d

V

U
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Sensor
x

V(xn,tk)

U(x,t)

g(x,t)

x

Figure 4: Sound sources located on a lineU emit an acoustic field
U(x, t), which induces another sound fieldV(x, t) on a parallel line
V at a distanced.

Ω

Ω0

Φ

suppSV(Φ, Ω)

Φ̃0 = Ω0/c

Figure 5: Bow-tie-like spectral support of the PSDSV(Φ,Ω) of the
induced acoustic fieldV(x, t).

PSDSV(Φ,Ω) then has a bow-tie-like shape that is bandlimited on
both frequency axes, as it is shown in Figure 5. We observe that the
spatial frequency is at most equal tõΦ0 = Ω0/c, independently of
the actual maximal spatial frequencyΦ0 of the source. According
to Shannon’s sampling theorem, the fieldV(x, t) is thus completely
described by its samples taken on a sufficiently dense sampling grid
in the spatio-temporal plane. In the sequel, we consider the rect-
angular and the quincunx sampling lattices described in Section 2.

The sensors located on the recording line sample the sound field
V(x, t), quantize their observations at a given rate and transmit the
quantized samples to the base station over parallel rate-constrained
channels. The latter produces an estimateV̂(x, t) of the original field
V(x, t) at any point on the recording line. We use a rate-constrained
communication model in keeping with current digital communica-
tion architectures. In other words, the sensors encode their observa-
tions into bit streams, and the base station reconstructs an estimate
from these bits. The goal is to minimize the distortionD, measured
in mean squared error (MSE) per meter and per second, for a given
total rateR, measured in bits per meter and per second, spent by the
sensors for communicating with the base station. The MSE distor-
tion is defined as

D = lim
L→∞
T→∞

1
2L

1
2T

∫ L

−L

∫ T

−T
E

[(
V(x, t)−V̂(x, t)

)2
]

dtdx.

For this setup, we determine RD functions under various constraints
on the inter-sensor communications and the extent to which the
spatio-temporal correlation can be taken into account for the quan-
tization. An RD function is defined to be the optimal trade-off be-
tween the rate and the distortion under the given constraints. In
particular, we compute thecentralizedRD function, where the sen-
sors are allowed to collaborate through free inter-sensor communi-
cations to jointly encode the spatio-temporal samples of the sound
field V(x, t). Next, we determine thespatially independentRD
function, where inter-sensor communications are precluded, and
each sensor quantizes the locally observed temporal stochastic pro-
cess ignoring the spatial dimension. Having the sensors consider
and exploit the spatial correlation without communicating with each
other leads to the generalmultiterminalRD problem, which is the
true problem of interest in sensor network applications, but which
remains an unsolved question to date. However, the corresponding
RD function is lower bounded by the centralized RD function and
upper bounded by the spatially independent RD function, so that,
depending on the size of the gap between these two functions, the
precise determination of the multiterminal RD function may be less
relevant for practical applications.

In this paper, we determine the RD functions under the addi-
tional assumption that the PSDSV(Φ,Ω) is constant on its support,
i.e.,

SV(Φ,Ω) = σ2
V Π(Φ,Ω) , (4)
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Figure 6: RD functions for different sampling and coding schemes.
The curve for quincunx sampling coincides with the one for cen-
tralized coding.

whereΠ(Φ,Ω) is the indicator function of the bow-tie-like region
shown in Figure 5. The same PSD would also result from the far-
field assumption used in the acoustics literature. To compute the RD
functions, we use the so-called reverse “water-filling” technique as
well as the results for stationary Gaussian random processes in [10].
The results are summarized in the following proposition [5].

Proposition 1 Under the flat spectrum assumption(4), the RD
functions corresponding to the coding schemes defined above and
the sampling lattices described in Section 2 are given by the follow-
ing expressions:

• for centralized coding:

R(D) =
Ω2

0

4π2c
log

(
σ2

VΩ2
0

2π2cD

)
; (5)

• for rectangular sampling and independent coding:

R(D) =
Ω2

0

2π2c
log

(
σ2

VΩ2
0

eπ2cD

1
2

(
1+

√
1−2

π2cD

σ2
VΩ2

0

))

+
Ω2

0

2π2c

(
1−
√

1−2
π2cD

σ2
VΩ2

0

)
; (6)

• for quincunx sampling and independent coding:

R(D) =
Ω2

0

4π2c
log

(
σ2

VΩ2
0

2π2cD

)
; (7)

where D∈ (0,(σ2
VΩ2

0)/(2π2c)].

Figure 6 shows the graphs of the RD functions given in Proposi-
tion 1. We observe that equations (5) and (7) are identical. Thus,
under the flat spectrum assumption, the strategy of using the quin-
cunx sampling lattice and independent coding is optimal. The ex-
planation for this fact is that the PSD of the sampled sound field is
a constant function as a consequence of the flatness of the spectrum
and the perfect tiling of the frequency plane shown in Figure 3(d),
and that the processes sampled by different sensors are thus inde-
pendent. Therefore, encoding these processes independently does
not result in any loss in terms of rate-distortion. This also implies
that for this scenario, the RD function for multiterminal source cod-
ing is known and coincides with the one for centralized coding.

V1 V2

h1 h2

U

(a)

R2R1

V1

Enc

Dec

Û1

V2

Enc

Dec

Û2

(b)

Figure 7: Our hearing aids setup. (a) Typical head-related configu-
ration. (b) Collaboration using a wireless communication link.

4. GAIN-RATE FUNCTION FOR THE HEARING AIDS
SETUP

In this section, the setup consists of two hearing aids, each equipped
with an omnidirectional microphone, a processing unit and wireless
communication capabilities. For simplicity of exposition, we will
concentrate on the simple scenario illustrated in Figure 7(a). The
signal observed at microphonek (k = 1,2) can be expressed as

Vk(t) = Uk(t)+Nk(t) = hk(t)∗U(t)+Nk(t) ,

whereU is the point source of interest andNk some ambient noise.
The processesU andNk are modelled as independent continuous
stationary Gaussian stochastic processes with mean zero and PSD
SU andSNk , respectively. The quantityhk corresponds to the im-
pulse response of the filter that models the path between the source’s
position and microphonek. Under the near-field assumption, it is
given by the PAF of the sourceU evaluated at the position of mi-
crophonek. It can also account for the shadowing effect induced
by the head by means of the corresponding head-related impulse
response [11]. As in Section 3, we will work under the far-field as-
sumption. This allows us to provide a closed-form solution to our
problem. In this case,hk(t) is simply given by

hk(t) = δ (t − τk) ,

whereτk is the propagation delay from the sourceU to microphone
k. We will further assume thatU andNk have flat PSDs over the
frequency band[−Ω0,Ω0], i.e.

SU (Ω) = σ2
S 1[−Ω0,Ω0](Ω) ,

SNk(Ω) = σ2
N 1[−Ω0,Ω0](Ω) .

The goal of hearing aidk is to beamform in the direction ofU in
order to mitigate the effect of surrounding noise. More precisely, it
aims at recovering, with minimum MSE, the signalUk that would
have been observed in a noise-free environment. To this end, each
device receives a compressed version of its neighbor’s acquired sig-
nal as depicted in Figure 7(b). In this context, we wish to char-
acterize the best achievable gain, at each hearing aid, that can be
provided by the availability of a wireless link as a function of the
communication bit-rate. In the sequel, we look at this problem from
the perspective of hearing aid 1. Under these assumptions, our setup
corresponds to a remote source coding problem with side informa-
tion at the decoder. For a given rateR1 = R, measured in bits per
second, we wish to encodeV2 such as to minimize the MSE between

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



−30
−20

−10
0

10
20

30
40

0
5

10
15

20
25

0

0.5

1

1.5

2

2.5

3

3.5

γ [dB]R [kb/s]

G
(R

,γ
)

[d
B

]
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the desired sourceU1 and its reconstruction̂U1, assuming the pres-
ence of some side informationV1 at the decoder. A general char-
acterization of the corresponding RD function can be found in [7].
For the problem at hand, this RD function evaluates as follows.

Proposition 2 The RD function under the above assumptions is
given by

R(D) =
Ω0

2π
log2

(
σ2

S

σ2
S +σ2

N

)
− Ω0

2π
log2

(
2σ2

S +σ2
N

σ2
S σ2

N

πD
Ω0

−1

)
,

where D∈ (0,(Ω0 σ2
S σ2

N)/(π(σ2
S +σ2

N))].

The gain achieved by this collaborative beamforming is now ex-
pressed as a function ofR as

G(R) =
D(0)

D(R)
.

The functionG(R) is referred to as thegain-rate function. It char-
acterizes the optimal tradeoff between the communication bit-rate
R and the resulting beamforming gain. From Proposition 2, we can
straightforwardly provide the following result.

Proposition 3 The gain-rate function under the above assumptions
is given by

G(R) =
2γ +1
γ +1

(
γ

γ +1
2−2πR/Ω0 +1

)−1

,

whereγ = σ2
S/σ2

N is the input SNR.

We plot in Figure 8 the beamforming gain obtained as a function
of the communication bit-rateR and the input SNRγ. As R→ ∞,
the gain remains bounded and corresponds to that of a two-sensor
array with no rate constraint. At high SNR, this gain approaches
10log10(K) [dB] where K = 2 is the number of sensing devices.
We also observe that, in this scenario, the result depends neither on
the actual position of the source nor on the geometrical properties
of the hearing aids setup. This is due to the far-field assumption
and the fact that the noise is uncorrelated across sensors. A similar
analysis can be carried in the presence of interfering point sources.
In that case, the spatial extent provided by the head becomes crucial.
The interested reader is referred to [7] for a more detailed analysis.

5. CONCLUSIONS

In this paper, the spatio-temporal characteristics of the sound field
have been studied. We have introduced the plenacoustic function
as a means to describe, at any position and time, the sound in-
duced by a given acoustic source. In particular, its bidimensional
Fourier spectrum has been computed in the case of an infinite line
of microphones and shown to exhibit an almost-bandlimited char-
acter. Based on this insight, we have presented sampling results for
different sampling lattices. The intuition provided by this analy-
sis has then been applied to two distributed compression scenarios.
The first setup has considered the reconstruction of the measured
sound field at a central base station. Under restricting assumptions,
efficient distributed processing at the sensors has been proved opti-
mal, hence providing an answer to the general multi-terminal source
coding problem for this particular scenario. The second setup has
looked at a hearing aids problem, where two hearing devices per-
form collaborative beamforming through a rate-constrained wire-
less link. The optimal tradeoff between beamforming gain and com-
munication bit-rate has been derived.
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