
ON THE ERROR EXPONENT OF THE WIDEBAND RELAY CHANNEL

Qiang Li and Costas N. Georghiades

Electrical and Computer Engineering Department, Texas A&MUniversity
College Station, TX 77843-3128

E-mail: {qiangli,georghiades}@ece.tamu.edu

ABSTRACT
We investigated the error exponent of the wideband relay
channel. By computing the random coding error exponent
of three different relay strategies, i.e., amplify-and-forward
(AF), decode-and-forward (DF) and block Markov code
(BMC), we found that relayed transmission can enhance the
wireless link reliability significantly in the wideband regime
compared to direct transmission. We also studied optimal
power allocation and relay placement by maximizing the re-
liability function. Analytical and numerical results show, for
DF and BMC relays, placing the relay node in the middle
of source and destination provides the best link reliability.
But for the AF relay scheme, the optimal relay placement
depends on the path-loss exponent; for large path-loss expo-
nents, half-way relay placement is also optimal.

1. INTRODUCTION

Relayed transmission has received increasing attention asit
can provide distributed space diversity to combat the fad-
ing impairment in the wireless network. The classical re-
lay channel was introduced by van der Mulen [1], and then
further explored by Cover and El Gammal [2]. Laneman et
al., [3] analyzed the outage behavior and diversity order for
several relay protocols. Their results characterized the diver-
sity multiplexing trade-off at the high signal-to-noise ratio
(SNR). Recently, Liang and Veeravalli [4] studied the opti-
mal resource allocation problem for the Gaussian orthogonal
relay channel. However, most previous work has primarily
focused on narrow-band relay transmission, where the re-
ceived SNR per degree of freedom is high. In this paper, we
study the performance of the relay channel in the wideband
extreme, i.e., the available bandwidth is large and the result-
ing SNR per degree of freedom is low. Relevant examples
are wireless ad-hoc and sensor networks.

We use Gallager’s random code error exponent [5] (also
known as the channel reliability function) as a tool to an-
alyze different relay strategies. Error exponent providesa
measure of how fast the decoding error probability decays
exponentially as the code block length increases for rates be-
low channel capacity. We show that, for orthogonal relay-
ing, both AF and DF provide higher reliability than the di-
rect transmission, and the DF scheme has better performance
than AF for similar settings. If we relax the orthogonal con-
straint, i.e., the relay node can receive and transmit message
at the same time (full duplex), block Markov coding scheme
can be used to boost the link reliability even more. The error
exponent can serve as a performance measure to optimize
the power allocation and relay node placement. We found
that placing relay node in the middle between source and
destination can provide the best link reliability for DF and
BMC schemes. But for the AF scheme, the optimal position

depends on the path-loss exponent of the physical wireless
propagation model.

The remainder of this paper is organized as follows. Sec-
tion II introduces the system model for the problem under
consideration. Section III defines the the random coding er-
ror exponent. Section IV and Section V give out the error ex-
ponent results for various relay strategies. Some numerical
results are provided in Section VI. Section VII summarizes
the main results of the paper.

2. SYSTEM MODEL

In this work, communication occurs over a relay network,
with one relay node and one source-destination pair, as is
shown in Fig. 1. The sourceS broadcasts the message to
both relayRand destinationD. The relay processes the mes-
sage and then sends it to the destination to assist the desti-
nation decoding the data. Based on the limitation of relay
node, we focus on two kinds of relay: 1) orthogonal relay
(half-duplex), i.e., transmitting and receiving in the differ-
ent time or frequency subchannels. The AF and DF schemes
fall into this category. 2) Full duplex operation, including
block Markov coding transmission. We model the wideband
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Figure 1: Layout of Relay Network.

channel as a set ofN parallel narrowband channels. We as-
sume that the Doppler spread is negligible, which makes the
narrowband channels have independently and identically dis-
tributed (i.i.d.) statistics. Moreover, we assume that theco-
herence bandwidth is much larger than the bandwidth of the
narrowband channel, such that each channel is flat faded. Us-
ing the sampling theorem, the received signal at the relay and
the destination for thenth channel andkth symbol time can
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be written, respectively, as

yr [k,n] =

√

Ps

N
hs,r [k,n]xs[k,n]+zr [k,n] (1)

yd[k,n] =

√

Ps

N
hs,d[k,n]xs[k,n]

+

√

Pr

N
hr,d[k,n]xr [k,n]+zd[k,n] , (2)

wherexi [k,n] is the source/relay transmitted signal withi ∈
{s, r}. We assumeE[|xi [k,n]|2] = 1, and let the transmit
power at the source and relay bePs andPr respectively. In
(1)− (2), hi, j [k,n] is the fading coefficient, wherei ∈ {s, r}
and j ∈ {r,d}; zj [k,n] represents the additive white noise
for j ∈ {r,d}. The pair(k,n) can be considered as indices
for the time-frequency slot, or degrees of freedom, to com-
municate. Statistically, we modelhi, j [k,n] as zero-mean,
circularly-symmetric complex Gaussian random variables,
which are independent across different narrowband channels
and links. Additionally, we modelzj [k,n] as zero-mean, in-
dependent, circularly-symmetric complex Gaussian random
variables with variancesN0.

In this work, we simplify the model in Fig. 1. We assume
that the distance between the source and destination is nor-
malized to one, and the relay is located on a line between the
source and destination. The parameterd represents the dis-
tance from source to relay, and(1−d) is the distance from
the relay to the destination. Using physical path-loss prop-
agation model for wireless communication [8], we assume
E[|hi, j |2] = 1

dα
i, j

, wheredi, j is the distance from transmitteri

to receiverj andα is path-loss exponent.
Furthermore, we assume there is no decoding delay and

coding is across the different narrowband channels. Our goal
is to compute the error exponent of this wideband relay trans-
mission and to study the optimal power allocation and relay
placement. Since we assume i.i.d. statistics across the nar-
rowband channels, we can aim at one narrowband channel
with source and relay power constraint(Ps

N , Pr
N ). As N → ∞,

the power allocated to each narrowband channel goes to 0.
Equivalently, we can focus on analyzing a narrowband flat
fading channel in the low SNR regime. For convenience, we
omit the narrowband indexn. With a little abuse of notation,
let (Ps,Pr) represent the transmit power at source/relay for
each narrowband channel, which can take a very small value.

3. THE RANDOM CODING ERROR EXPONENT

Gallager [5] established random coding techniques to upper-
bound the achievable average error probability over a random
code ensemble with maximum-likelihood decoding. Specifi-
cally, given a codeC of lengthN over an alphabetχ with 2nR

codewords, we have

P̄e ≤ exp(−N(E0(ρ,Q)−ρR)) , (3)

with E0(ρ,Q) defined as

E0(ρ,Q)=− ln

(∫ ∞

−∞

[∫ ∞

−∞
Q(X) f (Y/X)1/(1+ρ)dX

]1+ρ
dY

)

,

(4)
for 0 ≤ ρ ≤ 1. Q(X) is the code symbol (or input) distrib-
ution and f (Y/X) is the channel output distribution condi-
tioned on the input. The random coding exponent is defined

to be the one that yields the tightest bound:

Er(R) = max
ρ

max
Q

{E0(ρ,Q)−ρR} , (5)

where the maximization is overQ and subject to the input
power constraint. For linear Gaussian Channel model

y = Hx+z , (6)

if we assume input symbolx has Gaussian distributionx ∼
CN(0,P)1, and noisez has circular symmetric gaussian dis-
tributionz∼CN(0,W). SubstitutingQ(x) and f (y/x) into
(5), we can get the following theorem.

Theorem 1 (Gaussian Error Exponent) of (6):

E0(ρ,P) = ρ lnEH

∣
∣
∣I+

1
1+ρ

W−1HPH†
∣
∣
∣ , (7)

whereE denotes expectation, and| · | represents determinant
of matrix.

We omit the proof of this theorem because the result can be
found in other literature [6]. If the channel model (6) re-
duces to the scalar one, Eq. (7) can be written asE0(ρ,P) =

ρ lnE(1+ P|h|2
N0(1+ρ) ), which is the well known error exponent

for the scalar fading channel.

4. ERROR EXPONENT FOR ORTHOGONAL
RELAY CHANNEL

For orthogonal relay operation, the relay node can not trans-
mit and receive at the same time. We partition the transmis-
sion as two steps. First, sourceS broadcasts message and
relayR keeps silent, i.e.,letxr [k,n] = 0 in Eq. (1)− (2). In
the next step, relayR transmits the processed message to des-
tination and sourceSstops transmission. Mathematically, for
the first step, the received signal of each equivalent narrow-
band channel can be written as

yr =
√

Pshs,rxs+zr (8)

yd[1] =
√

Pshs,dxs+zd[1] , (9)

For the next step, we obtain

yd[2] =
√

Prhr,dxr +zd[2] . (10)

4.1 Amplify-and-forward (AF) Relay

Using the amplify-and-forward relay scheme, the relay node
amplifies the message it received in the first phase and for-
wards it to the destination in the second phase, i.e.,

√
Prxr = βyr , (11)

here we define the amplifier gain asβ =
√

Pr
Psh2

sr+N0
. Substi-

tute (11) into (10) and write the received signal during the
two phases in vector form
(

yd[1]
yd[2]

)

︸ ︷︷ ︸

y

=

(

hs,d
hr,dβhs,r

)

︸ ︷︷ ︸

H

√
Psxs+

(

0 1 0
hr,dβ 0 1

)( zr
zd[1]
zd[2]

)

︸ ︷︷ ︸

z

1To chooseQ(x) as Gaussian is not optimal and a distribution concen-
trated on a “thin spherical shell” will give better results [5], nonetheless
Gaussian error exponent is a convenient lower bound for the optimal error
exponent.
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Note that

E(zz†) =

(
N0 0
0 |hr,dβ |2N0 +N0

)

.

We observed that the AF relay is equivalent to a single-input-
multiple-output (SIMO) channel. Using Theorem 1, we have
following result.

Theorem 2 (Error Exponent of AF relay) :

EAF
r (R) = max

0≤ρ≤1

{
1
2

ρ lnE

(

1+
Ps

(1+ρ)N0

(

h2
s,r +h2

s,d

−
h2

s,r

|hr,dβ |2 +1

))

−ρR

}

. (12)

For fair comparison with direct transmission, we have halved
the degree of freedom and doubled the rate as 2R to account
for the half-duplex transmission.

If we fix the total power budget asP, our goal is to opti-
mize the power allocation(Ps,Pr) between source and relay
transmission to maximize the error exponent of (12). Also,
we try to find the optimal position in the line between source
and destination to place the relay node. For wideband AF
relay system, we assume the amplifier coefficientβ takes the
same value for all the parallel narrowband channel. Practi-
cally, it is a reasonable assumption and need not use passband
filters for each narrow band channel.

Let us defineSNR= Pdir

N0W , wherePdir is the direct trans-
mission power in each channel use, andW is bandwidth of
each narrowband channel. Then we havePs = 2SNRγ,Pr =
2SNR(1−γ), where 0≤ γ ≤ 1, denotes the fraction of power
allocated to the source transmission. LetE[|hi, j |2] = λi, j =

1
dα

i, j
. Hence, we can expressβ asβ =

√
2SNR(1−γ)

2SNRγ λsr+1.

Substituting all the terms into Eq. (12), and computing
expectation value with respect to the channel gain, we have
the following lemma.

Proposition 1 For the AF relay channel, the error exponent
is given by

EAF
r (R) = max

0≤ρ ,γ ,d≤1

{
ρ

1+ρ
γ SNR

(

1+
1

dα

+
1

dα Cexp(C)Ei(−C)
)

−ρR

}

, (13)

where d is the distance between source and relay; C=
(2SNRγ+dα )(1−d)α

2SNR(1−γ)dα ; Ei(·) is the exponential integral function
[7, pp. 925].

Remark 1 The optimal values (d∗,γ∗) to maximize the er-
ror exponent (13) depend on the path-loss exponentα. For
α ≥ 4, d∗ ≈ 1/2, hence placing the relay node in the mid-
dle point of source S and destination D is optimal for large
path-loss exponent. The optimal value (d∗,γ∗) monotonically
decreases from1 to 0.5 as path-loss exponentα increases.

Proof: We omit the proof here due to space limitations.

Table 1: Optimal Relay Positiond∗ and Power Allocationγ∗
α 2 3 4 5 6
d∗ 0.99 0.79 0.52 0.50 0.50
γ∗ 0.98 0.87 0.59 0.54 0.53

Maximizing the AF error exponent (13) overd and γ
can be easily decoupled from maximization with respect to
ρ . Hence, we can numerically search the two-dimensional
space ofd andγ. Although we were not able to show analyt-
ically thatEAF

r (R) is concave in (d,γ), our simulation results
indicate it. Also, note that the relay placement and power al-
location are independent of the SNR values. We summarize
optimal value (d∗,γ∗) for typical α value in Table I.

4.2 Decode-and Forward (DF) Relay

For DF relay, the relay node decodes the source message it
received from the source as ˆxs for N narrowband carriers, re-
encodes the information and sends it to the destination in the
second step. In this work, we assume the simple repetition-
coded scheme. The relay retransmits the signal as

xr [n] = x̂s[n] ,

wheren is the narrowband channel index; ˆxs is the decoded
data at the relay node that was sent from the source. The
error probability of DF relay transmission is:

PDF
e = exp(−NESR

r )+
(
1−exp(−NESR

r )
)
·exp(−NEMAC

r )

≈ exp(−NESR
r )+exp(−NEMAC

r ) , (14)

whereESR
r is the error exponent of source-relay transmission;

EMAC
r denotes the destination decoding error exponent given

repeated transmission from source and relay in two steps.
Here we have assumed the number of narrowband carriers
N or code block length is large enough that the error proba-
bility of source-relay is very small. According to Theorem 1,
we have

ESR
r = max

0≤ρ≤1

{
1
2

ρ ln
(

1+
Psλsr

N0(1+ρ)

)

−ρR

}

(15)

EMAC
r = max

0≤ρ≤1

{
1
2

ρ ln
(

1+
Psλsd+Prλrd

N0(1+ρ)

)

−ρR

}

. (16)

Again, we halved degree of freedom and doubled the rate to
2R for the half-duplex communication.

Proposition 2 (Error Exponent of fixed DF relay):
EDF

r = min{ESR
r ,EMAC

r }.

We want to maximize the error exponent by power alloca-
tion and relay placement. We are using physical path-loss
model of wireless propagation, and letPs = 2SNRγ, Pr =
2SNR(1− γ). Mathematically, we have following the opti-
mizing problem,

max
0≤d,γ≤1

min
{

2SNRγ
1

dα , (2SNRγ +2SNR(1−γ)
1

(1−d)α )
}

.

(17)
Since the first term monotonically increases asγ andd in-
crease from 0 to 1, but the second term is a monotonically
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decreasing function ofγ andd, the minimum in (17) can be
achieved when the first term equals to the second one. Hence,
we can reduce the problem to

max
0≤d,γ≤1

γ
1

dα subject to γ
1

dα = γ +(1− γ)
1

(1−d)α .

(18)
It is a one dimensional maximization, we can readily get the
solution. We summarize the above analysis of the optimal
(d∗,γ∗) in the following remark.

Remark 2 The optimal value to maximize DF error expo-
nent is(d∗,γ∗) = (1

2, 1
2−2−α ). Hence placing the relay node

in middle point of source-relay line is optimal to boost the
link reliability, and the power allocationγ is close to one
half as path-loss exponentα increase.

It is well known that adaptive type DF, i.e., switch back to
direction transmission in the event of relay decoding error,
can achieve full diversity in the high SNR regime. However,
in our wideband relay case, adaptive DF amounts to choose
the better error exponent between direct transmission and DF
transmission. Since DF relay has much higher error exponent
value than direct transmission, adaptive type DF can not im-
prove the performance anymore in our case.

5. ERROR EXPONENT FOR BLOCK MARKOV
CODING (BMC)

In this section, we focus on the full-duplex relay operation,
i.e., when relay node can receive and transmit at the same
time. Block Markov Coding (BMC) was first proposed by
Cover and El Gammal [2] to derive the lower bound for
the relay channel capacity. For convenience, we briefly re-
state the BMC process in the wideband multi-carrier back-
ground. The information bearing bits stream (message) at
the source is parsed into blocks, each withN symbols; each
block of N symbols can be transmitted inN narrowband
carrier for one channel use. Letwi ∈ [1,2NR] be the mes-
sage sent by the source duringith block. The set of mes-
sageW = {1,2, · · · ,2NR} is randomly partitioned into bins
S = {S1,S2, · · · ,S2NR0} with R0 < R. A random code-
bookX = {x1(w|s),x2(s)} is generated based on the joint
probability distribution p(x1,x2), where w ∈ [1,2NR] and
s∈ [1,2NR0]. After the relay successfully decodes the mes-
sage from the source during the(i −1)st block, it transmits
a codewordx2(si) in the ith block to help destination decode
the previously received message. For detailed description,
please refer to [2]. If we assume the entries of codewords
x1(w|s) andx2(s) are independent, identical Gaussian distri-
bution with zero mean and unit variance. The simultaneously
transmitted signal vectors by source and relay inith block are
given, respectively, by

xs =
√

P1x1(wi |si)+θ
√

(1− γ2)P2x2(si)

xr =
√

γ2P2x2(si) , (19)

whereP1 andP2 are transmitted power ofx1(w|s) andx2(s);
γ2 ∈ (0,1) denotes the fraction of powerP2 allocated to relay.
θ is the phase tuning factor to assist source-relay combining,
which satisfies|θ |2 = 1. The received vector at the relay and

destination can be expressed, respectively, as

yr = hsr ·xs+zr

yd = hsd ·xs+hrd ·xr +zd, (20)

wherehi j represents channel coefficient vector for i.i.d. nar-
rowband carriers, fori ∈ {s, r} and j ∈ {r,d}; (·) denotes
componentwise multiplication. For BMC relay strategies,
there are two transmissions for each message, one for source-
relay link; the other are the source and relay multiple-access
to the destination. By the Theorem 1, we have the following
result for BMC relay.

Proposition 3 (Error Exponent of BMC relay): EBMC
r =

min{EB−SR
r ,EB−MAC

r }, where

EB−SR
r = max

0≤ρ≤1

{

ρ ln
(

1+
P1λsr

N0(1+ρ)

)

−ρR

}

(21)

EB−MAC
r = max

0≤ρ ,γ2≤1,γ2

{

ρ ln
(

1

+
P1λsd+(1− γ2)P2λsd+ γ2P2λrd

(1+ρ)N0
−ρR

}

. (22)

In our system model,λrd ≥ λsd, so theEB−MAC
r is maximized

whenγ2 = 1. Hence the transmitted signal in (19) reduces to

xs =
√

P1x1(wi |si), xr =
√

P2x2(si) . (23)

Let us assumeP1
N0

= γ1SNR andP2
N0

= (1−γ1)SNR. The error
exponent of BMC relay degenerates to a form similar to DF
relay, but with half rate and double degree of freedom. The
difference here comes from the full-duplex relay, rather than
the orthogonal operation in the DF scheme. The results of
optimal power allocation and relay placement for DF relay
can also be applied here directly.

6. NUMERICAL RESULTS

In this section, we present numerical results to illustratethe
advantage of the relayed transmission. We assume the relay
node is placed in the line connecting the source and destina-
tion; the distance between source-destination is normalized
to one. For each link, we consider the physical path-loss
channel model withα = 4. We normalized the SNR value
and degree of freedom for a fair comparison among direct
transmission, orthogonal relay and BMC relay, i.e. for the
orthogonal relay, the degree of freedom is halved, rate and
SNR value for each message transmission is doubled.

Fig. 1 compares the error exponent of different trans-
mission strategies with optimal power allocation and relay
placement. The SNR value is−3 dB, which accounts for our
wideband low SNR assumption. We observed that the BMC
relay has the highest reliability because we allow the full-
duplex operation. Note that the DF scheme has an advantage
over AF schemes in the error exponent sense. This observa-
tion is in contrast to the existing results in the literaturethat
both AF and adaptive DF achieve full diversity in the high
SNR regime. All of the above relay transmissions provide a
significant reliability gain over the direct transmission.

To further illustrate the advantage of using relay in the
wideband wireless transmission, Fig. 2 plots the minimum
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number of narrowband carriers to achieve a prescribed de-
coding error probability. The SNR value is defined as total
power per channel use divided byN0. The rate represents the
sum rate of all the narrowband carriers. It is required to solve
for N in the following equationPe = exp(−NEr(

SNR
N , R

N ))
Fig. 2 shows that the relay strategies require far fewer car-
riers to achieve the prescribed decoding error probabilityfor
the same SNR value and transmission rate, compared with
the direct transmission. Hence, it requires less bandwidthor
provides higher spectral efficiency.

7. CONCLUSION

Random coding error exponents provide more information
than the capacity. For any rate below the capacity, they
quantify (lower bound) the exponential decay rate of the
maximum-likelihood decoding error probability averaged
over randomly selected codes. In this paper, we derived the
random error exponent of the relay channel wideband relay
strategies, analytical and numerical results show that using
relay can indeed improve the system reliability significantly
for rate below the capacity, which can save power or reduce
bandwidth required in the practical wireless system. Further-
more, using physical path-loss wireless propagation model,
we investigated the optimal relay placement and power allo-
cation to further boost the system reliability.
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