
SOUND SEPARATION OF POLYPHONIC MUSIC USING INSTRUMENT PRINTS 

Kristóf Aczél 1 and  Szabolcs Iváncsy 2 

Department of Automation and Applied Informatics, Budapest University of Technology and Economics 
3-9. Muegyetem rkp. , H-1111, Budapest, Hungary  

aczelkri@aut.bme.hu1, ivancsy@aut.bme.hu2 
 

ABSTRACT 
Decomposing a polyphonic musical recording to 

separate instrument tracks or notes has always been a 
challenge. Such a signal is the superposition of many 
separate tracks, and it is theoretically impossible to extract 
the component tracks without the information that was lost 
at the superposition. This paper introduces a new way of 
sound separation of mono-aural digital recordings. The 
proposed algorithm inputs the lost information by using a 
model of real instruments in order to make the separation of 
individual musical notes possible. The separation method 
mainly targets the processing and correction of musical 
recordings that cannot be re-recorded. 

1. INTRODUCTION 

Our long term interest in sound separation is motivated 
by the problem of correcting existing musical recordings, 
adjusting volumes of instruments separately, fixing 
misplayed notes etc. Although much work has been 
presented on audio source separation, restoring individual 
notes that are present in the recording is still unsolved. 
However, the human auditory system is very effective in 
differentiating between sound sources and individual notes. 
We can block out unwanted noise, voices of other speakers 
in a crowded environment, we can focus on certain 
instruments in a polyphonic musical piece. Even today we 
know very little about how the human brain exactly works.  

However, the fact that we are able to imagine the sound 
of different instruments even in complete silence, or that we 
can recognize the voice of our relatives without seeing their 
face clearly shows that we store memories of properties of 
different sounds. This leads us to the assumption that the 
human brain uses this a priori information for real-time 
separation of the music we hear. This assumption is 
confirmed in situations when we hear new, unusual 
instruments. Until we get to know the features of the new 
sound source (which may only take a few seconds or 
minutes), our separation capability is rather limited without 
this a priori information. 

This paper proposes a separation algorithm that is 
capable of separating individual notes even in mono 
recordings. The importance of requiring only one channel 
lies in the fact that the solution is suitable also for older 
recordings, or recordings which may have been recorded to 
two or more channels, but the original tracks are for some 

reason no more available. If the source recording has more 
than one channel, then other techniques are also available in 
addition to the solution described in this paper to get even 
better results. 

2. RELATED WORK 

[1] is a sound source separation algorithm that requires 
no prior knowledge, and performs the task of separation 
based purely on azimuth discrimination within the stereo 
field.  The results are impressive. However, separating 
individual notes is not in the focus. 

[4],[5],[6] describe a method which separates harmonic 
sounds by applying linear models for the overtone series of 
the sound. The method is based on a two-stage approach: 
after applying a multipitch estimator to find the initial sound 
parameters, more accurate sinusoidal parameters are 
estimated in an iterative procedure. Separating the spectra of 
concurrent musical sounds is based on the spectral 
smoothness principle [3]. 

Beamforming techniques [10] along with the 
Independent Component Analysis framework offer a 
different way of separation. However, these methods rely on 
certain preliminary conditions and studio setup to achieve 
good results. 

In [7],[8] different transformation methods were 
studied in order to determine the best possible means for 
analysis and processing of recorded digitalized polyphonic 
music signals. 

This paper deals with an approach that aims to separate 
single notes from the remaining part of the recording. The 
focus is on the quality of the output signals rather than the 
speed or automation level of the process. 

3. CONCEPT 

Figure 1 shows the block diagram of the algorithm we 
are going to discuss in detail. First the signal is transformed 
into frequency-domain using FFT transform. After the 
transformation special algorithms are applied to the resulting 
spectrogram in order to retrieve the details and precise 
information that cannot be extracted directly from the FFT 
results. Section 4 deals with the details of these algorithms, 
focusing mainly on Frequency Estimation (FE) and Phase 
Memory (PM). 

Section 5 introduces the instrument model that is used 
in our environment to support the separation process. 
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Section 6 goes through the steps of the actual 
separation. After the separation the separated sound channels 
(the isolated notes and the remainder of the original 
recording) are transferred back to time domain. 

Finally, Section 7 summarizes the results and the 
performance of the system, draws the conclusions and points 
out improvement possibilities. 

 

 
Figure 1 - Block diagram of sound separation 

4. PRECISE SPECTROGRAM CALCULATION 

Fast Fourier Transform is used for converting the sound 
data from time domain to frequency domain. We use 
overlapping signal fragments (frames) to analyze the sound 
signal. In contrast to Fourier Transform, which operates in 
continuous frequency space, FFT decomposes the signal to a 
sum of discreet frequency values. As it is known, this causes 
smearing in the spectrogram, which makes it hard to get the 
exact frequencies out of the original sound signal.  

However, at polyphonic sound signal analysis, it is 
necessary to minimize the effect of the smearing and get the 
precise frequencies of sinusoidal components. In order to 
overcome this problem, several steps are taken. First, 
windowing is applied to each frame in time-domain [7]. This 
will reduce the smearing effect of the FFT to some extent. 
The resulting signal is then processed with FFT. The 
resolution of the resulting image in frequency domain is still 
not satisfactory. This paper introduces the Frequency 
Estimation (FE) method, which is an extension to [11]. 

FFT describes the signal in terms of sinusoids that have 
a well defined bin frequency, phase and magnitude. Any 
sinusoidal source signal with a frequency that matches one 

of the bin frequencies will produce magnitude only on one 
specific bin, while other frequencies will produce 
magnitudes on several neighbour bins, leaving no clue on 
the precise frequency that was originally present in the 
signal. Frequency Estimation method finds the true 
frequency for each bin by analysing the phase information 
on the same bin in successive frames. 

The original method introduced in [11] compares two 
successive frames. The true frequency of a bin is calculated 
as follows. 
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where S is the sample rate of the signal; K is the frame size; 
fk and f k,t represent, respectively, the bin frequency and 
phase of bin k in time t; t

tk
exp
,ϕ  is the expected phase; dev

tk ,ϕ  
is the deviance between the expected and measured phase; 

true
tkf ,  is the estimated true frequency of bin k in time t. The 

greater the time difference between the start of frames the 
more precise the estimated value of true

tkf , . On the other 
hand, big time differences limit the maximum detectable 
distance between true

tkf ,  and fk. 
To overcome this limitation and further improve the 

preciseness of the calculation, an extension to the original 
algorithm is proposed. The true frequencies can be found 
more precisely by taking the weightened average of the last 
m phase deviations ( ,k tc  is the coefficient of bin k in time t). 
This extension will be referred to as Phase Memory (PM). 
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Figure 2 shows the effect of the Frequency Estimation 

and Phase Memory on a spectrogram. (Spectrograms are 
plotted in two dimensions (frequency and time) with 
grayscale colors indicating the magnitude). Figure a) plots 
the raw spectrogram; b) the spectrogram with [11] applied 
and c) shows the effect of the Phase Memory method. If the 
recording is not very complex, the spectrogram in c) is 
understandable even to human eyes. 
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Figure 2 - spectrogram: a) FFT  b) FFT+FE without PM  

c) FFT+FE 

5. INSTRUMENT SAMPLES 

To understand the features of a sound recording, we 
must discuss the features of separate musical instruments 
first. In general, the sound of a musical instrument in any 
given short moment in time can be decomposed into two 
main components: a periodic and an aperiodic sound 
component.  

Periodic sounds are those emitted by a source that 
produces regular vibrations over time, resulting in a 
collection of frequencies called harmonics, partials, or 
overtones. Harmonic frequencies originating from the same 
source are related in a way that they occur in multiples of 
the lowest frequency, referred to as the fundamental 
frequency. Thus, a collection of harmonically related 
frequencies, of which the fundamental is 200 Hz, would 
occur with frequencies of 400 Hz, 600 Hz, 800 Hz, 1000 Hz, 
1200 Hz, etc. 

Aperiodic sounds are those which most often occur 
perceptually as noise (cymbal crash, drums, snare or the 
sound of the piano hammer at the beginning of each piano 
note – see Figure 3). Acoustically, noise is defined as a 
random collection of frequencies from a single source which 
are not harmonically related and whose waveform is 
therefore irregular. 

Most instruments generate both harmonically related 
frequencies and noise-like transients. If we want to eliminate 
a note from the recording, we must first examine one single 
note of that instrument with the same fundamental 
frequency, velocity and amplitude. We must keep in mind 
that velocity and amplitude are not synonyms here. A key on 
the piano can be pressed harder and softer (velocity 
difference), resulting in different spectrograms even if 
normalized before comparing; while the same key-press can 
be recorded with different microphone gain settings (volume 
difference), the spectrograms of which – after normalizing – 
will resemble each other [9].  

Figure 4 plots a piano note at 260Hz in frequency 
domain. The spectrogram shows its two main components. 
Horizontal lines represent the periodic component, which 
slowly decays in time in case of a piano note. The short 

vertical fuzzy area at the beginning that is caused by the 
piano hammer represents the aperiodic component.  

 
Figure 3 - waveform of a piano note (time domain), 

decomposed to aperiodic (hammer) and periodic (strings) 
parts 

 
Human hearing is limited to about 15-20000Hz, 

depending mainly on age. Our model stores the magnitudes 
in the spectrogram of notes of the instrument in this range. 
Since it is practically impossible to store all possible notes 
an instrument is able to generate, only a few are stored at 
different frequencies and velocities. The number of needed 
samples is subject of future research, the current 
implementation works with 3-5 velocity levels per 
instrument and 6-8 sampled frequencies per octave. If the 
spectrogram of an unsampled note is needed later in the 
separation algorithm, the missing sample is interpolated 
from existing ones. If enough samples are stored, the 
difference in the output quality will not be noticeable. 
Finding the required number of sampled notes is out of the 
scope of this paper. From now on this model will be referred 
to as ’instrument print’ or, simply, ’print’. 

 

 
Figure 4 - Plot of a piano note at 260Hz 

The model can shortly described as follows. If we take 
the spectrogram coefficients ( kc =  C ) of a note on a 

certain base frequency _base if , with velocity M, then 
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where A represents one instrument sample starting at t=0. 

, , ,basef s tAM  denotes the sum of the energy of a narrow 
frequency band in time t; r denotes the distance from the base 
frequency, and R is an experimental value which defines the 
size of the frequency band. 

6. SEPARATION 

After we have the instrument prints, and can produce 
the right print for any frequency and velocity by 
interpolation, we can move on to the source recording to be 
processed. The spectrogram of the right print will be 
separated from the remaining part of the recording using 
linear decomposition. Assuming that we know the exact 
frequency, volume and velocity of a certain note that we 
want to separate from the remaining part of the recording, 
the following algorithm can be proposed for the separation. 

The phase and magnitude information of the 
spectrograms will be handled separately. The phases of the 
resulting spectrograms will be for all notes (i) the same as 
the original phases, while the magnitudes of the recording 
will be split between them.  
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The implementation of the actual note separation divides 

the energy between the target notes iteratively in D steps: 
 

,

0,5 0,5
12 12

,

[0],0, [0], , ,

[0], ,

, , , ,
[ ], , ,

[ ],0, ,

ˆ2 2

[ ], , [ ], , ,

, ,
[ ], 1, ,

[ ], , ,

[ ]

if  2
(1 )

base i start

r r
true

base basek t

t k t k t

i t

i f s t T
d r i t per

d k t

f f f

d i t d i k t

baser i t
d i k t

d i k t

c c

A

c

c

f
c

Dc

α

α
δ

− +

−

⋅ < < ⋅

−

   = =   
=

=

=

⋅ 
− 

=  

∑
M

C

S 0

C
0,5

,

0,5

,

[ ], ,

[ 1], , [ ], , [ ], 1, [ ], ,

[ 1],0, [ ], ,

[ ],0, [ 1], ,

ˆ

ˆ    2
otherwise

( )

...

...

r
trueR

k t

r
true R

k t base

d i k

d i t d i t d i t d i t

d t d I t

D t D I t

f

f f

c

−

+

+ −

+

−


<


 < ⋅



= + −

=

=

S S C C

C C

C C

 

 
where Tstart,i is the attack time of note i, D is the number of 
steps, [d] is the current step, iS  is the spectrum of note i after 

the separation,  [ ]DC  is the remaining energy in the recording 
after the separation, while iM  refers to the volume and 
velocity values which are assumed to be known. 

After the separation, the spectrograms can be 
transformed back to time domain.  

In the above paragraphs the starting time, frequency, 
volume and velocity of the note to be separated were 
assumed to be known. These starting parameters are needed 
by the separation algorithm. However, this does not 
resemble a real-life scenario at all. Generally, when given a 
good representation of the sound signal (spectrogram, 
musical score etc.), the user can interactively input the 
frequency and time of the note on a terminal quite precisely. 
On the other hand, specifying the velocity and volume is 
usually a much harder task, since the average user does not 
either recognize or understand the difference between these 
two expressions. Therefore it is safe to feed the starting time 
and frequency as parameters to the separation engine, but 
the velocity and volume must be calculated algorithmically. 

For the above mentioned problem, we propose an 
iteration algorithm that is based on the gradient method. The 
desired volume-velocity pairs are approximated with initial 
values, and after a number of repetitions the optimal values 
can be approached. The algorithm is as follows: 

1. The user interactively inputs all the concurrent notes 
existing in the musical section to be processed. We 
require information on all note starting and ending 
times and frequencies. However, no information is 
required on volume or velocity values this time. This 
is a reasonable compromise between convenience for 
the user and complexity in the algorithm. 

2. An initial volume and velocity level is determined for 
all notes. (From now on, a (start, end, frequency, 
volume, velocity) couple will be referred to as a 
'region'). This initial level can safely set at 100% the 
strength of our stored prints. We found that the initial 
volume level has no influence on the outcome of the 
algorithm; however, it may affect the overall speed. 

3. The separation algorithm is run using the selected 
volume and velocity values.  

4. The error of the separation is calculated: 
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where Errrem sums the error caused by remaining 
energy on the bins in the recording after the 
separation, Errpr sums the error if there was less 
energy in the recording than the prints required, Errsum 
is the global error of the separation step with the 
current region parameters, Tstart and Tend are, 
respectively, the starting and ending times of the 
observed time. r is the region identifier in the 
observed time slice, and 0<a<1 is the quality 
preference parameter of the separation. High a value 
means preference on the quality of the separated notes 
to the quality of the remaining part, while low a value 
provides better remainder quality, but poorer separated 
note quality. 

5. Volume level of one of the regions is slightly 
increased (e.g. from 100% to 101%). Error is counted 
again. This procedure is repeated with all the regions 
in the observed time slice. 

6. Same as 5 with velocity levels.  
7. The gradient vector can be computed from the error 

values. This vector shows the direction in which we 
should change the current volume and velocity values 
to reduce the error values. Volume and velocity values 
are modified accordingly. 

8. Steps 3-7 are repeated as many times as necessary to 
get precise enough volume and velocity values. 

9. After finding the desired record level and velocity 
values giving the lowest possible error value, the 
separation algorithm is run with the calculated 
parameters.  

 
The application of the gradient method is only possible 

if there is only one local minimum in the error-space, 
otherwise it could lead the algorithm towards the wrong 
direction. Proving that the volume-velocity level space 
meets this condition is out of the scope of this paper. 

We must mention that if there are notes in the original 
recording that are located closely in frequency, it introduces 
the beating effect. This effect is not resolved by the current 
algorithm. This issue is the subject of future research. 

7. SUMMARY 

The paper showed a method for separating single 
instrument notes from a recording using pre-recorded 
instrument prints. The results are quite promising. An 
example recording and its separated notes can be 
downloaded from http://aczelkri.fw.hu/separation. However, 
experiments are needed for a mathematical validation. For 
recordings that only contain harmonically unrelated notes 
the algorithm provides very clear results, and even if some 
notes are located on each other’s base or overtone 
frequencies, the separation provides reasonably good results. 
However, in these cases improvement is still required to deal 
with beating and get higher quality output. 

The other area of future research is building more 
flexible instrument models. We cannot always have prints 
for all the possible notes of an instrument, in most cases we 
do not even have access to the original instrument the 

recording was taken with. Thus, as we do not use the right 
print, only a close approximate, we may experience some 
distortion in the separation output which might be audible 
also to less audiophile listeners. 
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